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We investigate the formation and dynamics of spatially broad Dirac light bullets in nonlinear

binary waveguide arrays. We show that a Dirac light bullet can be formed during propagation

when a pulse with an initial profile slightly different from the one of the Dirac light bullet is

launched into the system. We also reveal that these Dirac light bullets are metastable and can

propagate without significant distortion for hundreds of dispersion lengths even in the presence of

the Raman effect, group velocity mismatch, and group velocity dispersion difference between

adjacent waveguides. Published by AIP Publishing. https://doi.org/10.1063/1.4985098

Discrete gap solitons in binary waveguide arrays (BWAs)

have been intensively investigated both theoretically and

experimentally. Recently, these solitons have been dem-

onstrated to be optical analogues of Dirac solitons (DS) in

a nonlinear extension of the relativistic Dirac equation.

Up to now, all these Dirac solitons have been studied in

the continuous-wave (CW) regime when a beam is

launched into binary waveguide arrays to form a spatial

Dirac soliton. In this work, we investigate the formation

and dynamics of Dirac light bullets (DLBs) in binary

waveguide arrays with both Raman and Kerr nonlinear-

ities, where a pulse is used to form spatiotemporal local-

ized structures. We show that broad Dirac light bullets

are metastable and can propagate robustly for significant

lengths even under the influence of temporal effects such

as the Raman nonlinearity, group velocity mismatch, and

group velocity dispersion (GVD) difference between adja-

cent waveguides in binary waveguide arrays.

I. INTRODUCTION

Waveguide arrays (WAs) have been exploited to investi-

gate various fundamental photonic phenomena such as dis-

crete diffraction and 1,2 discrete solitons.1,3,4 Discrete

solitons in 2D lattices of nonlinear waveguides can poten-

tially be used in all-optical integrated circuits.5 Recently, it

was shown that most of the nonlinear phenomena usually

associated to fiber optics, for instance, the emission of reso-

nant radiation from solitons and soliton self-wavenumber

shift can also occur in Was,6,7 and the supercontinuum in

both frequency and wave number can be generated in Was.8

Waveguide arrays have also been exploited to mimic the

evolution of a non-relativistic quantum mechanical particle

in a periodic potential.9 Many fundamental phenomena in

non-relativistic quantum mechanics such as Bloch oscilla-

tions1,9,10 and Zener tunneling11,12 have been simulated and

demonstrated by using WAs. However, in order to simulate

phenomena in relativistic quantum mechanics, one needs to

use binary waveguide arrays (BWAs) instead of conven-

tional WAs. For example, Klein tunneling,13,14

Zitterbewegung,15,16 and fermion pair production,17 which

all emerge from the Dirac equation,18 have been simulated

with BWAs. The discrete gap solitons in the classical context

have been found in BWAs.19–22 Gap, out-gap solitons, and

breathers in BWAs have also been investigated in Refs. 23

and 24. These gap solitons were already studied for diatomic

lattices in 1992.25 In 2014, the explicit suggestion to exploit

BWAs for simulating the quantum nonlinear Dirac equation

was put forward in Ref. 26, where the gap solitons in BWAs,

for the first time, have been demonstrated to be optical ana-

logues of Dirac solitons (DSs) emerging from the relativistic

nonlinear Dirac equation. The stability, dynamics, and differ-

ent scenarios of DS interaction have been analyzed in Ref.

27. The properties of 2D DSs in square binary waveguide lat-

tices have been investigated in Ref. 28. The higher-order

Dirac solitons in BWAs have been studied in Ref. 29. Note

that the nonlinear Dirac equations have been investigated

since a long time, for instance, by Heisenberg.30 Nonlinear

Dirac equations have also been exploited in atomic, nuclear,

and gravitational physics.31–34

The concept of gap solitons, or more proper solitary

waves, in nonlinear optics, was introduced for the first time

in superlattices in 1987.35 Later, gap solitons have been

intensively studied in fiber Bragg gratings (FBGs) and other

periodic structures.4 In 1989, slow gap solitons in FBGs

were predicted in Ref. 36, and the gap soliton solution of the

coupled-mode equations in FBGs was obtained in Ref. 37

via a transformation of the soliton supported by the massive

Thirring model in the relativistic quantum field theory.38 It

has also been shown that under certain conditions, the

coupled-mode equations in fiber Bragg gratings can be trans-

formed into the nonlinear Schr€odinger equation.39 The bifur-

cation of gap solitons in FBGs has been analyzed in Ref. 40,

where the existence diagram for various types of gap solitons

in FBGs has been shown. The stability of gap solitons has

been investigated in Refs. 41 and 42. The first experimental

observation of gap solitons in FBGs has been reported in

Ref. 43. A brief survey of studies on gap solitons in FBGs

has been given in Ref. 44.

Light bullets (LBs)—solitary waves localized in both

time and space—can propagate without distortion due to the

combination of the diffraction, anomalous dispersion, and

nonlinearity.45,46 They have been intensively explored in

both conservative4,47–53 and dissipative systems.54–56 In
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conservative bulk media with Kerr nonlinearity, LBs are

known to be unstable and a collapse always happens.4,45

However, the discrete nature of WAs is able to stop the col-

lapse.47 Therefore, nonlinear WAs present an interesting sys-

tem to study LBs.47–53 Recently, it has been shown in Ref.

