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This paper proposes a low-complexity signal estimator at the relay node for a spatially modulated physical-layer network coding
system. In the considered system, the two terminal nodes use spatial modulation to transmit their signals to the relay node during
themultiple access phase. Based on the channel quantizationmethod, we propose a low-complexity estimatorwhich can detect both
antenna indices and𝑀-QAM symbols using successive interference cancellation (SIC). Moreover, we design signal constellations
for a combined signal component at the relay for arbitrary𝑀-QAMmodulation.Theobtained constellations allow further reduction
of the computational complexity of the estimator. Performance evaluations show that the proposed estimator can achieve near-
optimal error performance while requiring significantly less computational complexity compared with the maximum-likelihood
detector, particularly with high-order modulation.

1. Introduction

Recently, two-way relay systemshave receivedmuch attention
[1–4] as they not only can extend system coverage but also
increase transmission efficiency. Among various two-way
relay schemes, physical-layer network coding (PNC) [1–5] is
known as an effective scheme as it allows the two terminal
nodes to transmit at the same time and same frequency
during multiple access phase, thus reducing the number of
exchange phases to two. As a consequence, throughput and
spectral efficiency of the PNC system are higher than those of
the traditional network coding (NC) [6]. However, the PNC
system often requires higher complexity to obtain network
coded symbols under effect of cochannel interference (CCI).
This requirement leads to increase in transmission delay and
energy consumption [6], which needs to be minimized for
real-time applications, especially for Internet of Things (IoT)
sincemany IoT devices are often powered by a limited-energy
source such as battery. In order to perform PNC, maximum
likelihood (ML) estimation was used to separate individual
symbols from the two terminal nodes before combining
them at the relay. Since the optimal ML estimation requires

excessive complexity, especially for PNC systems with high-
order QAM modulation, suboptimal estimators with less
computational operations are often a better replacement.

Aiming at enhancing system performance, PNC was
also proposed to combine with multiple-input multiple-out-
put (MIMO) transmission techniques such as spatial multi-
plexing [7] or space-time coding [8]. However, using MIMO
transmission amounts to employment of multiple radio fre-
quency (RF) chains, causing problems in not only strict an-
tenna synchronization but also power consumption. Spatial
modulation (SM) is another MIMO technique, which can
avoid these problems by activating only one antenna at a
time. While enjoying this advantage SM can also increase the
spectral efficiency by using the activated antenna indices to
convey information bits [9, 10]. Obviously, combination of
PNC and SM would provide more merits and this motivated
several previous works.

1.1. RelatedWorks. In order to improve the spectral efficiency
of two-way relay systems, SM was proposed to combine with
PNC in [11–14]. The work in [11] considered the combination
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of space-time coding spatial modulation using coordinate
interleaved orthogonal designs. This scheme achieves better
symbol error performance compared with the traditional
network coding for both the cases in which SM is used at the
relay node during the broadcast phase and at all the nodes
during both the multiple access and the broadcast phase.
Despite this advantage, the proposed scheme still requires
high complexity due to using ML estimation for joint decod-
ing. Moreover, this scheme cannot be applied to the two-way
relay systems with more than 2 antennas at all nodes. In [10]
the author proposed two spatial modulation schemes for the
two-way relay channel, where either only simple SM or com-
bined space-time coding and SMare applied at the relay node.
The paper successfully derived the system capacity for both
the systems in terms of achievable rate region and sum rate.
The work in [12] proposed a combined SM and PNC system
where simple bit-wise XOR operation was used for network
coding at the relay node. Thanks to this XOR operation the
proposed system can be easily extended to the case of any
arbitrary number of antennas at all nodes. However, similar
to that in [10], this system uses the optimal ML decoding and
thus exhibits highest computational complexity. In a similar
work, paper [13] proposed combining SM with PNC but
adding convolutional code for error correction. The proposed
scheme uses optimal ML estimation for symbol estimation
and then either separate decoding or direct decoding can
be employed to attain the transmitted packets from the two
terminal nodes. In order to improve the error performance
of the two-way relay system using network coding and spatial
modulation, the work in [14] proposed using precoding with
signal constellation rotation at the terminal nodes and simple
XOR network coding at the relay. The proposed system with
the optimized rotation angle achieves better error perfor-
mance over the three-phase network coding system. How-
ever, this system needs the knowledge of channel state infor-
mation (CSI) at the terminal nodes.

1.2. Contributions of the Paper. In this paper, based on the
channel quantization-based SIC estimation in [4] we propose
a low-complexity estimation scheme which achieves near-
optimal error performance for the combined PNC and SM
scheme proposed in [12]. Compared with the previous works,
our main contributions can be summarized as follows:

(i) First, a new signal constellation for 𝑥(𝑠𝑢𝑚) = 𝑥(1) +𝐿𝑥(2), where 𝐿 is the channel quantization value, is
proposed for arbitrary 𝑀-QAM modulated symbols𝑥(1) and 𝑥(2). Our constellation relaxes the limitation
of QPSK modulation in [4].

(ii) In order to estimate a signal point in the constellation
of 𝑥(𝑠𝑢𝑚), we propose a low-complexity scheme by
estimating only the positive real and imaginary parts
of 𝑥(𝑠𝑢𝑚) and using a simple sign function. The com-
plexity of the proposed estimation scheme depends
less on the modulation order𝑀 but mainly the num-
ber of antennas 𝑁.

(iii) Based on the improved SIC scheme in [4], we to esti-
mating the transmit antenna index and the 𝑀-QAM

modulated symbols successively. This proposed
scheme differs from those used in [10, 12, 15] in that
the previous first two schemes usedML to jointly esti-
mate both active antenna index and modulated sym-
bols and the last scheme used QR decomposition to
estimate antenna index together with an ML estima-
tor to estimate the modulated symbols.

The rest of paper is organized as follows. Section 2 pre-
sents an overview on spatial modulation with NC using
the ML estimation method. The low-complexity estimation
method is discussed in details in Section 3. Section 4 analyzes
the computational complexity of the proposed scheme. Per-
formance evaluations using simulated results are shown in
Section 5. Finally, Section 6 concludes the paper.

Throughout this paper, we use the following mathemat-
ical notations. Bold lower-case letter presents a vector, bold
upper-case letter is used for a matrix, and italic normal letter
is for a variable. C𝑁×𝑀 denotes a matrix of 𝑁 rows and𝑀 columns. Notations (⋅)𝑇, (⋅)∗, | ⋅ |, ‖ ⋅ ‖ are for transpose,
conjugate transpose, absolute value, and Frobenious norm,
respectively.

