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1 Introduction

Let us assume that H1 and H2 are two real Hilbert spaces endowed with an inner product
〈·, ·〉 and the corresponding norm ‖ · ‖. By “→” we denote the strong convergence, while
“⇀” stands for the weak convergence. Let C and Q be two nonempty closed convex subsets
of the real Hilbert spaces H1 and H2, respectively, and let A : H1 → H2 be a bounded
linear operator. Given bifunctions f : C × C → R, g : Q × Q → R and nonexpansive
mappings S : C → C, T : Q → Q, we consider the following split equilibrium and fixed
point problem (SEFPP):

Find x∗ ∈ C such that

{
f (x∗, y) ≥ 0 ∀y ∈ C,

Sx∗ = x∗, (1)

and such that

the point u∗ = Ax∗ ∈ Q solves

{
g(u∗, v) ≥ 0 ∀v ∈ Q,

T u∗ = u∗. (2)

When looking separately at (SEFPP), (1) (also (2) when A ≡ I -the identity mapping) is the
problem of finding common elements of the solution set of an equilibrium problem and the
set of fixed points of a nonexpansive mapping. The motivation for studying such a problem
is its possible application to mathematical models whose constraints can be described by
fixed point problems and/or equilibrium problems. This happens, especially, in the practical
problems as signal processing, network resource allocation, image recovery [18, 19, 23, 24],
and Nash–Cournot oligopolistic equilibrium models in economy [17, 20].

Problem (SEFPP) is quite general, in the sense that it includes, as special cases, many
mathematical models which have been studied intensively by several researchers recently:
split equilibrium problems (SEP) [12, 16, 27], split variational inequality problems (SVIP)
[8], split common fixed point problems (SCFPP) [9, 21, 28], and the split feasibility
problems (SFP) which have been used for studying medical image reconstruction, intensity-
modulated radiation therapy, sensor networks, and data compression, see [2, 6, 7, 10] and
the references quoted therein.

Let us denote the solution set of the equilibrium problem EP(C, f ) by Sol(C, f ), i.e.,

Sol(C, f ) = {x∗ ∈ C : f (x∗, y) ≥ 0 ∀y ∈ C}
and the set of fixed points of the mapping S by Fix(S), i.e.,

Fix(S) = {x∗ ∈ C : Sx∗ = x∗}.
To find a common element of the set of fixed points of a nonexpansive mapping and

the solution set of an equilibrium problem, Tada and Takahashi [33] proposed to combine
Mann’s iterative scheme [25] for the fixed point map with the proximal point algorithm [29]
for equilibrium problem. In detail, the sequences {xk}, {yk} are calculated as follows:⎧⎪⎪⎨

⎪⎪⎩
x0 ∈ C; {λk} ⊂ (0, ∞); {αk} ⊂ (0, 1),

yk ∈ C such that f (yk, y) + 1

λk

〈y − yk, yk − xk〉 ≥ 0 ∀y ∈ C,

xk+1 = αkx
k + (1 − αk)Syk.

(3)

It was proved (see [33, Theorem 4.1]) that if f is monotone and the parameters are
chosen such that {αk} ⊂ [a, b] ⊂ (0, 1) and λk ≥ λ > 0 ∀k, then the sequences {xk}, {yk}
generated by (3) converge weakly to x∗ ∈ Sol(C, f ) ∩ Fix(S).

For obtaining a solution of (SEP), He [16] introduced an iterative method, which can be
considered as a combination of the proximal point algorithm for equilibrium problem and
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the CQ-algorithm proposed by Byrne [5] for (SFP). The sequences {xk}, {yk} are generated
by the following scheme

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C; {λk} ⊂ (0, ∞);μ > 0,

yk ∈ C such that f (yk, y) + 1

λk

〈y − yk, yk − xk〉 ≥ 0 ∀y ∈ C,

uk ∈ Q such that g(uk, v) + 1

λk

〈v − uk, uk − Ayk〉 ≥ 0 ∀v ∈ Q,

xk+1 = PC(yk + μA∗(uk − Ayk)).