57 that broad LBs can be established during propagation in

nonlinear conventional WAs (consisting of identical wave-

guides) even in the presence of disturbing factors such as the

Raman effect, higher-order dispersion (HOD), and wave-

length dependence of the coupling coefficient between adja-

cent waveguides (further referred to as the coupling

dispersion). Dynamics of optical gap-soliton bullets in a

waveguide grating (i.e., a planar waveguide with a Bragg

grating in the direction of propagation) has been investigated

in Ref. 58. Light bullets in Ref. 58 are bullets of the so-

called (2þ 1)D case, where they are confined simultaneously

in time, in one transverse direction (x), and in the propaga-

tion direction z (not counting the other transverse direction

(y) where the planar waveguide mode is always confined).

The frequency of these light bullets lies within the band-gap

of the structure, therefore, they are also called gap-soliton

bullets. The existence of both stationary and travelling

gap-solitons bullets and their trapping at localized defects

in waveguide gratings has been investigated in detail in

Ref. 59. The formation of gap-soliton bullets propagating

with slow group velocities in WAs with phase-shifted Bragg

gratings has been experimentally demonstrated in Ref. 60. Gap-

soliton bullets in photonic crystals with a two-dimensional (2D)

square and triangular symmetry group, as well as a 3D fcc sym-

metry group have been investigated in great detail in Ref. 61.

So far, all above-mentioned Dirac solitons have been

studied in the continuous-wave (CW) regime, i.e., when a

beam is launched into BWAs to form a spatial Dirac soliton.

In this paper, we aim to investigate the formation and

dynamics of Dirac light bullets (further referred to as DLBs)

in BWAs where a pulse is used. To the best of our knowl-

edge, this is the first time that DLBs have ever been studied.

We first present the generalized coupled-mode equations

(GCMEs) governing the spatiotemporal evolution of pulses

in BWAs with Kerr nonlinearity and Raman effect. Then, we

explore the generation of broad DLBs and their dynamics

during propagation. We demonstrate that these DLBs are

metastable and can propagate without significant distortion

for significant lengths even in the presence of the temporal

effects.

The remainder of this paper is organized as follows: in

Sec. II, the set of generalized coupled-mode equations gov-

erning pulse propagation in BWAs is derived. Subsequently,

in Sec. III, we investigate the formation and dynamics of

broad DLBs in BWAs where a simplified model of equations

is used. In Sec. IV, we study the influence of disturbing fac-

tors on the generation and dynamics of DLBs. Finally, in

Sec. V, we summarize the findings of this work.

II. GENERALIZED COUPLED-MODE EQUATIONS

Our starting point is the generalized coupled-mode

equations (GCMEs) in the frequency domain governing a

pulse propagation in a BWA composed by two interleaved

types of waveguides made of silica [see also Eqs. (2.1.4) and

(2.1.5) in Ref. 62]

d ~An

dz
¼ i bðnÞðxÞ þ DbðnÞNL � b0Þ
h i

~An þ ijðxÞ ~Anþ1 þ ~An�1

� �
;

(1)

where ~An is the electric field envelope in the n-th waveguide

in the frequency domain, z is the longitudinal coordinate,

bðnÞðxÞ is the mode-propagation constant of the n-th wave-

guide at the frequency x, DbðnÞNL is the nonlinear contribution

to the mode-propagation constant in the n-th waveguide, b0

is the average value of the mode-propagation constants at the

carrier frequency x0 for two different types of waveguides in

BWAs, and jðxÞ is the frequency-dependent coupling coef-

ficient between identical adjacent waveguides. Note that in

most cases, the coupling coefficient j is often treated as a

constant, but in general, it also depends on the frequency.8,57

The above frequency-domain GCMEs can be converted

to the time domain by expanding both bðxÞ and jðxÞ in the

Taylor series around x0, replacing ðx� x0Þ by a time deriv-

ative while taking the inverse Fourier transform. In doing so,

we obtain the following GCMEs in the time domain:

i@zþ
X
m�1

bð2nÞ
m

m!
ði@tÞm� da

( )
A2nþ jði@tÞ A2nþ1þA2n�1½ �

þ cð2nÞ 1þ i

x0

@t

� �
A2nðz; tÞ

ð1
�1

Rðt0ÞjA2nðz; t� t0Þj2dt0 ¼ 0;

(2)

i@zþ
X
m�1

bð2nþ1Þ
m

m!
ði@tÞmþda

( )
A2nþ1þjði@tÞ A2nþ2þA2n½ �

þcð2nþ1Þ 1þ i

x0

@t

� �
A2nþ1

ð1
�1

Rðt0ÞjA2nþ1ðz;t� t0Þj2dt0 ¼0;