2. Spatial Modulation with Network Coding
Using ML Estimation

A typical two-way relay system using spatial modulation is
illustrated in Figure 1 [12]. In this model, two terminal nodes
T1 and T2 transmit data to each other simultaneously via a
relay nodeR.All nodes are equippedwith𝑁, (𝑁 = 2𝐾, 𝐾 ≥ 1)
antennas for spatial modulation upon transmission and for
signal combination upon reception. In order to implement
two-way transmission, network coding by XOR mapping is
used at the relay node R. Channels between each pair of
transmit and receive antennas are assumed flat and slow
Rayleigh fading, which are modeled by complex Gaussian
distributed randomvariables∼ N𝑐(0, 1).The signal reception
at each node is affected by additive white Gaussian noise
which is modeled by a complex random variable ∼ N𝑐(0, 𝜎2𝑛).

The two-way transmission involves two phases, namely,
the multiple access (MA) when T1 and T2 transmit their data
to R and the broadcast (BC) when R forwards a network
coded symbol to both T1 and T2.

2.1. MAOperation. In the MA phase, the two terminal nodes
T𝑠, (𝑠 = 1, 2), send their (𝐸 + 𝐶)-length bit sequences b(𝑠)

to R. The first 𝐸 = log2𝑁 bits, denoted by b(𝑠)id = [𝑏(𝑠)1 , . . . ,𝑏(𝑠)𝐸 ]𝑇, are used to activate one out of 𝑁 transmit antennas,
while the remaining 𝐶 = log2𝑀 bits, denoted by b(𝑠)sb =[𝑏(𝑠)1 , . . . , 𝑏(𝑠)𝐶 ]𝑇, for the 𝑀-QAM modulation. The resulting
data rate is log2(𝑀 × 𝑁) bits/time slot. Let 𝑢 = M1(b(1)id ) and
V = M1(b(2)id ), where 𝑢, V ∈ {1, ..,𝑁} andM1(⋅) is the mapping
function which maps a bit sequence to an active antenna
index; 𝑥(𝑠) = M2(b(𝑠)sb ), where M2(⋅) maps a bit sequence to
an𝑀-QAM symbol. For example, the terminal node T1 with𝑁 = 4 antennas needs to transmits 4 information bits 0100.
Since M1([01]) = 2 and M2([00]) = (1 + 𝑗), the second
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Figure 1: System model of Spatial Modulation with Network Coding for two-way relay network.

antenna is activated and the symbol (1 + 𝑗) is transmitted
over it.

The received signal at 𝑁 antennas of R y(R) = [𝑦(R)1 , ..,𝑦(R)𝑁 ]𝑇 in the MA phase is given by

y(R) = 1√𝜇h(1)𝑢𝑅𝑥(1) + 1√𝜇h(2)V𝑅𝑥(2) + n

= h
(1)

𝑢𝑅𝑥(1) + h
(2)

V𝑅𝑥(2) + n,
(1)

where 1/√𝜇 is a normalized power factor to ensure E(|𝑥(𝑠)/√𝜇|2) = 1;n = [𝑛1, . . . , 𝑛𝑁]𝑇 denotes the thermal noise vector
at 𝑁 receive branches of R; h

(𝑠)

𝑖𝑅 = (1/√𝜇)h(𝑠)𝑖𝑅 , (𝑖 = 𝑢, V),
where h(𝑠)𝑖𝑅 = [ℎ(𝑠)𝑖,1 , ⋅ ⋅ ⋅ ℎ(𝑠)𝑖,𝑁]𝑇 is the channel vector between the𝑖th (𝑖 = 1, . . . , 𝑁) active antenna of T𝑠 and the 𝑁 antennas
of R. Assuming that the channel state information (CSI)
is perfectly known at the receiver, an ML detector is used
to jointly detect the transmitted symbols, including the 𝑀-
QAM modulated symbols (𝑥(1), 𝑥(2)) and the active antenna
indices (𝑢, V) at T𝑠 as follows [10, 12]:

(𝑢̂, V̂, 𝑥(1), 𝑥(2))
ML

= argmin
(𝑢,V)∈{1,...,𝑁}
(𝑥(1),𝑥(2))∈Ω

󵄩󵄩󵄩󵄩󵄩󵄩󵄩y(𝑅) − h
(1)

𝑢𝑅𝑥(1) − h
(2)

V𝑅𝑥(2)󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹 , (2)

where Ω denotes the 𝑀-QAM constellation. The estimated
symbols are then demapped to bit sequences for network
coding using XOR operation as follows:

b(R)id = b̂(1)id ⊕ b̂(2)id = M
−1
1 (𝑢̂) ⊕M

−1
1 (V̂) ,

b(R)sb = b̂(1)sb ⊕ b̂(2)sb = M
−1
2 (𝑥(1)) ⊕M

−1
2 (𝑥(2)) , (3)

where M−11 (⋅) and M−12 (⋅) are the demapping function of
M1(⋅) and M2(⋅), respectively; ⊕ denotes the bitwise XOR
operation.

2.2. BC Operation. In the BC phase, the relay node R first
maps the estimated bit sequences b(R)id and b(R)sb to the network
coded symbols that consist of the transmit antenna index of
the relay node 𝑢(R) = M1(b(R)id ) and the 𝑀-QAM symbol

𝑥(R) = M2(b(R)sb ).These symbols are then broadcast to the two
terminal nodes using the SM technique. The received signal
at the terminal node T𝑠 is expressed as follows:

y(𝑠) = 1√𝜇g(𝑠)𝑘𝑆𝑥(R) + z(𝑠) = g(𝑠)
𝑘𝑆
𝑥(R) + z(𝑠), (4)

where g(𝑠)
𝑘𝑆

= (1/√𝜇)g(𝑠)
𝑘𝑆

and g(𝑠)
𝑘𝑆

= [g(𝑠)
𝑘1
, ⋅ ⋅ ⋅ , g(𝑠)

𝑘𝑁
]𝑇 is the

channel vector between the 𝑘th (𝑘 = 1, . . . , 𝑁) active antenna
of R and the𝑁 antennas of T𝑠; z(𝑠) = [𝑧(𝑠)1 , ⋅ ⋅ ⋅ , 𝑧(𝑠)𝑁 ]𝑇 denotes
the thermal noise vector at the 𝑁 receive antennas. At the
terminal node T𝑠, an ML estimator is utilized to estimate the
network coded symbols that consist of the transmit antenna
index and the𝑀-QAM symbol as follows [10, 12]:

(𝑘̂, 𝑥(R))
ML

= argmin
𝑘∈{1,...,𝑁}

𝑥
(R)
∈Ω

󵄩󵄩󵄩󵄩󵄩y(𝑠) − g(𝑠)
𝑘𝑆
𝑥(R)󵄩󵄩󵄩󵄩󵄩𝐹 . (5)

Based on the estimated network coded symbols and using
its transmitted bits in the MA phase b(𝑠)id , b(𝑠)sb , each terminal
node T𝑠 can estimate the bit sequence from its counter-
partner. For instance, the operation of the terminal node T1
is given as follows:

b̂(2) = [b̂(2)id , b̂(2)sb ]
= [M−11 (𝑘̂) ⊕ b(1)id ,M−11 (𝑥(R)) ⊕ b(1)sb ] . (6)

3. Proposed Low-Complexity
Estimation at Relay

Recasting (1) in the matrix form, we have

y(R) = H(𝑢,V)x + n, (7)

where

H(𝑢,V) = [[[[[
[

ℎ(1)𝑢1 ℎ(2)V1... ...
ℎ(1)𝑢𝑁 ℎ(2)V𝑁

]]]]]
]
,

x = [𝑥(1) 𝑥(2)]𝑇 .
(8)
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The channel matrixH(𝑢,V) in (7) can be decomposed using
a QR factorization as follows:

H(𝑢,V) = Q(𝑢,V)R(𝑢,V), (9)

whereQ(𝑢,V) is a unitary matrix with Q𝐻(𝑢,V)Q(𝑢,V) = I𝑁×𝑁 and
I𝑁×𝑁 ∈ C𝑁×𝑁 and R(𝑢,V) = [ R2×2(𝑢,V)

0(𝑁−2)×2
] is an upper triangle

matrix, where R2×2(𝑢,V) = [ 𝑟(1,1)(𝑢,V) 𝑟(1,2)(𝑢,V)
0 𝑟
(2,2)

(𝑢,V)
] with 𝑟(𝑖,𝑖)

(𝑢,V), (𝑖 = 1, 2) being
a real number and 𝑟(1,2)

(𝑢,V) a complex number. Multiplying both

sides of (7) by Q𝐻(𝑢,V) gives us

w(𝑢,V) ≜ Q𝐻(𝑢,V)y
(R) = [ R2×2(𝑢,V)

0(𝑁−2)×2
] x + n, (10)

where n = [𝑛1, . . . , 𝑛𝑁]𝑇 ≜ Q𝐻(𝑢,V)n.
Therefore, the ML estimation applied to (10) can be

expressed as follows [16]:

(𝑢̂, V̂, 𝑥(1), 𝑥(2))
ML

= argmin
(𝑢,V)∈{1,...,𝑁}
(𝑥(1),𝑥(2))∈Ω

󵄩󵄩󵄩󵄩󵄩w(𝑢,V) − R(𝑢,V)x
󵄩󵄩󵄩󵄩󵄩𝐹 . (11)

It is worth noting that in order to perform ML estimation in
(2) or (11), the required computational complexity is𝑁2×𝑀2.
The larger the size of the signal constellation is, the more
estimation complexity it requires. As a consequence, this
results in increased transmission delay and large consumed
energy for processing.

3.1. Proposed Low-Complexity Estimation Using SM-QSIC.
In this section, we propose a low-complexity estimation
method by combining the channel quantization and the SIC
technique, abbreviated as SM-QSIC. The proposed method
consists of two stages, namely, channel quantization and SIC-
based estimation, as follows.

3.1.1. Channel Quantization. Because R(𝑢,V) has only the first
non-zero two rows, the first two elements of w(𝑢,V) in (10) can
be rewritten as follows:

𝑤(1)
(𝑢,V) = 𝑟(1,1)

(𝑢,V)𝑥(1) + 𝑟(1,2)
(𝑢,V)𝑥(2) + 𝑛1,

𝑤(2)
(𝑢,V) = 𝑟(2,2)

(𝑢,V)𝑥(2) + 𝑛2. (12)

To simplify the presentation the subscripts (𝑢, V) will be
omitted in the following parts.𝑤(1) in (12) can be decomposed
as follows:

𝑤(1) = 𝑟(1,1) (𝑥(1) + 𝐿𝑥(2)) + 𝑟(1,1) (𝑟(1,2)𝑟(1,1) − 𝐿)𝑥(2)
+ 𝑛1.

(13)

Let 𝐿 denote the quantization level such that 𝐿 =
round(𝑟(1,2)/𝑟(1,1)), where round(⋅) denotes the rounding
operation. 𝑙 ≜ 𝑟(1,2)/𝑟(1,1) − 𝐿 is regarded as the deviation

between 𝐿 and 𝑟(1,2)/𝑟(1,1). It is also often referred to as quan-
tization error or residual interference.

Denoting 𝑥(sum) ≜ 𝑥(1) + 𝐿𝑥(2), (12) can be rewritten as
follows:

𝑤(1) = 𝑟(1,1)𝑥(sum) + 𝑟(1,1)𝑙𝑥(2) + 𝑛1,
𝑤(2) = 𝑟(2,2)𝑥(2) + 𝑛2. (14)

Using the SIC estimation 𝑥(2) is first estimated from𝑤(2).
Then 𝑥(sum) can be detected by removing the interference
component 𝑥(2) in𝑤(1). In fact, to estimate 𝑥(sum), its constel-
lation must be stored in advance at the receiver. In order to
limit memory size for storing the constellation of 𝑥(sum), we
derive the following lemma.

Lemma 1. If |𝑟(1,1)| ≥ |𝑟(1,2)|, 𝐿 belongs to the set {0, ±1,±𝑗, ±1 ± 𝑗}.
Proof. Because 𝑟(1,1) is a real and 𝑟(1,2) = 𝑟(1,2)𝑟 + 𝑗𝑟(1,2)𝑖 is a
complex number, where 𝑗2 = −1, from the above assump-
tions, we have (𝑟(1,2)𝑟 /𝑟(1,1))2 + (𝑟(1,2)𝑖 /𝑟(1,1))2 ≤ 1 or |𝑟(1,2)𝑟 /𝑟(1,1)| ≤ 1 and |𝑟(1,2)𝑖 /𝑟(1,1)| ≤ 1. Moreover, 𝐿 = 𝐿𝑟 + 𝑗𝐿 𝑖 =
round(𝑟(1,2)/𝑟(1,1)) = round(𝑟(1,2)𝑟 /𝑟(1,1))+𝑗round(𝑟(1,2)𝑖 /𝑟(1,1)).
This means that 𝐿𝑟, 𝐿 𝑖 ∈ {0, ±1}, or 𝐿 ∈ {0, ±1, ±𝑗, ±1 ± 𝑗}.

