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ABSTRACT

Network traffic classification is an important problem in net-
work traffic analysis. It plays a vital role in many network
tasks including quality of service, firewall enforcement and se-
curity. One of the challenging problems of classifying network
traffic is the imbalanced property of network data. Usually,
the amount of traffic in some classes is much higher than the
amount of traffic in other classes. In this paper, we proposed
an application of a deep learning approach to address imbal-
anced data problem in network traffic classification. We used
a recent proposed deep network for unsupervised learning
called Auxiliary Classifier Generative Adversarial Network
to generate synthesized data samples for balancing between
the minor and the major classes. We tested our method on
a well-known network traffic dataset and the results showed
that our proposed method achieved better performance com-
pared to a recent proposed method for handling imbalanced
problem in network traffic classification.
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1 INTRODUCTION

Analysing of network traffic has an important role in many
problems such as planning of resource usage, network appli-
cation performance assessment, Quality of Service control,
generating traffic model for researches [7]. In network analysis,
traffic classification is one of the main problems. Network traf-
fic classification has been applied to a number of applications
including determining the usage and the development trend
of applications, anomaly detection, accounting etc. Moreover,
in most of Quality of Service (QoS) technique, traffic classi-
fication is used to prioritize applications across the limited
bandwidth [22].

There are three approaches for traffic classification problem
which are port-based methods, payload-based methods and
flow statistics-based methods [8]. Port-based methods use
port number in the packet header in order to check well-
known applications [18]. This method is simple and easy to
implement but it does not always provide a reliable result.
Many recent applications use dynamic ports or even hide
themselves by using a well-known port of other applications.
Payload-based methods dig the signatures of applications in
the payload of packets [21]. This method avoids the dynamic
port problem. However, payload-based methods can not work
well with encrypted traffic since we are unable to watch the
encrypted traffic without decrypting it. Recently, researchers
paid more attention to flow statistics-based methods. These
methods use the statistic features of flow instead of requiring
the content of packets allowing them the ability to deal with
encrypted traffic.

Flow statistics-based methods often employ supervised and
unsupervised machine learning algorithms to classify network
traffic into predefined classes of known applications[22]. How-
ever, one of the challenges in traffic classification is the skew
of network traffic data. Since, real applications on the Inter-
net are disparity, most of the collected network traffic data
is imbalanced [17]. Subsequently, handling the imbalanced
problem in traffic data is essential for machine learning algo-
rithms to achieve better performance in classifying network
traffic.

In this paper, we propose an application of a deep network
structure called Auxiliary Classifier GANs (AC-GAN) [16] to
generate synthesized samples for network traffic classification
problem. To the best of our knowledge, this is the first attempt
to use deep learning in generating synthesized data in network
traffic classification. The synthesized data is then combine
with the original/real data to form the new training dataset
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for classification algorithms. We applied three classification
algorithms including support vector machine (SVM), decision
tree (DT) and random forest (RF) on the new augmented
training dataset. The experimental results show that using
AC-GAN for generating synthesized data helps classification
algorithms to achieve better performance in network traffic
classification problem regarding to three popular performance
metrics including accuracy score, F1 score and AUC score.

The rest of this paper is organized as follows: Section 2
briefly reviews the previous works in network traffic classifi-
cation field; Section 3 presents AC-GAN algorithm; Section
4 describes the design of our proposed system. The experi-
mental settings are presented in Section 5 . The results are
provided and analysed in Section 6 ; Finally, Section 7 draws
the conclusion and highlight some future works.

2 RELATED WORKS

There have been three popular methods for classifying net-
work traffic: port-based, content-based and statistical-based.
Among them, statistical-based (or flow-based) traffic classi-
fication has many advantages comparing to port-based and
content-based approaches [14]. This method can avoid prob-
lems causing by port-based and content-based approaches
such as encrypted applications, privacy and dynamic ports.
In statistical-based methods, researchers have often applied
some form of machine learning algorithms to classify network
traffic into different applications [22].