(3)

where bðqÞm is the standard m-th order group velocity disper-

sion (GVD) coefficient of the q-th waveguide (q ¼ 2n;
2nþ 1;…). Note that the group velocity at x0 in the q-th

waveguide vðqÞg ðx0Þ ¼ 1=bðqÞ1 ðx0Þ. The propagation mis-

match is defined as follows: da ¼ ½bð2nþ1Þðx0Þ � bð2nÞ

ðx0Þ�=2, which represents the binary nature of the system

and is due to the fact that two adjacent waveguides in BWAs

are asymmetric. Meanwhile, the operator for the coupling

coefficient is given by jði@tÞ �
P

m�0
jm

m! ½i@t�m and jm is the

m-th order derivative of jðxÞ at x0. The standard nonlinear

parameter for the q-th waveguide is denoted via cðqÞ. The

nonlinear response function RðtÞ ¼ ð1� fRÞdðtÞ þ fRhRðtÞ,
where the first term represents the instantaneous electronic

contribution with dðtÞ being the Dirac delta function, hRðtÞ is

the Raman response function of the core, and fR represents

its fractional contribution.63 For silica, fR ’ 0:18 and the

Raman effect is included through a simple model in which

hRðtÞ has the form hRðtÞ ¼ s2
1
þs2

2

s1s2
2

exp ð�t=s2Þ sinðt=s1ÞHðtÞ,
where s1¼ 12.2 fs and s2¼ 32 fs, and HðtÞ is the Heaviside

step function that ensures causality.63 The self-steepening
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effect is included through the derivative @t in the nonlinear

terms. Now, we introduce dimensionless variables n ¼ z=

L
ð2nÞ
D ; s¼ðt�zbð2nÞ

1 Þ=T0, and an¼An=
ffiffiffiffiffi
P0

p
, where L

ð2nÞ
D ¼T2

0=

jbð2nÞ
2 ðx0Þj is the dispersion length of even waveguides and

T0 is the time scale of the pulse duration. The power scale is

P0¼1=½cð2nÞL
ð2nÞ
D �. All these scales for normalization are

standard in the case of a single optical fiber.63 With these

new variables, Eqs. (2) and (3) are equivalent to the follow-

ing dimensionless GCMEs:

i@na2nðn; sÞ þ Dð2nÞði@sÞa2n

�ra2n þ L
ð2nÞ
D jði@sÞ a2nþ1 þ a2n�1½ �

þ 1þ i@s

x0T0

� �
a2n

ð1
�1

rðs0Þja2nðn; s� s0Þj2ds0 ¼ 0; (4)

i@na2nþ1ðn;sÞþ idg@sa2nþ1þ d2Dð2nþ1Þði@sÞa2nþ1

þra2nþ1þL
ð2nÞ
D jði@sÞ a2nþ2þ a2n½ �

þdNL 1þ i@s

x0T0

� �
a2nþ1

ð1
�1

rðs0Þja2nþ1ðn;s� s0Þj2ds0 ¼ 0;

(5)

where the dispersion operators have the standard form

DðqÞði@sÞ � 1
2

sðqÞ@2
s þ

P
m�3 aðqÞm ½i@s�m for each q-th wave-

guide with sðqÞ ¼ þ1 (�1) for anomalous (normal) GVD

regime, and coefficients aðqÞm �bðqÞm =½m!jbðqÞ2 jTm�2
0 �. Meanwhile,

the operator for the coupling coefficient has the form

jði@sÞ�
P

m�0
jm

m!Tm
0

½i@s�m, and the dimensionless function rðsÞ
is obtained by rescaling time t with T0 in the response function

R(t). In Eqs. (4) and (5), we have introduced four dimensionless

parameters related to the asymmetric nature of the two adjacent

waveguides in BWAs: r¼daL
ð2nÞ
D ; dg¼ L

ð2nÞ
D ½b

ð2nþ1Þ
1 �bð2nÞ

1 �=
T0; d2¼bð2nþ1Þ

2 =bð2nÞ
2 , and dNL¼ cð2nþ1Þ=cð2nÞ. Physically, r

and dg represent, respectively, phase- and group-velocity

mismatch, whereas d2 and dNL take into account differences

in group velocity dispersion and nonlinear properties, respec-

tively, between adjacent waveguides in BWAs. To some

extent, Eqs. (4) and (5) are similar to Eqs. (2.4.1) and (2.4.2)

for asymmetric couplers (which consist of just two different

waveguides) in Ref. 62. However, there are several differ-

ences between Eqs. (2.4.1) and (2.4.2) in Ref. 62 and Eqs.

(4) and (5) in our work. First, Eqs. (2.4.1) and (2.4.2) in Ref.

62 deal with just two asymmetric waveguides, whereas Eqs.

(4) and (5) cope with many waveguides in BWAs, thus the

coupling terms between these equations are obviously differ-

ent. Second, Eqs. (2.4.1) and (2.4.2) in Ref. 62 are limited to

the second-order dispersion and the coupling coefficient is

treated constant for the whole spectrum of the pulse, whereas

in Eqs. (4) and (5), we use the full dispersion for each wave-

guide and the coupling coefficient is frequency-dependent in

the form of the operator jði@sÞ. Third, Eqs. (2.4.1) and

(2.4.2) in Ref. 62 take into account just the Kerr nonlinearity,

whereas Eqs. (4) and (5) deal with both Raman and Kerr

nonlinearities and also the self-steepening term. To the best

of our knowledge, all previous analytical studies dealing

with BWAs are just limited to the CW regime, thus, Eqs. (4)

and (5) which govern the pulse propagation process in

BWAs are derived here for the first time in the most general

form for waveguides with Kerr and Raman nonlinearities.