On the other hand, from (14), it can be seen that
estimation reliability of 𝑥(sum) depends on |𝑙|2. Therefore, we
propose an effective algorithm (Algorithm 1) to satisfy the
condition 𝐿 ∈ {0, ±1, ±𝑗, ±1 ± 𝑗} and reduce the magnitude
of |𝑙|2.
3.1.2. SIC-Based Estimation. This estimationmethod involves
two steps: estimation of the active antenna index and estima-
tion of the𝑀-QAMmodulated symbol.

(i) Estimation of the Active Antenna Index

Step 1. Soft estimation of 𝑥(2) in the second equation of (14)
using 𝑤(2).

(i) For the 4-QAM constellation, the soft estimation is
done as follows [17]:

𝑥(2) = E {𝑥(2) | 𝑤(2)} = tanh(𝑟(2,2)𝑤(2)𝜎2𝑛 ) . (15)

(ii) For other cases, i.e.,𝑀 > 4, the soft estimation is given
by [18]

𝑥(2)

= {{{{{{{{{
sign( 𝑤(2)𝑟(2,2))(√𝑀 − 1) if

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑤
(2)

𝑟(2,2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > (√𝑀 − 1) ,

𝑤(2)𝑟(2,2) if
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑤
(2)

𝑟(2,2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (√𝑀 − 1) .

(16)

Note that the estimation in (15) and (16) is performed
separately for the real and imaginary parts.
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1: Input:𝑁, (𝑢, V) ∈ {1, . . . ,𝑁},H(𝑢,V) ∈ C𝑁×2, y(R) ∈ C𝑁×1

2: Initialization: w(𝑢,V) ∈ C𝑁×1,Q(𝑢,V) ∈ C𝑁×𝑁,R(𝑢,V) ∈ C𝑁×2, 𝐿 (𝑢,V) , 𝑙(𝑢,V) ∈ Z

3: Decompose channel matrixH(𝑢,V): [Q1,R1] = qr(H(𝑢,V))
4: Exchange 2 columns of H(𝑢,V) to get

←󳨀H(𝑢,V) and decompose it: [Q2,R2] = qr(←󳨀H(𝑢,V))
5: Calculate quantization values: 𝐿1 = round(𝑟(1,2)1 /𝑟(1,1)1 ), 𝐿2 = round(𝑟(1,2)2 /𝑟(1,1)2 )
6: Calculate residual interference: 𝑙1 = 𝑟(1,2)1 /𝑟(1,1)1 − 𝐿1, 𝑙2 = 𝑟(1,2)2 /𝑟(1,1)2 − 𝐿2
7: If |𝐿1| ≤ √2 and |𝐿2| ≤ √2 then
8: If |𝑙1| ≤ |𝑙2| then
9: Q(𝑢,V) = Q1,R(𝑢,V) = R1, 𝐿 (𝑢,V) = 𝐿1, 𝑙(𝑢,V) = 𝑙1
10: Else
11: Q(𝑢,V) = Q2,R(𝑢,V) = R2, 𝐿 (𝑢,V) = 𝐿2 , 𝑙(𝑢,V) = 𝑙2
12: End
13: Else if |𝐿1| ≤ √2
14: Q(𝑢,V) = Q1,R(𝑢,V) = R1, 𝐿 (𝑢,V) = 𝐿1, 𝑙(𝑢,V) = 𝑙1
15: Else
16: Q(𝑢,V) = Q2,R(𝑢,V) = R2, 𝐿 (𝑢,V) = 𝐿2, 𝑙(𝑢,V) = 𝑙2
17: End
18: Calculatew(𝑢,V) = Q𝐻(𝑢,V)y

(R)

19: Output: w(𝑢,V) ,R(𝑢,V) , 𝐿 (𝑢,V) , 𝑙(𝑢,V)
Algorithm 1: Matrix decomposition and quantization value calculation.

Step 2. Cancel the residual interference 𝑙𝑥(2) in (14) to esti-
mate the signal 𝑥(sum). Using the conventional SIC, the esti-
mate of 𝑥(2) in (1), denoted by 𝑥(2), is used to remove the noise
components 𝑟(1,2)𝑥(2) in (12) before estimating 𝑥(1). If the esti-
mate 𝑥(2) is correct, the noise component 𝑟(1,2)𝑥(2) is removed
and it does not affect the estimation of 𝑥(1). In contrast, if the
estimate 𝑥(2) is erroneous, the removal of 𝑟(1,2)𝑥(2) results in
an additional interference component 𝑟(1,2)𝑥(2) which affects
the estimation of 𝑥(1) significantly. The larger |𝑟(1,2)|2, the
more significant the impact of this interference. In order to
lessen this impact, instead of complete removing 𝑟(1,2)𝑥(2), we
use the SICmethod in [4] to remove only a part of it, namely,𝑙𝑥(2) as follows.

Let us define

𝑤(1𝑎) ≜ 𝑤(1)𝑟(1,1) = 𝑥(sum) + 𝑙𝑥(2) + 𝑛1𝑟(1,1) ,
𝑤(1𝑏) ≜ 𝑤(1𝑎) − 𝑙𝑥(2) = 𝑥(sum) + 𝑙 (𝑥(2) − 𝑥(2)) + 𝑛1𝑟(1,1) .

(17)

The decision function of 𝑥(sum) is given by

𝑥(sum) = 𝑄(𝑤(1𝑏)) , (18)

where 𝑄 is the decision function for the signal constellation(𝑥(1) + 𝐿𝑥(2)). Details on this decision function will be pre-
sented in the next part.