Vladuto et al. [19] surveyed the application of machine
learning algorithms for the Internet traffic classification based
on flow statistical properties. They analysed some limitations
of unsupervised approaches (K-mean, Expectation maximization-
EM) and supervised approaches (Decision tree as ID3, C4.5).
After that, they proposed a new technique for to improve the
effectiveness of these algorithms by combining unsupervised
learning and supervised learning approaches. This method
groups flows into clusters then using supervised learning to
train traffic classifier according to what was found in the
clustering step.

Regarding to the methods for handing imbalanced problem
in traffic data, Vu et al. have recently applied several methods
for addressing this problem [17]. They investigated a num-
ber of techniques for addressing imbalanced data problem
including Under-sampling method, Over-sampling method,
Synthetic Minority Over-sampling Technique (SMOTE), Con-
densed Nearest Neighbour, SMOTE combining with SVM.
Their work showed that using the techniques for addressing
imbalanced data is essential for the performance of supervised
learning algorithms in network traffic classification problem.

In machine learning, deep learning has achieved remarkable
results in a large number of applications [13]. Recently, deep
learning has also extended to network traffic analysis [20]. In
this research [20], Wang et al. have attempted to use Stacked
Auto Encoder to learn the features of packet payload. Their
research proved that Artificial Neural Networks and Deep
learning (in their case that is the Stacked Auto Encoder) can
be used to extract meaningful features from network traffic.

This work has paved for the potential research in network
traffic analysis using deep learning algorithms.

In this paper, we proposed the usage of a conditional
Generative Adversarial Network called AC-GAN (Auxiliary
Classifier Generative Adversarial Network) [16] for generating
synthesized data samples. The objective of generating syn-
thesized data is to enrich the training dataset and handling
its imbalanced property. In two recent publications [5, 9],
conditional Generative Adversarial Network has been shown
being able to produce convincing samples on datasets with
low variability and low resolution for images. Thus, we hy-
pothesize that the training dataset augmented by synthesized
samples from AC-GAN will help supervised algorithms (SVM,
Decision Tree and Random Forest) to achieve better results
in classifying network traffic. The detailed description of the
deep network used in this paper (AC-GAN) will be presented
in the next section.

3 OVERVIEW OF GENERATIVE
ADVERSARIAL NETWORK

This section describes in detailed Generative Adversarial
Network and one of its extension that was used in our research:
Auxiliary Classifier Generative Adversarial Network.

3.1 Generative Adversarial Network

Generative Adversarial Network (GAN) was proposed by
GoodFellow et al. in [10] for unsupervised learning. A GAN
has two neuron networks which are trained in an opposition
way. The first neuron network is a Generator (G) and the
second neuron network is a Discriminator (D). The main idea
behind GAN is to have two competing neural network models.
The generator takes noise as input and generates samples. The
discriminator receives samples from both the generator and
the training data and attempt to distinguish between the two
sources. These two networks play a continuous game, where
the generator is learning to produce more and more realistic
samples, and the discriminator is learning to get better and
better at distinguishing the generated data from the real
data. These two networks are trained simultaneously, and
hope that the competition will drive the generated samples
to be indistinguishable from the real data.

The input of the generator (G) is a vector of random noise
z and it outputs a synthesized sample Xfake = G(z). Net-
work D takes the input of a real data sample or a synthesized
sample from the generator and the output is a probability
distribution P (S|X) = D(X) over possible sources. Discrimi-
nator D is trained to maximize the log-likelihood to assigns
the correct label (Equation 1) while Generator G is trained
to minimize the second term in this equation.

L = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)]
(1)

One attractive property of GAN is its ability being trained
in unsupervised mode and then reuse parts of its generator
and discriminator networks as feature extractors for super-
vised tasks. However, GAN has been known to be difficult
to train and often resulting in the generator that produce
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Figure 1: Training process of AC-GAN model.

nonsensical outputs. One of the extension of GAN is a model
called Auxiliary Classifier GAN (AC-GAN). These models
are able to generate samples taking into account external
information (class label). Class label information is used to
force G to generate a particular type of output.