Although two adjacent waveguides in BWAs are asymmet-

ric, therefore, their nonlinear coefficients are different which

means dNL 6¼1 in the general case. However, to simplify the

analysis in BWAs, the nonlinear coefficients are often con-

sidered identical, thus, dNL¼1.19,26 This approximation is

reasonable because, as pointed out in Ref. 26, one of the

Dirac soliton components (for instance, the odd component

a2nþ1) is very weak, thus, the nonlinear term associated with

this weak component in Eq. (5) plays a minor role, and from

now on in this work we also will set dNL¼1. However, Eqs.

(4) and (5) are still very complicated, in order to investigate

the formation, dynamics of the DLBs in BWAs, and the

influence of many disturbing factors on DLBs in Secs. III

and IV Eqs. (4) and (5) will be used with some further

simplifications.

III. BROAD DIRAC LIGHT BULLET GENERATION AND
ITS DYNAMICS IN A SIMPLIFIED MODEL

In this section, we analyze the generation of spatially

broad DLBs in BWAs in the anomalous GVD regime in a

simplified model where HOD, the coupling dispersion, the

self-steepening effect, and the Raman effect are excluded. At

the beginning, we also ignore the group velocity mismatch

and group velocity dispersion difference between two adja-

cent waveguides, i.e., we set dg¼ 0 and d2 ¼ 1. In this case,

Eqs. (4) and (5) are much simplified as follows:

i@nanþ
1

2
@2

s anþ
1

2
g anþ1þ an�1½ � � ð�1Þnranþ janj2an ¼ 0;

(6)

with g ¼ 2L
ð2nÞ
D jðx0Þ. In the CW regime, the second-order

derivative in Eq. (6) is eliminated and we obtain the standard

coupled-mode equations for beams in BWAs19,26 from which

the Dirac solitons solutions are found.26 Now, we write Eq.

(6) in the form

i@nan þ
1

2
@2

s an þ
1

2
g anþ1 � 2an þ an�1½ � þ gan

�ð�1Þnran þ janj2an ¼ 0; (7)

and eliminate the linear term gan by using the transformation

a0n ¼ an exp ðignÞ. By doing so, we get the following equa-

tion in the continuum limit:

i@nan þ
1

2
@2

s an þ
1

2
g@2

nan � ð�1Þnran þ janj2an ¼ 0: (8)

For making notations simple, we drop the prime symbol in

superscripts in Eq. (8). If the factor g 6¼ 1, one can always

use the rescaling technics by putting the variable n ¼ ffiffiffi
g
p

m
in Eq. (8) such that its counterpart in the new equation is

equal to unity. Thus, below the factor g will be set equal

to unity. Without the binary term represented by the coeffi-

cient r, Eq. (8) would be completely identical to Eq. (5) in

Ref. 57 where LBs in conventional WAs consisting of identi-

cal waveguides are investigated. As pointed out in Ref. 57,
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if g¼ 1, the transverse profile of broad LBs in conventional

WAs depends on the variable q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ n2
p

. In what fol-

lows, we show the generation of broad DLBs by using the

following initial condition at the BWA input for simulating

Eq. (6): anðs; 0Þ ¼ b0sechðs=5ÞaDS
n ðz ¼ 0Þ, where the input

peak amplitude b0 will be changed to study the DLB genera-

tion, aDS
n ðz ¼ 0Þ is the Dirac soliton solution at the input

(i.e., when z¼ 0), and aDS
n ðzÞ is the Dirac soliton solution at

any propagation distance z in the CW regime in the form of

Eq. (6) in Ref. 26 as follows:

aDS
2n ðzÞ

aDS
2n�1ðzÞ

" #
¼

i2n g
n0

ffiffiffi
r
p sech

2n

n0

� �

i2n g2

2n2
0r

ffiffiffi
r
p sech

2n�1

n0

� �
tanh

2n�1

n0

� �
2
66664

3
77775eizf ;

(9)

where the propagation constant parameter f ¼ �rþ ðg2=
ð2n2

0rÞÞ and n0 characterizes the Dirac soliton width. As

pointed out in Ref. 26, the Dirac soliton solution in the form

of Eq. (9) is derived under the condition that n0jrj � g
which means g2=ð2n2

0jrjÞ � jrj=2. As a result, we get the

following important relation for the propagation constant

parameter jrj > f > �jrj.
Before going further, we would like to show that the

Dirac soliton solution in the form of Eq. (9) is indeed a gap

soliton. In the CW and linear regime, Eq. (6) is much simpli-

fied and reduced to Eq. (1) in Ref. 16, where its linear disper-

sion relation has been analyzed and shown explicitly in Fig.