Step 3. Remove 𝑥(sum) and estimate 𝑥(2) using the maximum
ratio combining (MRC) as follows:

𝑥(2) = 𝑄(𝑙∗ (𝑤(1𝑎) − 𝑥(sum)) + 𝑟(2,2)𝑤(2)
|𝑙|2 + (𝑟(2,2))2 ) . (19)

Step 4. Calculate the estimation error and detect the active
antenna index of the terminals. The estimation error of(𝑥(sum)
(𝑢,V) , 𝑥(2)(𝑢,V)) can be calculated as follows:

Δ
(𝑥̃
(sum)
(𝑢,V) )

= 󵄩󵄩󵄩󵄩󵄩󵄩w(𝑢,V) − R(sum)(𝑢,V) x̃
(sum)
(𝑢,V)

󵄩󵄩󵄩󵄩󵄩󵄩𝐹 , (20)

where

R(sum)(𝑢,V) = [R(sum)(2×2)(𝑢,V)

0(𝑁−2)×2
] ,

R(sum)(2×2)
(𝑢,V) = [

[
𝑟(1,1)
(𝑢,V) 𝑟(1,1)

(𝑢,V)𝑙(𝑢,V)0 𝑟(2,2)
(𝑢,V)

]
] ,

x̃(sum)
(𝑢,V) = [𝑥(sum)

(𝑢,V) 𝑥(2)
(𝑢,V)]𝑇 .

(21)

Finally, a pair of active antenna indices is detected as follows:

(𝑢̂, V̂)ML = min
(𝑢,V)∈{1,...,𝑁}

{Δ
(𝑥̃
(𝑠𝑢𝑚)

(𝑢,V) )
} (22)

(ii) Estimation of the𝑀-QAMModulated Symbol
The total estimation of 𝑥(1) and 𝑥(2) from the received sig-

nal in (12) is performed as follows.

Step 1. Estimate the modulated symbol 𝑥(1) in the 𝑀-QAM
constellation. Cancel 𝑥(2) in 𝑤(1)

(𝑢̂,V̂) in (12) to estimate the
modulated symbol 𝑥(1). Different from the conventional SIC
method which uses the estimate 𝑥(2)

(𝑢̂,V̂) obtained from𝑤(2)
(𝑢̂,V̂) in
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(12), our scheme uses the estimate 𝑥(2)
(𝑢̂,V̂) from theMRC in (19)

as follows:

𝑥(1) = 𝑄(𝑤(1)
(𝑢̂,V̂) − 𝑟(1,2)

(𝑢̂,V̂)𝑥(2)(𝑢̂,V̂)𝑟(1,1)
(𝑢̂,V̂)

) . (23)

Step 2. Estimate the modulated symbol 𝑥(2). In (19), we only
estimate a part of the signal 𝑥(2). Therefore, the total estima-
tion of the modulated symbol 𝑥(2) in the received signal can
be estimated as follows:

𝑥(2) = 𝑄(𝑟(1,2)∗
(𝑢̂,V̂) (𝑤(1)

(𝑢̂,V̂) − 𝑟(1,1)
(𝑢̂,V̂)𝑥(1)) + 𝑟(2,2)

(𝑢̂,V̂)𝑤(2)(𝑢̂,V̂)󵄨󵄨󵄨󵄨󵄨𝑟(1,2)(𝑢̂,V̂)󵄨󵄨󵄨󵄨󵄨2 + (𝑟(2,2)
(𝑢̂,V̂))2 ) . (24)

Similar to [12], the pair of active antennas (𝑢̂, V̂) and the
pair of 𝑀-QAM modulated symbols (𝑥(1), 𝑥(2)) will be
mapped to network coded symbols. Then the relay uses
spatial modulation to broadcast these symbols to the two
terminal nodes as in Section 2.

3.2. Constellation Design for (𝑥(1) + 𝐿𝑥(2)) and Decision Func-
tion𝑄(⋅). To decide the signal 𝑥(sum) in (18), we first study the
constellation of the signal 𝑥(sum) and then create a decision
rule for the function 𝑄(⋅). Because of limited space, we only
focus our presentation on the case with𝑀 ≤ 64. The remain-
ing case with 𝑀 > 64 can be extended in a straightforward
way.

3.2.1. Constellation Design for (𝑥(1) + 𝐿𝑥(2)). It can be seen
from the above section that 𝐿 belongs to one of the values:{0, ±1, ±𝑗, ±1±𝑗}. Meanwhile, the signals 𝑥(1) and 𝑥(2) belong
to the 𝑀-QAM constellation. Therefore, the constellation of
the signal (𝑥(1) + 𝐿𝑥(2)) can be described for various values of𝐿 and𝑀 as shown in Figures 2, 3, and 4.

3.2.2. Proposed Decision Function 𝑄(⋅). Since 𝐿 ∈ {0, ±1, ±𝑗,±1 ± 𝑗}, the decision function 𝑄(⋅) is performed as follows:
(a) Case 𝐿 ∈ {0, ±1, ±𝑗}: Because the 𝑀-QAM constel-

lation is square, we can perform separate estimation for the
real part and the imaginary part of the signal (𝑥(1) + 𝐿𝑥(2)) to
reduce complexity when estimating this signal. On the other
hand, because the constellation is symmetric, we only need to
estimate signal points in the first quarter of the constellation
using the sign function. The decision function 𝑄(⋅) in (18) is
given by

𝑥(sum) = 𝑄 (𝑤(1𝑏))
= 𝑄(𝑥(sum) + 𝑙 (𝑥(2) − 𝑥(2)) + 𝑛(1)𝑟(1,1))
= sign (𝑤(1𝑏)𝑟 ) 𝑥(sum)𝑟 + 𝑗sign (𝑤(1𝑏)𝑖 ) 𝑥(sum)𝑖 ,

(25)

where sign(⋅) represents the sign function and 𝑥𝑟, 𝑥𝑖 denote
the real and imagine part of the complex variable 𝑥, respec-
tively. The real and the imaginary part of 𝑥(sum) are deter-
mined as follows:

𝑥(sum)𝑟 = argmin
𝑥
(sum)
𝑟 ∈A

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤(1𝑏)𝑟 󵄨󵄨󵄨󵄨󵄨 − 𝑥(sum)𝑟 󵄨󵄨󵄨󵄨󵄨 ,
𝑥(sum)𝑖 = argmin

𝑥
(sum)
𝑖
∈A

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤(1𝑏)𝑖 󵄨󵄨󵄨󵄨󵄨 − 𝑥(𝑠𝑢𝑚)𝑖 󵄨󵄨󵄨󵄨󵄨 , (26)

whereA is the set of values for different𝑀 and 𝐿 as given in
Table 1. Notice that, in the case 𝑀 = 4, 𝐿 = 0 we can select𝑥(sum)𝑟 = 𝑥(sum)𝑖 = 1.