(4)

Here, A∗ is the adjoint operator of A. Under certain conditions on parameters, the author
showed that {xk}, {yk} generated by (4) converge weakly to a solution of (SEP) provided
that f and g are monotone bifunctions on C and Q, respectively.

It should be noted that for each xk ∈ C, lk(x, y) = 1
λk

〈y − x, x − xk〉 is strongly

monotone on C with constant τk = 1
λk

(see Definition 1 below). Hence, if f is monotone
on C, then the bifunction fk(x, y) = f (x, y) + lk(x, y) is strongly monotone with constant
τk , and therefore, to find yk in schemes (3) and (4), we can apply some existing methods,
see, for instance [3, 30]. However, if f is pseudomonotone on C, the bifunction fk may
not be strongly monotone, even not be pseudomonotone on C; see, [36, Counterexample
2.1], [14, Example 2.8], so we cannot apply the available methods using the monotonicity
of bifunction fk to find yk directly.

To solve EP(C, f ) when f is pseudomonotone, Tran et al. [37] suggested the use of
the extragradient algorithm introduced by Korpelevich [22] (see also [13, 15] for more
details on extragradient algorithms) for finding saddle points and other related problems.
The sequence {xk} is computed as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ C; {λk} ⊂ (0,∞),

yk = argmin

{
λkf (xk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
,

xk+1 = argmin

{
λkf (yk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
.

(5)

They pointed out that the sequence {xk} generated by (5) converges weakly to a
solution of EP(C, f ) under the main assumptions that f is pseudomonotone and Lipschitz-
continuous on C.

Motivated by these facts, in this paper, we consider (SEFPP) when f is pseudomonotone,
g is monotone, and S, T are nonexpansive mappings. More precisely, we propose to use
the extragradient algorithm for EPs in H1 and the proximal point algorithm for EPs in H2,
and Mann’s method for fixed point mappings to design the weak convergence algorithm for
(SEFPP). We then combine the first one with the hybrid cutting technique [35] to get the
strong convergence algorithm. One advantage of our algorithms is that it could be applied
for (SEFPP) when the first bifunction is pseudomonotone and at each iteration one only
has to solve two strongly convex optimization problems and one regularized equilibrium
problem instead of solving two equilibrium problems as in He’s methods.

The rest of this paper is organized as follows. In the next section, we recall some prelimi-
nary results which will be used later. The first part of the main section is devoted to prove the
weak convergence theorem and it corollaries. Then, we combine the proposed method with
the hybrid projected method for obtaining the strong convergence theorem. Some special
cases of (SEFPP) are also considered.
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2 Preliminaries

LetH be a real Hilbert space with an inner product 〈·, ·〉 and the induced norm ‖ · ‖, and let
C be a nonempty closed convex subset of H. By PC , we denote the metric projection onto
C. Namely, for each x ∈ H, PC(x) is the unique element in C such that

‖x − PC(x)‖ ≤ ‖x − y‖ ∀y ∈ C.

It is well-known that the metric projection PC has the following characterizations

Lemma 1 Suppose that C is a nonempty closed convex subset in H. Then, PC has the
following properties:

(a) PC(x) is a singleton and well defined for every x ∈ H.
(b) For each x ∈ H, z = PC(x) if and only if 〈x − z, y − z〉 ≤ 0 ∀y ∈ C.
(c) ‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉 ∀x, y ∈ H.
(d) ‖PC(x) − PC(y)‖2 ≤ ‖x − y‖2 − ‖x − PC(x) − y + PC(y)‖2 ∀x, y ∈ H.