1(b) therein. Actually, the BWAs in the linear regime sup-

port two minibands, separated by a narrow gap of 2r [see

Fig. 1(b) in Ref. 16], defined by the following dispersion

curves:

x6ðqÞ ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ g2 cos2ðqdÞ

p
; (10)

where 2d is the BWAs period in the transverse direction and

q is the Bloch wave number. As explained above, we have

jrj > f > �jrj, thus, now it is clear to see that the propaga-

tion constant parameter f of the Dirac soliton falls in the min-

igap of the BWAs. As a result, one can say, that the Dirac

soliton solution in the form of Eq. (9) is a gap soliton as

briefly explained in Ref. 26. From Eq. (10), as pointed out in

Ref. 16, near q ¼ p=2d, the dispersion curves of the two

minibands form two opposite hyperbolas, and therefore

mimic the typical hyperbolic energy-momentum dispersion

relation for positive-energy and negative-energy branches of

a freely moving relativistic massive particle. This suggests

that light propagation in the BWAs for Bloch waves with

wave number q close to 6p=2d (which corresponds to the

normalized wave number k � qd ¼ 6p=2, and the excitation

under Bragg angles for input beams) simulates the temporal

dynamics of the relativistic Dirac equation. The Dirac soliton

solution in the form of Eq. (9) has two components of the

normalized wave number also centered at 6p=2 [see Fig.

2(b) in Ref. 26]. Thanks to that the nonlinear coupled-mode,

Eq. (6) can be converted into the nonlinear relativistic 1 D

Dirac equation in Ref. 26. It is worth noting that the well-

known dispersion relationship in FBGs [see Eq. (5.2.18) and

Fig. 5.2. in Ref. 4] also forms exactly two opposite hyperbo-

las. Therefore, the coupled-mode equations in FBGs can also

be converted into the relativistic Dirac equation as explicitly

shown in Ref. 64. This is not surprising, because, as men-

tioned in the Introduction, the gap soliton solution of the

coupled-mode equations in FBGs was already obtained in

1989 via a transformation of the soliton supported by the

massive Thirring model in the relativistic quantum field the-

ory.37 So, the gap solitons in FBGs discussed in the

Introduction are also optical analogues of relativistic Dirac

solitons, obviously.

For WAs consisting of just uniform waveguides (i.e.,

when r ¼ 0), within the coupled-mode approach, the linear

dispersion of WAs is reduced to x ¼ g cosðqdÞ [see Eq.

(2.5) in Ref. 9]. This means the band structure in WAs con-

sists of a single band embedded within two semi-infinite

gaps (see Fig. 2.3 in Ref. 9). By using the Floquet-Bloch

analysis in WAs—a more general approach65—one can get

the band structure consisting of several bands separated by

gaps (see Fig. 2.2 in Ref. 9). However, all these structures do

not have anything similar to two opposite hyperbolas.

Therefore, with WAs one cannot mimic the typical hyper-

bolic energy-momentum dispersion relation in 1 D Dirac

equations. As a result, so far one can only convert coupled-

mode equations in WAs into the Schr€odinger equation, but

not the Dirac one. Therefore, to the best of our knowledge,

gap solitons in WAs have not been shown to be analogs of

Dirac solitons.

The evolution of the pulse is illustrated in Fig. 1(a) in

the (n,s,n) space for the input peak amplitude b0¼ 1.26. The

first and last frames of Fig. 1(a) are shown in the (n,s) plane

in Figs. 1(c) and 1(d), respectively. As demonstrated in Fig.

1(a), at the beginning the adjustment of the pulse profile

takes place, then after reaching the propagation distance

FIG. 1. (a) and (b) Generation of a broad Dirac light bullet in the (n,s,n) and

(k,X,n) spaces, respectively, when b0¼ 1.26. The first and last frames in (a)

are shown in (c) and (d), respectively, in the (n,s) plane. The parameters: r
¼ 1.2, n0¼ 5, g ¼ 1, d2 ¼ 1, dg¼ 0, the time scale T0¼ 40 fs, the length

scale L
ð2nÞ
D ¼ 3.56 mm, and the power scale P0¼ 2.8 kW.
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n ’ 60, the pulse acquires a stable profile, and propagates

like a DLB without any significant distortion. As shown in

Fig. 1(c), the input transversal profile of the pulse is similar

to a square, especially in the pulse periphery. However, at

the output [see Fig. 1(d)], as LBs in WAs consisting of iden-

tical waveguides [see Fig. 2(d) in Ref. 57], the established

profile of the DLB is more reminiscent of a circle. Because

the factor g ¼ 1 in Fig. 1 and we obtain the DLB with circu-

lar profiles. Obviously, if g 6¼ 1, we will obtain DLBs with

oval profiles. The distinguishing feature of DLBs is its binary

nature where its strong component is located in one type of

waveguides (with even position n in Fig. 1) and its weak

component is located at the other type of waveguides (with

odd position n in Fig. 1). Meanwhile, the LBs in the normal

WA have a profile which is quite smooth across the WA.57

Now, if we perform the Fourier transform aðn; s; nÞ
! ~aðk;X; nÞ (time domain s and space domain n are trans-

formed into the frequency shift domain X and the transverse

wavenumber domain k, respectively), then from Fig. 1(a) we

get Fig. 1(b) showing the DLB evolution in the (k,X,n)