Let us consider the simple case with 𝑀 = 16 and 𝐿 = 0
and assume that we need to estimate (𝑤(1𝑏)𝑟 , 𝑤(1𝑏)𝑖 ). The esti-
mation values correspond to the point C1(−1.5, −1.5) as illus-
trated in Figure 5. For theML estimation, there are a total of 16
calculations to decide the point C1(−1.5, −1.5) to the constel-
lation point (−1, −1). If we estimate the real and the imagine
part, separately, then it reduces to 8 calculations. Meanwhile,
our proposed method only needs 4 calculations to obtain the
magnitude and 1 calculation to decide the sign. The more𝑀
increases, the more the complexity can be reduced compared
with that of the conventional estimation methods.

(b) Case 𝐿 ∈ {±1 ± 𝑗}: It can be seen from Figures 2(c),
3(c), and 4(c) that the constellation is truncated at all four
quadrants. At the first quadrant, the constellation is bounded
by a line 𝑥𝑟+𝑥𝑖−4 = 0when𝑀 = 4 and 𝑥𝑟+𝑥𝑖−12 = 0, when𝑀 = 16 and 𝑥𝑟 +𝑥𝑖 −28 = 0, and when𝑀 = 64, where 𝑥𝑟, 𝑥𝑖,
respectively, represents the arbitrary real and imaginary
values that satisfy the zero condition of the equation. There-
fore, in the case 𝐿 ∈ {±1 ± 𝑗} we can perform estimation in
two steps as follows.

Step 1 (decide estimation domain). The signal points (|𝑤(1𝑏)𝑟 |,|𝑤(1𝑏)𝑖 |) are determined to the right or to the left of the bound-
ary line as given

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑚𝑎𝑖𝑛
= {{{

right if (󵄨󵄨󵄨󵄨󵄨𝑤(1𝑏)𝑟 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑤(1𝑏)𝑖 󵄨󵄨󵄨󵄨󵄨 − 𝑎) > 0,
lef t if (󵄨󵄨󵄨󵄨󵄨𝑤(1𝑏)𝑟 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑤(1𝑏)𝑖 󵄨󵄨󵄨󵄨󵄨 − 𝑎) ≤ 0,

(27)

where 𝑎 = −4 if𝑀 = 4 and 𝑎 = −12 and 𝑎 = −28 if 𝑀 = 16
and𝑀 = 64, respectively.
Step 2 (estimation). (i) If 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑚𝑎𝑖𝑛 is on the left of
the boundary line 𝑥𝑟 + 𝑥𝑖 − 𝑎 = 0, the estimation function is
same as the case 𝐿 ∈ {0, ±1, ±𝑗}. However, the set ofA in (26)
is taken from Table 2.

(ii) If 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑚𝑎𝑖𝑛 is on the right of the boundary
line 𝑥𝑟 +𝑥𝑖 −𝑎 = 0; at this point, we only need to estimate the
points on the boundary line as follows:

𝑥(sum) = argmin
𝑥(sum)∈B

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤(1𝑏)󵄨󵄨󵄨󵄨󵄨 − 𝑥(sum)󵄨󵄨󵄨󵄨󵄨2 , (28)

whereB is the set of points on the boundary line as given in
the Table 3. Finally, substitute 𝑥(sum) into (25) to get 𝑥(sum).
4. Complexity Analysis

In order to show the advantage of the proposed method in
terms of computational complexity, we estimate the floating
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Figure 2: Signal constellation of (𝑥(1) + 𝐿𝑥(2)) for𝑀 = 4, 𝐿 ∈ {0, ±1, ±𝑗, ±1 ± 𝑗}.

−4 −2 0 2 4
−4

−2

0

2

4

Q
ua

dr
at

ur
e

Inphase 

(a) 𝐿 = 0

−5 0 5

−5

0

5

Q
ua

dr
at

ur
e

Inphase 

(b) 𝐿 ∈ {±1, ±j}

−10 0 10
−10

0

10

Q
ua

dr
at

ur
e

Inphase 

ＲＣ+ＲＬ-12=0

(c) 𝐿 ∈ {±1 ± j}

Figure 3: Signal constellation of (𝑥(1) + 𝐿𝑥(2)) for𝑀 = 16, 𝐿 ∈ {0, ±1, ±𝑗, ±1 ± 𝑗}.
point operations (flop). Similar to [19], all real algebraic
operation is considered as 1flop, a complex multiplication6flops, a complex division 11flops, and a complex addition
or subtraction 2flops.
4.1. Complexity of Decision Functions 𝑄(⋅) and 𝑄(⋅). First we
analyze the complexity of the decision function 𝑄(⋅) in (18).
From the above section, it can be seen that, for a certain
modulation order 𝑀, the signal (𝑥(1) + 𝐿𝑥(2)) belongs only
to one of three constellations corresponding to 𝐿 = 0, 𝐿 ∈{±1, ±𝑗}, or 𝐿 ∈ {±1 ± 𝑗}. Therefore, the probability of (𝑥(1) +𝐿𝑥(2)) falls into one of the three constellations that can be
given by

Pr (𝐿 = round(𝑟(1,2)𝑟(1,1)))
= Pr (𝐿 ∈ {0}) + Pr (𝐿 ∈ {±1, ±𝑗})

+ 𝑃𝑟 (𝐿 ∈ {±1 ± 𝑗}) = 1,
(29)

where Pr(𝐿 ∈ {0}) = Pr(𝐿 ∈ {±1, ±𝑗}) = Pr(𝐿 ∈ {±1 ± 𝑗}) =1/3.
(a) Case 𝐿 ∈ {±1 ± 𝑗}, because the complexity of

function 𝑄(⋅) when 𝐿 ∈ {±1 ± 𝑗} varies depending on the
value (|𝑤(1𝑏)𝑟 |, |𝑤(1𝑏)𝑖 |) lying on the left or on the right of the
boundary.Therefore, in this case the complexity is given as an
average value based on the probability that the received signal
lying on the right or left side of the boundary. Assuming that

the probability that (𝑤(1𝑏)𝑟 , 𝑤(1𝑏)𝑖 ) lying close to an arbitrary
constellation point of the square constellation (not blocked
by the boundary) is the same. LettingΦ = |𝑤(1𝑏)𝑟 | + |𝑤(1𝑏)𝑖 | −𝑎,
based on the geometric area we can determine the probability
that the received signal lying on the right side of the boundary𝑃𝑟(Φ > 0)𝑀 and the probability of the remaining points
Pr(Φ ≤ 0)𝑀 = 1 − Pr(Φ > 0)𝑀 as shown in Figure 6. These
probabilities are presented in Table 4.