Lemma 2 LetH be a real Hilbert space, then for all x, y ∈ H and α ∈ [0, 1], we have
‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Definition 1 [4, 26, 31] Let f : H×H → R be a bifunction, and C be a nonempty, closed
and convex subset ofH. Let D also be a nonempty subset of C. The bifunction f is said to
be:

(a) strongly monotone with constant τ > 0 if

f (x, y) + f (y, x) ≤ −τ‖x − y‖2 ∀x, y ∈ C;
(b) monotone on C if

f (x, y) + f (y, x) ≤ 0 ∀x, y ∈ C;
(c) pseudomonotone on C if

∀x, y ∈ C, f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0;
(d) pseudomonotone on C with respect to D if

∀x∗ ∈ D, ∀y ∈ C, f (x∗, y) ≥ 0 ⇒ f (y, x∗) ≤ 0;
(e) Lipschitz-type continuous on C if there exist positive constants c1 and c2 such that

f (x, y) + f (y, z) ≥ f (x, z) − c1‖x − y‖2 − c2‖y − z‖2 ∀x, y, z ∈ C.

From Definition 1 we have the following properties:

(i) (a) ⇒ (b) ⇒ (c) ⇒ (d).
(ii) If f (x, y) = 〈F(x), y − x〉 for a mapping F : H → H, then the notions of

monotonicity for the mapping F corresponds to the notions of monotonicity for the
bifunction f , respectively. In addition, if the mapping F is L-Lipschitz on C, i.e.,
‖F(x) − F(y)‖ ≤ L‖x − y‖ ∀x, y ∈ C, then for any ε > 0, f is also Lipschitz-type
continuous on C (see [26, 37]), for example, with constants c1 = L

2ε , c2 = Lε
2 .



Extragradient-Proximal Methods for (SEFPP)

Lemma 3 (Opial’s condition)[32] For any sequence {xk} ⊂ H with xk ⇀ x, the inequality

lim inf
k→+∞ ‖xk − x‖ < lim inf

k→+∞ ‖xk − y‖
holds for each y ∈ H with y �= x.

3 Main Results

Now, let g : Q × Q → R and f : C × C → R be bifunctions. We start this section
with the following widely used assumptions in monotone and pseudomonotone equilibrium
problems.

Assumptions A
(A1) g(u, u) = 0 for all u ∈ Q;
(A2) g is monotone on Q;
(A3) for each u, v,w ∈ Q

lim sup
λ↓0

g(λw + (1 − λ)u, v) ≤ g(u, v);

(A4) g(u, ·) is convex and lower semicontinuous on Q for each u ∈ Q.

Assumptions B
(B1) f (x, x) = 0 for all x ∈ C.
(B2) f is pseudomonotone on C with respect to Sol(C, f ).
(B3) f is jointly weakly continuous on C ×C in the sense that, if x, y ∈ C and {xk}, {yk}

⊂ C converge weakly to x and y, respectively, then f (xk, yk) → f (x, y) as k → ∞.
(B4) f (x, ·) is convex, subdifferentiable on C for all x ∈ C.
(B5) f is Lipschitz-type continuous on C with constants c1 > 0 and c2 > 0.

The following lemma is well-known in theory of monotone equilibrium problems.

Lemma 4 [4] Let g satisfy Assumption A. Then, for each α > 0 and u ∈ H, there exists
w ∈ Q such that

g(w, v) + 1

α
〈v − w,w − u〉 ≥ 0 ∀v ∈ Q.

The following lemmas give us a connection between monotone equilibrium problems
and fixed point problems.

Lemma 5 [11] Under assumptions of Lemma 4, the mapping T
g
α defined onH by

T g
α (u) =

{
w ∈ Q : g(w, v) + 1

α
〈v − w,w − u〉 ≥ 0 ∀v ∈ Q

}
,

has the following properties:

(i) T
g
α is single-valued.
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(ii) T
g
α is firmly nonexpansive, i.e., for any u, v ∈ H,

‖T g
α (u) − T g

α (v)‖2 ≤ 〈T g
α (u) − T g

α (v), u − v〉.
(iii) Fix(T g

α ) = Sol(Q, g).
(iv) Sol(Q, g) is closed and convex.

Lemma 6 [16] Under assumptions of Lemma 5, for α, β > 0 and u, v ∈ H, one has

‖T g
α (u) − T

g
β (v)‖ ≤ ‖v − u‖ + |β − α|

β
‖T g

β (v) − v‖.

Now, we are in a position to present our main results.