space. As shown in Fig. 1(b), the profile of the established

DLB in the (k, X) plane is also stable during propagation. It

is worth emphasizing that although the input profile of the

pulse is not exactly the one of the established DLB, never-

theless, during propagation the pulse will adjust and acquire

the profile of the DLB. This shows that broad DLBs in

BWAs can form spontaneously and are robust. To estimate

the real physical parameters of the calculated DLB, we use

typical parameters of BWAs reported in Ref. 16, where the

coupling coefficient j¼ 0.14 mm–1 and the propagation mis-

match da¼ 0.336 mm–1. The time scale T0 is set to be 40 fs,

bð2nÞ
2 ¼�0.45 ps2/m, and the nonlinear parameter cð2nÞ ¼

cð2nþ1Þ ¼ 0:1 m�1 W–1. With these parameters, one can cal-

culate that the dimensionless parameters r¼ 1.2 and g¼ 1,

the length scale L
ð2nÞ
D ¼ 3.56 mm, and the power scale

P0¼ 2.8 kW (thus, the peak power in Fig. 1 is around 175 W).

Now, we investigate two special sections of Fig. 1(a)

along the n-axis. Figure 2(a) shows the section for the central

waveguide with n¼ 0. Meanwhile, Fig. 2(b) shows the sec-

tion for the central delay (s ¼ 0). The common feature of

pulse dynamics in both Figs. 2(a) and 2(b) is that at the ini-

tial stage, the pulse is slightly compressed in both s and n,

but from a propagation distance of about n ’ 60 the estab-

lished profile of the DLB becomes stable. The dashed red

curve in Fig. 2(c) plots the input signal with the sech profile

in Fig. 2(a) as a function of the delay s, whereas the solid

blue curve in Fig. 2(c) depicts the output profile in Fig. 2(a).

Meanwhile, the red curve with round markers in Fig. 2(d)

represents the input profile as a function of the waveguide

position n in Fig. 2(b), whereas the blue curve with square

markers in Fig. 2(d) represents the output profile in Fig. 2(b).

In Figs. 1 and 2, the input profile with b0¼ 1.26 is used

and, as a result, a broad DLB is formed during propagation.

Now, we change the peak amplitude of the initial pulse by

6% to investigate different scenarios of pulse dynamics in

BWAs. If a pulse with lower input peak amplitudes is used,

one can expect that now the diffraction-based broadening

prevails over the nonlinearity-based focusing which will lead

to the pulse spreading in both time and space. Indeed, this is

confirmed in Fig. 3(a) with b0¼ 1.185. On the contrary, if

input peak amplitudes are higher, the pulse focusing in both

space and time can happen during propagation as clearly

shown in Fig. 3(b) with b0¼ 1.335. After the compression in

space and time at n ’ 100, the pulse spreads out again.

Obviously, the closer the input peak amplitude to the value

b0¼ 1.26, the better the pulse will retain its profile during

propagation as the DLB shown in Figs. 1 and 2.

IV. INFLUENCE OF DISTURBING FACTORS ON THE
GENERATION AND DYNAMICS OF DIRAC LIGHT
BULLETS

In Sec. III, the generation and dynamics of broad DLBs

are studied by using a simplified model in the absence of

several disturbing factors such as the group velocity mis-

match, GVD difference, Raman effect, HOD, and coupling

dispersion. All these effects can play some roles in pulses

dynamics, in particular, for short pulses. Now, it is time for

us to study the influence of some relevant disturbing factors

on the generation and dynamics of DLBs in BWAs. With

this aim, Eqs. (4) and (5) are used in this section instead of

FIG. 2. (a) Pulse propagation in the central waveguide n¼ 0 and (b) and

with the delay s ¼ 0. (c) The dashed red curve plots the input sech profile

as a function of the delay s in the central waveguide n¼ 0, whereas the solid

blue curve—output profile. (d) The red curve with round markers depicts the

input profile as a function of the waveguide position n at the central delay

s¼ 0, whereas the blue curve with square markers—output profile.

FIG. 3. (a) and (b) Evolution of a pulse in the (n,s,n) space when b0¼ 1.185

and 1.335, respectively. All other parameters are the same as in Fig. 1.
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Eq. (6) for the simplified model. However, as pointed out in

Ref. 57, the influence of HOD and coupling dispersion is

negligible for broad LBs. So, in this work, we neglect these

two effects and for the rest of this work we set L
ð2nÞ
D jði@sÞ

¼ g=2 ¼ 0:5, and DðqÞði@sÞ ¼ 1
2

sðqÞ@2
s for Eqs. (4) and (5).

We first study the influence of the group velocity mis-

match represented by the parameter dg in Eqs. (4) and (5). In

Figs. 4(a) and 4(b), we show the propagation of a pulse in

the (n,s,n) space when dg¼ 2 and �2, respectively. All other

parameters used in Fig. 4 are the same as in Fig. 1. Note that

if dg> 0, then we have bð2nþ1Þ
1 > bð2nÞ

1 , thus the group veloc-

ity in odd waveguides is smaller than the one in even wave-

guides, i.e., vð2nþ1Þ
g < vð2nÞ

g . On the contrary, if dg< 0, then

vð2nþ1Þ
g > vð2nÞ

g . As a result, one can see that the pulse in Figs.