A𝑀,𝐿 is an average value of the set A over 𝐿 at a certain
value of𝑀, andB𝑀 is the sum of the values of the setB.The
values ofA𝑀,𝐿 andB𝑀 are summarized in Table 5.

(i) If |𝑤(1𝑏)𝑟 |+|𝑤(1𝑏)𝑖 |−𝑎 > 0, the complexity of the decision
function 𝑄(⋅) in (28) is 5B𝑀 flops.

(ii) If |𝑤(1𝑏)𝑟 | + |𝑤(1𝑏)𝑖 | − 𝑎 ≤ 0, the total complexity of the
decision function 𝑄(⋅) in (25) and (26) is (4 + 6A𝑀,𝐿) flops.

Therefore, the average complexity of the decision func-
tion 𝑄(⋅) for 𝐿 ∈ {±1 ± 𝑗} is given by

4 + Pr (Φ ≤ 0)𝑀 × (4 + 6A𝑀,𝐿) + Pr (Φ > 0)𝑀
× (5B𝑀) flops. (30)

(b) Case 𝐿 = 0 or 𝐿 ∈ {±1, ±𝑗}:The total complexity of the
decision function 𝑄(⋅) in (25) and (26) is (4 + 6A𝑀,𝐿) flops.
Notice that the complexity of the decision function 𝑄(⋅) is
equal to that of the function 𝑄(⋅) when 𝐿 = 0.

The overall average complexity when using the function𝑄(⋅) to estimate the signal 𝑥(sum) with all values 𝐿 ∈ {0, ±1, ±𝑗,±1 ± 𝑗} is then given by
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Figure 4: Signal constellation of (𝑥(1) + 𝐿𝑥(2)) for𝑀 = 64, 𝐿 ∈ {0, ±1, ±𝑗, ±1 ± 𝑗}.
Table 1: Value sets ofA when 𝐿 ∈ {0, ±1, ±𝑗}.

𝑀 = 4 𝑀 = 16 𝑀 = 64𝐿 = 0 𝐿 ∈ {±1, ±𝑗} 𝐿 = 0 𝐿 ∈ {±1, ±𝑗} 𝐿 = 0 𝐿 ∈ {±1, ±𝑗}
A {1} {0, 2} {1, 3} {0, 2, 4, 6} {1, 3, 5, 7} {0, 2, 4, 6, 8, 10, 12, 14}
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Figure 5: Illustrated example for which (𝑤(1𝑏)𝑟 , 𝑤(1𝑏)𝑖 ) belongs to the
point C1(−1.5, −1, 5) and (|𝑤(1𝑏)𝑟 |, |𝑤(1𝑏)𝑖 |) belongs to C2(1.5, 1, 5) on
the constellation (𝑥(1) + 𝐿𝑥(2)) with𝑀 = 16 and 𝐿 = 0.
Table 2: The value sets of A according to 𝑀 when 𝐿 ∈ {±1 ± 𝑗},𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑚𝑎𝑖𝑛 is on the left of the boundary.

𝑀 = 4 𝑀 = 16 𝑀 = 64
A {1, 3} {1, 3, 5, 7, 9} {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}

𝐶𝑄̂(⋅) = 23 (4 + 6A𝑀,𝐿) + 13 (4 + 𝑃𝑟 (Φ ≤ 0)𝑀 (4
+ 6A𝑀,𝐿) + 𝑃𝑟 (Φ > 0)𝑀 (5B𝑀))
= (13 (𝑃𝑟 (Φ ≤ 0)𝑀 (4 + 6A𝑀,𝐿)
+ 5𝑃𝑟 (Φ > 0)𝑀B𝑀) + 4A𝑀,𝐿 + 4) flops.

(31)

The complexity of function 𝑄(⋅) and 𝑄(⋅) according to𝑀 flops is summarized in Table 6.

4.2. Complexity of Related Estimation Methods. According
to [19], the number of flops required for decomposing the
matrixH(𝑢,𝑢) of size𝑁×2 is (16𝑁2+12𝑁) flops.The number
of flops required for multiplying Q𝐻(𝑢,𝑢) ∈ C(𝑁×𝑁) by y(𝑅) ∈
C(𝑁×1) in (13) is given by (7𝑁2 − 𝑁) flops. Thus, the total
complexity required for Algorithm 1 is given by

𝐶𝑇𝑇 = (39𝑁2 + 23𝑁 + 28) flops. (32)

As a result, the total complexity required for signal estimate
at R for SM-QSIC is given by

𝐶SM−QSIC = 𝑁2 (𝐶𝑇𝑇 + 𝐶𝑄̂(⋅) + 𝐶𝑄(⋅) + 20𝑁 + 38)
+ 2𝐶𝑄(⋅) + 31 = (39𝑁4 + 43𝑁3
+ (𝐶𝑄̂(⋅) + 𝐶𝑄(⋅) + 66)𝑁2 + 2𝐶𝑄(⋅) + 31) flops.

(33)

The total complexity of SM-ML in [10, 12] calculated in
(2) is given by

𝐶SM−ML = 𝑁2𝑀2 (20𝑁 − 1)
= (20𝑁3𝑀2 − 𝑁2𝑀2) flops. (34)

The total complexity for the EGA and EQRP method in
[15] are estimated as follows:

𝐶EGA

= (𝑁4𝑀+𝑁4 (𝑁 −𝑀) + (1 + 𝑁2) 𝑀32 ) flops,
𝐶EQRP = (𝑁4𝑀+ (1 + 𝑁2) 𝑀32 ) flops.

(35)

It is clear that the complexity of SM-ML [10, 12] and both
EGA and EQRP in [15] depend mainly on the modulation
order of the 𝑀-QAM constellation. Therefore, when the
modulation order 𝑀 is high, these methods do not achieve
high efficiency compared to the proposed method.
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Table 3: The sets ofB according to𝑀.