Theorem 1 (Weak convergence theorem) Let C, Q be two nonempty closed convex subsets
in H1 and H2, respectively. Let S : C → C; T : Q → Q be nonexpansive mappings,
and bifunctions g, f satisfy Assumptions A and B, respectively. Let A : H1 → H2 be a
bounded linear operator with its adjoint A∗. Take x1 ∈ C; {λk} ⊂ [a, b] for some a, b ∈
(0,min{ 1

2c1
, 1
2c2

}); 0 < α < 1; 0 < μ < 1
‖A‖2 ; {αk} ⊂ (0,+∞) with lim infk→∞ αk > 0,

and consider the sequences {xk}, {yk}, {zk}, {tk}, and {uk} defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = argmin

{
λkf (xk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
,

zk = argmin

{
λkf (yk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
,

tk = (1 − α)zk + αSzk,

uk = T
g
αk

Atk,

xk+1 = PC(tk + μA∗(T uk − Atk)).

(6)

If � = {x∗ ∈ Sol(C, f ) ∩ Fix(S) : Ax∗ ∈ Sol(Q, g) ∩ Fix(T )} �= ∅, then the sequences
{xk} and {zk} converge weakly to an element p ∈ � and {uk} converges weakly to Ap ∈
Sol(Q, g) ∩ Fix(T ).

Remark 1 Since f satisfies assumption (B4), λkf (xk, y) + 1
2‖y − xk‖2 is strongly convex

with modulus 1 on C, yk is well defined. Assumptions A and Lemma 4 imply that uk is
also well defined. Therefore, the sequences {xk}, {yk}, {zk}, {tk}, and {uk} determined by
(6) are well defined.

The following lemma obtained in [1] is needed for proving Theorem 1.

Lemma 7 [1] Suppose that x∗ ∈ Sol(C, f ), f (x, ·) is convex and subdifferentiable on C

for all x ∈ C, and f is pseudomonotone on C. Then, we have

(i) λk[f (xk, y) − f (xk, yk)] ≥ 〈yk − xk, yk − y〉 ∀y ∈ C.
(ii) ‖zk − x∗‖2 ≤ ‖xk − x∗‖2 − (1 − 2λkc1)‖xk − yk‖2 − (1 − 2λkc2)‖yk − zk‖2 ∀k.

Now, let us prove Theorem 1.

Proof The proof of Theorem 1 is divided into several steps.

Step 1. limk→∞ ‖xk − x∗‖ exists for all x∗ ∈ �.
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Take x∗ ∈ �, i.e., x∗ ∈ Sol(C, f ) ∩ Fix(S) and Ax∗ ∈ Sol(Q, g) ∩ Fix(T ). By the
definition of tk , we have

‖tk − x∗‖ = ‖(1 − α)zk + αSzk − x∗‖
= ‖(1 − α)(zk − x∗) + α(Szk − Sx∗)‖
≤ (1 − α)‖zk − x∗‖ + α‖Szk − Sx∗‖
≤ (1 − α)‖zk − x∗‖ + α‖zk − x∗‖
= ‖zk − x∗‖.

From {λk} ⊂ [a, b] ⊂ (
0,min

{ 1
2c1

, 1
2c2

})
and Lemma 7, we get

‖zk − x∗‖2 ≤ ‖xk − x∗‖2 − (1 − 2λkc1)‖xk − yk‖2 − (1 − 2λkc2)‖yk − zk‖2
≤ ‖xk − x∗‖2.

Thus,

‖tk − x∗‖ ≤ ‖zk − x∗‖ ≤ ‖xk − x∗‖. (7)

It follows from Lemma 5 that

‖T g
αk

Atk − Ax∗‖2 = ‖T g
αk

Atk − T g
αk

Ax∗‖2
≤ 〈T g

αk
Atk − T g

αk
Ax∗, Atk − Ax∗〉

= 〈T g
αk

Atk − Ax∗, Atk − Ax∗〉
= 1

2
[‖T g

αk
Atk − Ax∗‖2 + ‖Atk − Ax∗‖2

−‖T g
αk

Atk − Atk‖2].
Hence,

‖T g
αk

Atk − Ax∗‖2 ≤ ‖Atk − Ax∗‖2 − ‖T g
αk

Atk − Atk‖2.
Combining this fact with the nonexpansiveness of the mapping T , one has