4(a) and 4(b) is slightly tilted towards the positive and nega-

tive part of the delay s, respectively. These features are more

visible in Figs. 4(c) and 4(d), where we show the pulse prop-

agation in the central waveguide n¼ 0 (an example for even

waveguides) when dg¼ 2 and �2, respectively; and in Figs.

4(e) and 4(f), where we show the pulse propagation in the

waveguide with position n¼ 3 (an example for odd wave-

guides) when dg¼ 2 and �2, respectively. These features are

understandable, because the reference frame ðn; sÞ used in

Eqs. (4) and (5) moves with the speed which is equal to the

group velocity vð2nÞ
g ¼ 1=bð2nÞ

1 in even waveguides. So, when

dg> 0 (i.e., vð2nþ1Þ
g < vð2nÞ

g ) pulses in odd waveguides move

slower than the reference frame. However, pulses in even

and odd waveguides are coupled to each other as governed

by Eqs. (4) and (5). As a result, when dg> 0 coupled pulses

in both even and odd waveguides propagate with group

velocity smaller than vð2nÞ
g and the pulses in Figs. 4(a), 4(c),

and 4(e) are slightly tilted towards the positive part of s. On

the contrary, when dg< 0 coupled pulses in both even and

odd waveguides propagate with group velocity greater than

vð2nÞ
g and the pulses in Figs. 4(b), 4(d), and 4(f) are slightly

tilted towards the negative part of s. Note that pulses ana-

lyzed in Figs. 1, 2, and 3 are governed by Eq. (6), where all

disturbing factors are neglected, thus they propagate with the

group velocity vð2nÞ
g and must be symmetrical with respect to

the central delay s ¼ 0.

Now, we investigate the influence of the GVD differ-

ence between adjacent waveguides represented by the

parameter d2. In Figs. 5(a) and 5(b), we show the evolution

of the DLB investigated in Figs. 1 and 2, but now d2¼ 1.5

and �1.5, respectively. In the case d2¼ 1.5, both even and

odd waveguides operate in the anomalous dispersion regime

in which bright temporal solitons can be formed.63 In this

case, as shown in Fig. 5(a), the influence of the GVD differ-

ence between adjacent waveguides is quite slight, and the

dynamics of the DLB in Figs. 5(a) and 1(a) is practically the

same. This is understandable, because the fields in odd wave-

guides are much weaker than the fields in even waveguides

[see Fig. 2(d)], therefore the contribution of the fields in odd

waveguides in the dynamics of the DLB is not significant.

However, in Fig. 5(b) the parameter d2¼�1.5, so we have

the anomalous dispersion regime in even waveguides, but

the normal dispersion regime in odd waveguides. Because

the temporal bright soliton is not supported now in odd

waveguides, thus, the conditions are now not favorable for

LBD formation in BWAs. As a result, there is a much more

significant distortion of the pulse in Fig. 5(b) as compared to

Fig. 1(a). It is worth mentioning that in practical situations,

the absolute value of d2 is much closer to unity. In this case,

the GVD difference between adjacent waveguides in BWAs

has just a minimal impact on the DLB dynamics.

In the rest of this work, we investigate the dynamics

of DLBs in BWAs under the influence of the Raman effect.

It is quite well known that the Raman effect is proportional

to 1/T4
p with Tp being the pulse duration.66 As reported in

Ref. 67, even with short pulses (TFWHM¼ 262 fs), the Raman

FIG. 4. (a) and (b) Evolution of a pulse in the (n,s,n) space when dg¼ 2 and

�2, respectively. (c) and (d) Pulse propagation in the central waveguide

n¼ 0 when dg¼ 2 and �2, respectively. (e) and (f) The same as (c) and (d),

but now in the waveguide with n¼ 3. All other parameters are the same as

in Fig. 1.

FIG. 5. (a) and (b) Evolution of a pulse in the (n,s,n) space when d2¼ 1.5

and �1.5, respectively. All other parameters are the same as in Fig. 1.
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effect plays just a minor role at the initial stage of the pulse

propagation when the significant temporal compression has

not occurred yet. It has a central role in pulse dynamics only

after the significant temporal compression of the pulse.

Therefore, it is expected that for the broad DLB illustrated in

Fig. 1, the Raman effect is negligible [like the situation for

the broad LB in WAs shown in Fig. 6(a) in Ref. 57]. Indeed,

this is confirmed by our simulations (not shown here). As

mentioned above, the Raman effect will be crucial if the sig-

nificant temporal compression of the pulse takes place during

propagation. This was dramatically demonstrated in Fig. 7 in

Ref. 57 where the peak amplitude of the initial pulse is

increased by just 6% as compared to the peak amplitude of

the broad LB in WAs. However, for DLBs in BWAs it turns

out that the Raman effect is not so crucial. In Fig. 6(a), we

show the evolution of a pulse in the (n,s,n) space when the

Raman effect is taken into account, but without group veloc-

ity mismatch between adjacent waveguides (dg¼ 0). The

parameter b0¼ 1.335 in Fig. 6(a) is also larger by 6% as

compared to the value b0¼ 1.26 in Fig. 1(a). So, the only dif-

ference in conditions between Figs. 6(a) and 3(b) is that in

Fig. 6(a) the Raman effect is included, whereas it is excluded

in Fig. 3(b). The Raman effect only bends the pulse in Fig.