3.2 Auxiliary Classifier Generative
Adversarial Network

Odena et al. [16] proposed a variant of GAN model called
auxiliary classifier GAN (AC-GAN). Figure 1 describes the
process of training of AC-GAN model. The difference of
AC-GAN and GAN is that the input of Generator G of AC-
GAN includes a noise z and a class label c. In other words,
the synthesized sample of G is Xfake = G(c, z). Another
different property is the output of Discriminator D including
a probability distribution over sources LS (Equation 2) and
over class labels LC (Equation 3).

LS = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)]
(2)

LC = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (3)

Discriminator D is trained to maximized LS + LC and Gen-
erator G is trained to maximized LC −LS . This architecture
is not exceedingly different from GAN but it is meaningful
in generating new samples for a specific desired class.

In the training process described in Figure 1, the generator
takes inputs as random noise z and label c and gives the
output of fake samples while the discriminator has inputs as
a real sample data or a fake sample data. The objective of
training discriminator is making the probability of a sample
data being a real sample or a fake sample closely to 0 or 1.
This means that the discriminator is able to distinguish real
samples and fake samples. However, the aim of training G
network is generating samples closely to real samples in the
dataset or the output probability of D equally to 0.5. In our
experiment, G and D networks have two hidden layers and
set the learning rate as 1e− 3.

Figure 2: Process of generating samples.

Figure 3: Process of our method.

4 METHODOLOGY

The flow of our method is described in Figure 3. It is detailed
as followings:

First, the original dataset (NIMS dataset) is divided into
two parts: training set and testing set. The training set is used
to train AC-GAN model. After finishing the training process,
we use the trained generator (G) to generate synthesized data
samples with specific labels. Whenever a new synthesized
sample needs to be created, a random noise is generated and
a class label is selected. Thus, using the trained G network
can handle the imbalance problem of network datasets by
generating minor class samples. The synthesized samples
are then combined with the training dataset to form the
augmented dataset. After that, the augmented dataset is used
to train several supervised classification algorithms (SVM,
DT and RF). Finally, the supervised classification algorithms
(after trained on the augmented dataset) are tested on the
testing set.

5 EXPERIMENTAL SETTINGS

This section presents the dataset and the performance metrics
used in this paper.
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5.1 Dataset

In order to test the effectiveness of the proposed method we
used a well-known network traffic dataset: Network Informa-
tion Management and Security Group (NIMS) dataset [6].
This is the traffic dataset collected from the internal network
with many applications of Dalhousie University Comput-
ing and Information Services Centre (UCIS) in 2007 on the
campus network between the university and the Internet.
In NIMS dataset, both SSH traffic and non-SSH traffic are
generated from the applications. There are six SSH services
as Shell login; X11; Local tunneling; Remote tunneling; SCP;
and SFTP. Rest of applications are non-SSH traffic includ-
ing DNS, HTTP, FTP, P2P (limewire),and telnet. In this
dataset, SSH traffic is generated by SSH connections from
client computers to four SSH servers outside of Dalhousie
network.

In this paper, we aim to classify the SSH traffic from non-
SSH traffic in NIMS. Therefore, we re-label NIMS dataset
in two classes as SSH and non-SSH. Totally, NIMS dataset
includes 35454 SSH flows and 678396 non-SSH flows and the
ratio of SSH and non-SSH flows is about 0.052.

NIMS dataset groups packets into flows based on the
statistical features. Traffic flows are defined by the sequence
of packets that have same five tuples as source IP address,
destination IP address, source port, destination port, and
protocol type [11]. Each flow is described by 22 statistical
features [6] shown in Table 1.

We divided NIMS into two parts: a half of samples for
training set and rest for testing set described in Table 2. We
used the training set to train AC-GAN. Then, the generator
(after training) is used to generate new synthesized samples.
In order to address the imbalanced problem in the training
set, we generated more synthesized samples for SSH class
and less synthesized sample for non-SSH class. The number
of synthesized samples generated in each class, the training,
testing set and the augmented data are presented in Table 2.

5.2 Evaluation Measures

We used three popular performance metrics in classification
problem to measure the impact of our method. The reported
performance metrics include accuracy score, F1 score and
AUC score[12]. Accuracy score measures how a classifier
making correct predictions and this is calculated in Equation
4.