‖T uk − Ax∗‖2 = ‖T T g
αk

Atk − T Ax∗‖2
≤ ‖T g

αk
Atk − Ax∗‖2

≤ ‖Atk − Ax∗‖2 − ‖T g
αk

Atk − Atk‖2. (8)

Using (8), we obtain

〈A(tk−x∗), T uk−Atk〉 = 〈A(tk−x∗)+T uk−Atk−(T uk−Atk), T uk−Atk〉
= 〈T uk−Ax∗, T uk−Atk〉−‖T uk−Atk‖2

= 1

2
[‖T uk−Ax∗‖2+‖T uk−Atk‖2−‖Atk−Ax∗‖2]

−‖T uk−Atk‖2

= 1

2
[(‖T uk−Ax∗‖2−‖Atk−Ax∗‖2)−‖T uk−Atk‖2]

≤ −1

2
‖T g

αk
Atk−Atk‖2− 1

2
‖T uk−Atk‖2. (9)
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It implies from (9) that

‖xk+1 − x∗‖2 = ‖PC(tk+μA∗(T uk−Atk))−PC(x∗)‖2
≤ ‖(tk−x∗)+μA∗(T uk−Atk)‖2
= ‖tk−x∗‖2+‖μA∗(T uk−Atk)‖2+2μ〈tk−x∗, A∗(T uk−Atk)〉
≤ ‖tk−x∗‖2+μ2‖A∗‖2‖T uk−Atk‖2+2μ〈A(tk−x∗),T uk−Atk〉
≤ ‖tk−x∗‖2+μ2‖A∗‖2‖T uk−Atk‖2−μ‖T g

αk
Atk−Atk‖2

−μ‖T uk−Atk‖2
= ‖tk−x∗‖2−μ(1−μ‖A∗‖2)‖T uk−Atk‖2−μ‖T g

αk
Atk−Atk‖2.

According to the definition of uk , the last inequality becomes

‖xk+1−x∗‖2 ≤ ‖tk−x∗‖2−μ(1−μ‖A‖2)‖T uk−Atk‖2−μ‖uk−Atk‖2. (10)

From (7), (10) and 0 < μ < 1
‖A‖2 , we get

‖xk+1 − x∗‖ ≤ ‖tk − x∗‖ ≤ ‖zk − x∗‖ ≤ ‖xk − x∗‖ (11)

and

μ(1−μ‖A‖2)‖T uk−Atk‖2+μ‖uk−Atk‖2 ≤ ‖xk−x∗‖2−‖xk+1−x∗‖2. (12)

From (11), we can conclude that limk→∞ ‖xk − x∗‖ exists, and from (12), we obtain that

lim
k→∞ ‖xk − x∗‖ = lim

k→∞ ‖tk − x∗‖ = lim
k→∞ ‖zk − x∗‖ and

lim
k→∞ ‖T uk − Atk‖ = lim

k→∞ ‖uk − Atk‖ = 0. (13)

Step 2. limk→∞ ‖zk − xk‖ = limk→∞ ‖Szk − zk‖ = limk→∞ ‖tk − xk‖ = 0.
From (13) and the inequality

‖T uk − uk‖ ≤ ‖T uk − Atk‖ + ‖uk − Atk‖,
we get

lim
k→∞ ‖T uk − uk‖ = 0. (14)

Besides that,

‖zk − x∗‖2 ≤ ‖xk − x∗‖2 − (1 − 2λkc1)‖xk − yk‖2 − (1 − 2λkc2)‖yk − zk‖2,
so

(1−2λkc1)‖xk−yk‖2+(1−2λkc2)‖yk−zk‖2 ≤ ‖xk−x∗‖2−‖zk−x∗‖2. (15)