𝑀 = 4 𝑀 = 16 𝑀 = 64
B {1+3𝑗, 3+𝑗} {3 + 9𝑗, 5 + 7𝑗, 7 + 5𝑗, 9 + 3𝑗} {7+21𝑗, 9+19𝑗, 11+17𝑗, 13+15𝑗, 15+13𝑗, 17+11𝑗, 19+9𝑗, 21+7𝑗}

Pr(Φ > 0)M = 0.5

Pr(Φ ≤ 0)M = 0.5

(a) 𝑀 = 4

Pr(Φ ≤ 0)M = 0.68

Pr(Φ > 0)M = 0.32

(b) 𝑀= 16

Pr(Φ ≤ 0)M = 0.74

Pr(Φ > 0)M = 0.26

(c) 𝑀= 64

Figure 6: Probability that the estimation point lying on the left or the right of the boundary.

Table 4: The probability values 𝑃𝑟(Φ ≤ 0)𝑀 and 𝑃𝑟(Φ > 0)𝑀
according to𝑀.

𝑀 = 4 𝑀 = 16 𝑀 = 64𝑃𝑟(Φ ≤ 0)𝑀 0.5 0.68 0.74𝑃𝑟(Φ > 0)𝑀 0.5 0.32 0.26

Table 5: The values ofA𝑀,𝐿 andB𝑀 according to𝑀.

𝑀 = 4 𝑀 = 16 𝑀 = 64
A𝑀,𝐿 5/3 11/3 23/3
B𝑀 2 4 8

Table 6: The complexity of functions 𝑄(⋅) and 𝑄(⋅) according to𝑀 flops.

𝑀 = 4 𝑀 = 16 𝑀 = 64𝐶𝑄̂(⋅) 14.7 26.7 50.5𝐶𝑄(⋅) 2 16 29

5. Simulation Results and
Performance Evaluation

This section presents simulation results of BER and complexi-
ties of different estimation methods.The simulation results of
the proposed SM-QSICmethod are comparedwith that of the
ML estimation method in [10, 12] (denoted by SM-ML), the
MLone in the conventional SIMOsystem (denoted by SIMO-
ML), and the EGA, EQRD ones [15]. Let 𝑉 × 𝐷 × 𝑉 denote
the system configuration, where𝑉 is the number of antennas
of the terminal node and 𝐷 is the number of antennas at the
relay node.

For fair comparison, performance is evaluated at the relay
for the proposed method and the SM-ML in [12]. Assume
that the relay knows one of the two signals from the terminal
nodes and that power of each node is equal to 𝑃, (𝑃𝑇1 = 𝑃𝑇2 =𝑃𝑅 = 𝑃). Figures 7, 8, and 9 show the BER performances

obtained at the spectral efficiency of 4 bps/Hz, 5 bps/Hz, and6 bps/Hz. It can be seen that performance of the proposed
method is close to that of the ML one [12] for the same
spatialmodulation configuration. Furthermore, the proposed
method obtains higher SNR gain than the ML one in the
SIMO system for the same transmission rate and the number
of receive antennas at the relay. Particularly, at BER = 10−3,
the SM-QSIC offers about 4dB SNR gain at the spectral
efficiency of 4 bps/Hz, about 7.5 dB SNR gain at 5 bps/Hz, and
about 5 dB SNR gain at 6 bps/Hz over the ML in the SIMO
system. This SNR gain increases with SNR or𝑁.

Next, we compare the end-to-end BER of the SM-QSIC
and the ML [10]. For fair comparison, we assume that the
transmit power of all terminals is the same and equal to half
of the transmit power of the relay (𝑃𝑅 = 𝑃). Figures 10 and 11
compare the BER performances at the spectral efficiency of4 bps/Hz and 6 bps/Hz. It can be seen that the proposed
method outperforms the SIMO system without the spatial
modulation. Particularly, at BER = 10−3 and the spectral effi-
ciency of 4 bps/Hz, the proposedmethod achieves about 7 dB
SNR gain compared with the SIMO one. More SNR gain
can be achieved at higher SNR or higher spectral efficiency.
Compared with the ML method [10], the proposed one
loses only about 0.7 dB SNR gain at low spectral efficiency
(Figure 10) but achieves the same performance at high
spectral efficiency (Figure 11).

The processing efficiencies in terms of flops/symbol of the
related schemes are compared in Table 7. It can be clearly
seen that the proposed SM-QSIC scheme has the complexity
that depends only slightly on the modulation order 𝑀 but
more on the number of the transmit antennas 𝑁. Moreover,
the proposed scheme has much lower complexity compared
with that of the ML estimation in [10, 12], especially for high
modulation order. Although it has higher complexity than the
EGA and the EQRP in [15] for 𝑀 = 4, the proposed scheme
becomes much more effective for𝑀 > 4. Therefore, the pro-
posed scheme is more suitable for high rate transmission sys-
tems.
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Figure 7: BER comparison at the spectral efficiency of 4 bps/Hz, with𝑁 = 4 and𝑀 = 4.
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Figure 8: BER comparison at spectral efficiency of 5 bps/Hz, with𝑁 = 8 and𝑀 = 4.

Table 7: Processing efficiency comparison at the relay [flops/symbol].
Schemes 𝑁 = 2 𝑁 = 4𝑀 = 4 𝑀 = 16 𝑀 = 64 𝑀 = 4 𝑀 = 16 𝑀 = 64
SM-ML [10, 12] 624 9.984 159.744 5.056 80.896 1.294.336
EGA [15] 48 2.568 163.848 392 8.960 55.7312
EQRP [15] 56 2.624 164.096 392 9.728 56.1152
Proposed SM-QSIC 334 367 410 3.524 3.635 3.789
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Figure 9: BER comparison at spectral efficiency of 6 bps/Hz, with𝑁 = 4 and𝑀 = 16.
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Figure 10: BER comparison from terminal to terminal at spectral efficiency of 3 bps/Hz, with𝑁 = 2 and𝑀 = 4.

6. Conclusions

This paper proposed a low-complexity estimation method
using channel quantization and SIC for spatially modulated
PNC systems. In our scheme, SIC was implemented first
to estimate the activated antenna indices and then the
modulated 𝑀-QAM symbol. We also designed signal con-
stellations for the combined signal (𝑥(1) + 𝐿𝑥(2)) and derived
a decision function 𝑄(⋅) which facilitated a reduced-com-
plexity estimator at the relay for arbitrary 𝑀-QAM mod-
ulation. Using simulation results and complexity analysis
we showed that the proposed scheme achieves near-optimal

performance of the ML estimation while requiring less com-
putational complexity. The proposed scheme is thus a pros-
pective candidate for those applications which require low
computational complexity such as IoT systems.
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Figure 11: BER comparison from terminal to terminal at spectral efficiency of 6 bps/Hz, with𝑁 = 4 and𝑀 = 16.
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