6(a) at the moment of its compression towards the positive

part of s, i.e., the common de-acceleration of the pulse by

the Raman effect.63 This trend is more clearly illustrated in

Fig. 6(c) where the pulse propagation in the central wave-

guide n¼ 0 is taken from Fig. 6(a). Before and after the com-

pression in Figs. 6(a) and 6(c), the Raman effect is minimal

because the pulse is large enough. So, with the same increase

of 6% in the initial peak amplitudes of DLBs in BWAs and

LBs in WAs, one can see that the Raman effect plays only a

mild effect on DLBs in BWAs as compared to a dramatic

effect on LBs in WAs. This difference is due to the fact that

when the initial peak amplitude is increased by 6%, the LBs

in WAs are strongly compressed in both time and space,

whereas the DLBs in BWAs are only mildly compressed.

We conjecture that the binary nature of the system is again

the root cause for the mild compression of DLBs in BWAs

where a weak component (which, obviously, is very hard to

be compressed) is coupled to a strong component. In order

to compress the DLBs much more strongly, one needs to

increase the peak amplitude of the initial pulse much further.

In that case, like the situation with narrow light bullets in the

presence of the Raman effect in uniform WAs demonstrated

in Fig. 7 in Ref. 57, we expect that it is possible to form

intense light bullets localized just in few waveguides of

BWAs which are also short in the time domain.

In Figs. 4(b), 4(d), and 4(f), we have shown that when

the group velocity mismatch parameter dg is negative, the

pulse can be bent towards the negative part of delay s. At

the same time, we have just shown in Figs. 6(a) and 6(c)

that the Raman effect can bend the pulse towards the posi-

tive part of s. So, in some circumstances these effects can

compensate each other and help to stabilize the DLBs if

they are included at the same time. This is illustrated in

Figs. 6(b) and 6(d) where we show the evolution of the

DLB in the (n,s,n) space and in the central waveguide

n¼ 0, respectively. This DLB has already been shown in

Fig. 1 without the Raman effect, but now both these two

above-mentioned effects are included. As clearly seen in

Figs. 6(b) and 6(d), the DLB is quite well stabilized along

the central delay axis (s ¼ 0). For parameters used in Figs.

6(b) and 6(d), dg¼�1 is enough to compensate the Raman

effect. If dg < �1 the pulse will be bent towards the nega-

tive part of s, whereas if dg > �1, the pulse will be bent

towards the positive part of s.

Regarding the excitation of gap solitons both in fiber

Bragg gratings and BWAs, there is a well-known problem

due to the strong reflection.20 Another approach has been

proposed in Ref. 26 to avoid this problem. This approach is

based on the fact that the odd components a2n�1 of the Dirac

soliton are much weaker than its even components. At the

very input, one can excite just even waveguides of BWAs by

realizing some spatial delay Dz inside the sample for odd

waveguides [see this scheme in Fig. 3(f) in Ref. 26]. The

simulation results in Fig. 3 in Ref. 26 show that after some

propagation distance the weak components in odd wave-

guides will be generated and the right profile of Dirac soli-

tons will be formed during propagation. We believe that this

approach can also increase the excitation efficiency for Dirac

light bullets in BWAs. For the final note, we think that it is

possible to realize the Klein tunneling of Dirac solitons and

Dirac light bullets by using, for instance, the scheme of

BWAs proposed in Ref. 14. This interesting topic will be

covered elsewhere.

V. CONCLUSIONS

In conclusion, we have numerically demonstrated that in

BWAs made of material with Kerr-type nonlinearity, broad

FIG. 6. (a) Evolution of a pulse in the (n,s,n) space when the Raman effect

is taken into account, but without group velocity mismatch between adjacent

waveguides (dg¼ 0), b0¼ 1.335. (b) Evolution of a pulse in the (n,s,n) space

when the Raman effect and group velocity mismatch between adjacent

waveguides (dg ¼ �1) are both taken into account in the case b0¼ 1.26. (c)

The pulse propagation in the central waveguide n¼ 0 and taken from (a). (d)

Pulse propagation in the central waveguide n¼ 0 and taken from (b). All

other parameters are the same as in Fig. 1.
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DLBs can be established during propagation of pulses, even

if its input profiles are slightly different from the ones of

established DLBs. The binary nature of the system, which

leads to the fact that the intense and weak components of

DLBs located at adjacent waveguides are always coupled to

each other, helps decrease the influence of disturbing factors

such as group velocity mismatch, GVD difference between

adjacent waveguides, and the Raman effect. As a result, the

DLBs can robustly propagate for hundreds of dispersion

lengths in BWAs. With typical parameters for BWAs, the

group velocity mismatch can only slightly accelerate or de-

accelerate the DLBs, whereas the GVD difference between

adjacent waveguides plays just a minor role in DLBs dynam-

ics if all of its components operate in the anomalous disper-

sion regime. The Raman effect also plays only a negligible

role in the dynamics of broad DLBs. We expect that DLBs

can potentially have various applications in science and tech-

nology in the future.
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