Since {λk} ⊂ [a, b] ⊂ (0,min{ 1
2c1

, 1
2c2

}) and (15), one has
(1 − 2bc1)‖xk − yk‖2 ≤ ‖xk − x∗‖2 − ‖zk − x∗‖2,
(1 − 2bc2)‖yk − zk‖2 ≤ ‖xk − x∗‖2 − ‖zk − x∗‖2. (16)

From (13), we get limk→∞(‖xk − x∗‖2 − ‖zk − x∗‖2) = 0. Combining this fact with (16),
we get

lim
k→∞ ‖xk − yk‖ = 0, lim

k→∞ ‖yk − zk‖ = 0. (17)

It is clear that

‖zk − xk‖ ≤ ‖xk − yk‖ + ‖yk − zk‖,
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so, we get from (17) that
lim

k→∞ ‖zk − xk‖ = 0. (18)

Using tk = (1 − α)zk + αSzk , Lemma 2 and the nonexpansiveness of S, we have

‖tk − x∗‖2 = ‖(1 − α)zk + αSzk − x∗‖2
= ‖(1 − α)(zk − x∗) + α(Szk − x∗)‖2
= (1 − α)‖zk − x∗‖2 + α‖Szk − x∗‖2 − α(1 − α)‖Szk − zk‖2
= (1 − α)‖zk − x∗‖2 + α‖Szk − Sx∗‖2 − α(1 − α)‖Szk − zk‖2
≤ (1 − α)‖zk − x∗‖2 + α‖zk − x∗‖2 − α(1 − α)‖Szk − zk‖2
= ‖zk − x∗‖2 − α(1 − α)‖Szk − zk‖2. (19)

Therefore,
α(1 − α)‖Szk − zk‖2 ≤ ‖zk − x∗‖2 − ‖tk − x∗‖2.

Combining the last inequality with (13), we conclude that

lim
k→∞ ‖Szk − zk‖ = 0. (20)

We have

‖tk − xk‖ ≤ ‖tk − zk‖ + ‖zk − xk‖ = α‖Szk − zk‖ + ‖zk − xk‖.
Therefore, we deduce from (18) and (20) that

lim
k→∞ ‖tk − xk‖ = 0. (21)

Step 3. The sequences {xk}, {zk} ⇀ p ∈ Sol(C, f )∩Fix(S) and {uk} ⇀ Ap ∈Sol(Q, g)∩
Fix(T ).

By Step 1, limk→∞ ‖xk − x∗‖ exists and the sequence {xk} is bounded. Consequently,
there exists a subsequence {xkj } of {xk} such that xkj converges weakly to some p ∈ C as
j → ∞. Then, it follows from (21) that tkj ⇀ p, Atkj ⇀ Ap.

Since limk→∞ ‖uk − Atk‖ = 0, we deduce that ukj ⇀ Ap. Remember that {uk} ⊂ Q,
so Ap ∈ Q.

In addition, limk→∞ ‖zk − xk‖ = 0 and xkj ⇀ p. Hence, zkj ⇀ p.
If Sp �= p, then, by Opial’s condition and (20), we have

lim inf
j→∞ ‖zkj − p‖ < lim inf

j→∞ ‖zkj − Sp‖
= lim inf

j→∞ ‖zkj − Szkj + Szkj − Sp‖
≤ lim inf

j→∞ (‖zkj − Szkj ‖ + ‖Szkj − Sp‖)
= lim inf

j→∞ ‖Szkj − Sp‖
≤ lim inf

j→∞ ‖zkj − p‖.

This is a contradiction. Thus, Sp = p, i.e., p ∈ Fix(S).
From Lemma 7, we have

λkj
[f (xkj , y) − f (xkj , ykj )] ≥ 〈ykj − xkj , ykj − y〉 ∀y ∈ C.
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Letting j → ∞, we get f (p, y) ≥ 0 for all y ∈ C and thus p ∈ Sol(C, f ). Therefore,

p ∈ Sol(C, f ) ∩ Fix(S). (22)

Next, we show that

Ap ∈ Sol(Q, g) ∩ Fix(T ).