Acuracy =
Ncorrect

Ntotal
(4)

where Ncorrect and Ntotal are the number of correct pre-
dictions and the total number of predicted samples. The
advantage of this metric is that it is very intuitive and easy
to implement. However, it makes no distinction between
classes that is sometime not enough to measure a classifier
especially for imbalanced dataset.

The second metric is F1 score. This metric overcomes the
disadvantage of Accuracy score. F1 score is calculated based
on two other metrics: Precision and Recall. Precision metric
measures the ability of classifier that predicts positive samples

Figure 4: Demonstration of AUC score [2].

as positive. Recall score measures how many actual positive
observations are predicted correctly. F1 score is Harmonic
mean [12] of Precision and Recall where Harmonic mean is
an appropriate way to average ratios. Precisely, F1 score is
computed in Equation 5.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(5)

The last metric is AUC score which stands for Area Under
ROC Curve [12].The ROC curve is created by plotting the
true positive rate (sensitivity) against the false positive rate
(1-specificity) at various threshold settings (Figure 4). The
ROC curve is the sensitivity as a function of 1-specificity. In
general, if the probability distributions for both detection and
false alarm are known, the ROC curve can be generated by
plotting the cumulative distribution function of the detection
probability in the y-axis versus the cumulative distribution
function of the false-alarm probability on the x-axis. The
space under ROC curve is represented as AUC score. This
measures the average quality of classification model at dif-
ferent threshold. A random classifier has AUC value of 0.5
and the value of AUC score for a perfect classifier is 1.0.
Therefore, almost classifiers have the value of AUC score
between 0.5 and 1.0. For all three above performance metrics,
larger values present better performance of an algorithm.

6 RESULTS AND DISCUSSION

We divided our experiments into two sets. In the first set, we
aim to compare the performance of some popular classifica-
tion algorithms (SVM, DT, and RF) when they are trained
on two datasets (the original dataset and the augmented
dataset that is generated by AC-GAN). In the second set,
we compare the impact of the synthesized data generated by
AC-GAN with the synthesized data generated by the best
method in a recent research [17].

For all tested classification algorithms including SVM, DT,
and RF, we used their implementation in a popular machine
learning packet in python: Scikit learn [4]. In order to lessen
the impact of selecting parameters to the performance of
these algorithms, we used grid search technique to search the
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Table 1: Description of statistical feature for network flow

Index Feature name Abbreviation

1 min forward packet length minfpktl

2 mean forward packet length meanfpktl

3 max forward packet length maxfpktl

4 std dev forward packet length stdfpktl

5 min backward packet length minbpktl

6 mean backward packet length meanbpktl

7 max backward packet length maxbpktl

8 std dev backward packet length stdbpktl

9 min forward inter arrival time minf iat

10 mean forward inter arrival time meanf iat

11 max forward inter arrival time maxf iat

12 std dev forward inter arrival time stdf iat

13 min backward inter arrival time minbiat

14 mean backward inter arrival time meanbiat

15 max backward inter arrival time maxbiat

16 std dev backward inter arrival time stdbiat

17 duration of the flow duration

18 protocol (tcp, udp) proto

19 total forward packets totalfpackets

20 total forward volume totalfvolume

21 total backward packets totalbpackets

22 total backward volume totalbvolume

Table 2: Number of data samples

Datasets SSH nonSSH

Original training set 17736 339189

Testing dataset 17718 339207

Synthesized samples 300000 20000

Augmented dataset 317736 359189

Table 3: Parameter range of grid search for classifiers

Classifiers Parameters

SVM kernel = rbf, linear; gama = 0.001, 0.01, 0.1, 1.0

DT max− depth = 5, 6, 7, 8, 9, 10

RF n− estimators = 20, 40, 80, 150

Table 4: Accuracy, F1, AUC score of our experiments

Algorithms Acuracy score F1 score AUC score

SVM 0.9873 0.5909 0.7096

DT 0.9976 0.9482 0.9495

RF 0.9978 0.9485 0.9536

SVM+AC-GAN 0.9878 0.6050 0.7159

DT + AC-GAN 0.9978 0.9552 0.9501

RF+AC-GAN 0.9989 0.9543 0.9565
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best value of the parameters for each algorithms. The range
of values used in the grid is presented in Table 3.