First, if T Ap �= Ap, then by the Opial’s condition and (14), we have

lim inf
j→∞ ‖ukj − Ap‖ < lim inf

j→∞ ‖ukj − T Ap‖
= lim inf

j→∞ ‖ukj − T ukj + T ukj − T Ap‖
≤ lim inf

j→∞ (‖ukj − T ukj ‖ + ‖T ukj − T Ap‖)
= lim inf

j→∞ ‖T ukj − T Ap‖
≤ lim inf

j→∞ ‖ukj − Ap‖.

This is a contradiction. Thus, Ap ∈ Fix(T ).
On the other hand, Sol(Q, g) = Fix(T g

α ). So, if T
g
α Ap �= Ap, then combining (13), the

Opial’s condition, and Lemma 6, we have

lim inf
j→∞ ‖Atkj − Ap‖ < lim inf

j→∞ ‖Atkj − T g
α Ap‖

= lim inf
j→∞ ‖Atkj − ukj + ukj − T g

α Ap‖
≤ lim inf

j→∞ (‖Atkj − ukj ‖ + ‖T g
α Ap − ukj ‖)

= lim inf
j→∞ ‖T g

α Ap − ukj ‖
= lim inf

j→∞ ‖T g
α Ap − T g

αkj
Atkj ‖

≤ lim inf
j→∞

{
‖Atkj − Ap‖ + |αkj

− α|
αkj

‖T g
αkj

Atkj − Atkj ‖
}

= lim inf
j→∞

{
‖Atkj − Ap‖ + |αkj

− α|
αkj

‖ukj − Atkj ‖
}

= lim inf
j→∞ ‖Atkj − Ap‖.

This is a contradiction. Thus Ap ∈ Fix(T g
α ) = Sol(Q, g). Therefore,

Ap ∈ Sol(Q, g) ∩ Fix(T ). (23)

From (22) and (23), we obtain that p ∈ �.

Step 4. The sequences {xk} and {uk} converge weakly to p and Ap, respectively.
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Otherwise, there exists a subsequence {xmi } of {xk} such that xmi ⇀ q ∈ � with q �= p,
and again by the Opial’s condition, we have

lim inf
i→∞ ‖xmi − q‖ < lim inf

i→∞ ‖xmi − p‖
= lim inf

j→∞ ‖xkj − p‖
< lim inf

j→∞ ‖xkj − q‖
= lim inf

i→∞ ‖xmi − q‖.

This is a contradiction. Hence, {xk} converges weakly to p. Together with (18) and (21),
we also get zk ⇀ p and tk ⇀ p, so Atk ⇀ Ap. Combining with (13), we conclude that
uk ⇀ Ap ∈ Sol(Q, g) ∩ Fix(T ). Theorem 1 is proved.

When S = IH1 and T = IH2 , the problem (SEFPP) reduces to the split equilibrium
problem (SEP). In this case, Theorem 1 becomes

Corollary 1 Suppose that g, f are bifunctions satisfying Assumptions A and B, respec-
tively. Let A : H1 → H2 be a bounded linear operator with its adjoint A∗. Take x1 ∈ C;

{λk} ⊂ [a, b], for some a, b ∈
(
0,min

{
1
2c1

, 1
2c2

})
; 0 < α < 1; 0 < μ < 1

‖A‖2 ;
{αk} ⊂ (0, +∞) with lim infk→∞ αk > 0, and consider the sequences {xk}, {yk}, {zk}, and
{uk} defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yk = argmin
{
λkf (xk, y) + 1

2‖y − xk‖2 : y ∈ C
}
,

zk = argmin
{
λkf (yk, y) + 1

2‖y − xk‖2 : y ∈ C
}
,

uk = T
g
αk

Azk,

xk+1 = PC(zk + μA∗(uk − Azk)).

If � = {x∗ ∈ Sol(C, f ) : Ax∗ ∈ Sol(Q, g)} �= ∅, then the sequences {xk} and {zk}
converge weakly to an element p ∈ � and {uk} converges weakly to Ap ∈ Sol(Q, g).

The following corollary is immediate from Theorem 1 whenH1 = H2 = H, g ≡ 0, and
S = T = A = IH.