The results of the first experimental set are presented in
Table 4. This table present accuracy score, F1 score and
AUC score of SVM, DT, RF on the testing dataset. It should
be noted that two versions of the classification algorithms
(one trained on the original training dataset and another
trained on the augmented dataset (shorted with +AC-GAN
at the end)) are compared in this table. It can be seen that,
the performance of all three classification algorithms are
improved when they are trained on the augmented dataset.
Moreover, the improvement of these classifiers when training
the augmented dataset is more impressive regarding to F1
score and AUC score than with accuracy score.

The characterization of network traffic datasets is that they
have more categorical features (13% categorical features in
NIMS dataset) and lower dimensional space (22 dimensional
space of a sample for NIMS dataset) comparing to other kinds
of dataset such as image datasets (no categorical features and
784 dimensional space of a sample for MNIST dataset [1]),
text datasets (no categorical features and 4702 dimensional
space of a sample for DBWorld e-mails dataset [3]). Thus
the algorithms based on decision tree likes DT, RF perform
better on classifying network traffic than SVM does. Among
three classification algorithms, the table shows that RF+AC-
GAN achieved the best performance with respect to all three
performance metrics.

The results of the second experimental set is presented
in Table 5. We examine RF on three augmented datasets
to get the accuracy, F1, and AUC score with the computa-
tion time to finish balancing NIMS dataset. In this table, we
compare the performance of the best classification algorithm
in the first experiment (RF) when this algorithm is trained
on three augmented dataset. The first augmented dataset is
generated by the best technique for generating network traffic
data for addressing imbalanced problem in network traffic
data according a recent research [17]. This technique is called
SMOTE-SVM [17]. The detailed description of SMOTE-SVM
can be found in [17]. The second augmented dataset is syn-
thesized by the ensemble BalanceCascade technique which
is the best method to handle imbalanced dataset that is
created from 10000 random samples with two classes [15].
The third augmented dataset is generated by the approach
proposed in this paper: AC-GAN. It can be observed that
the performance of RF trained on AC-GAN is better than its
performance trained on SMOTE-SVM. Particularly, F1 score
and AUC score of classifier on augmented dataset by using
AC-GAN is clearly higher than those values of SMOTE-SVM.
In fact, these values of RF on AC-GAN augmented dataset
is greater than those of SMOTE-SVM from 1% to 1.5%. The
augmented dataset generated by BalanceCascade technique
has similar accuracy of the classifier but lower performance
in computation time comparing with AC-GAN.

Overall, the results in this section show that using AC-
GAN to generate synthesized data for network traffic classifi-
cation problem helps improving the performance of supervised
learning algorithms in solving compared to using synthesized

data and some recent techniques for handling imbalanced
data such as SMOTE-SVM [17],BalanceCascade [15].

7 CONCLUSIONS AND FUTURE
WORK

Enriching and handling imbalanced dataset is one way to
improve the performance of classification problems. In this
paper, we introduced an application of a deep learning model,
AC-GAN, to address the imbalanced problem in network traf-
fic analysis. We used AC-GAN model to synthesize network
traffic data samples for a well-known traffic dataset, NIMS.
After that, the synthesized samples were combined with the
original training dataset to form a new augmented dataset.
Three supervised learning algorithms (SVM, DT and RF)
were trained on the augmented dataset.

Experimental results shows that SVM, DT, RF achieved
better performance with respect to three measure metrics
when that were trained on the augmented dataset compared
to when they were trained on the original dataset. Moreover,
the synthesized data generated by AC-GAN was also better
than the synthesized data generated by the best method in
a recent publication, SMOTE-SVM [17].

In the future, we would like to investigate the ability of
classification algorithms to predict samples from new classes
when they are trained on the synthesized data generated
by AC-GAN. Moreover, we also want to examine and apply
recent advance in deep learning to improve the results of
machine learning algorithm in network traffic analysis.
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