Corollary 2 [37] Let f be a bifunction satisfying Assumptions B. Take x1 ∈ C; {λk} ⊂
[a, b] for some a, b ∈ (0,min{ 1

2c1
, 1
2c2

}); and consider the sequences {xk}, {yk} generated
by ⎧⎪⎨

⎪⎩
yk = argmin

{
λkf (xk, y) + 1

2‖y − xk‖2 : y ∈ C
}
,

xk+1 = argmin
{
λkf (yk, y) + 1

2‖y − xk‖2 : y ∈ C
}

.

If Sol(C, f ) �= ∅, then the sequences {xk} and {yk} converge weakly to a solution of
EP(C, f ).

The following results obtained in [35] can be considered as a special case of Theorem 1
whenH1 = H2 = H, f ≡ 0, S = A = IH.
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Corollary 3 [35] Let g be a bifunction satisfying AssumptionsA. Take x1 ∈ C; 0 < μ < 1;
{αk} ⊂ (0, +∞) with lim infk→∞ αk > 0, and consider the sequences {xk}, {yk}, {zk}, and
{uk} defined by {

uk = T
g
αk

xk,

xk+1 = (1 − μ)xk + μT uk.

If � = {x∗ ∈ Sol(Q, g) ∩ Fix(T )} �= ∅, then the sequences {xk} and {uk} converge
weakly to an element p ∈ �.

In what follows, we combine the proposed method with a hybrid technique to obtain a
strongly convergent algorithm

Theorem 2 (Strong convergence theorem) Let x1 ∈ C1 = C, consider sequences {xk},
{yk}, {zk}, {tk} and {uk} generated by the following process

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = argmin
{
λkf (xk, y) + 1

2‖y − xk‖2 : y ∈ C
}
,

zk = argmin
{
λkf (yk, y) + 1

2‖y − xk‖2 : y ∈ C
}
,

tk = (1 − α)zk + αSzk,

uk = T
g
αk

Atk,

sk = PC(tk + μA∗(T uk − Atk)),

Ck+1 = {r ∈ Ck : ‖sk − r‖ ≤ ‖tk − r‖ ≤ ‖xk − r‖},
xk+1 = PCk+1(x

1), k ∈ N
∗,

(24)

where 0 < α < 1, 0 < μ < 1
‖A‖2 , {αk} ⊂ (0;∞) with lim infk→∞ αk > 0. Then, under

assumptions of Theorem 1 and � = {x∗ ∈ Sol(C, f ) ∩ Fix(S) : Ax∗ ∈ Sol(Q, g) ∩
Fix(T )} �= ∅, the sequences {xk}, {zk} converge strongly to an element p ∈ � and {uk}
converges strongly to Ap ∈ Sol(Q, g) ∩ Fix(T ).

Remark 2 By setting H 1
k = {r ∈ H1 : ‖sk − r‖ ≤ ‖tk − r‖}, then

H 1
k = {r ∈ H1 : 〈tk − sk, r〉 ≤ 1

2
(‖tk‖2 − ‖vk‖2)},

so H 1
k is a halfspace. Similarly, H 2

k = {r ∈ H1 : ‖tk − r‖ ≤ ‖xk − r‖} is also a halfspace.
Since Ck+1 = Ck ∩ H 1

k ∩ H 2
k , if H1 is the Euclidean space Rn and C is a polyhedra,

then by induction Ck are polyhedra for all k. Therefore, the computation of xk+1 in (24) is
equivalent to find the projection of x1 onto the polyhedra set Ck+1 which can be computed
efficiently using, for example, strongly convex quadratic programming methods.

Now, let us prove Theorem 2.

Proof We divide the proof of this theorem into several claims.

Claim 1 For all k ∈ N
∗, Ck is a nonempty closed convex set.
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Let x∗ ∈ �. Then, it follows from (10), (19), and (7) that

‖sk − x∗‖2 ≤ ‖tk − x∗‖2 − μ(1 − μ‖A‖2)‖T uk − Atk‖2 − μ‖uk − Atk‖2
≤ ‖zk − x∗‖2 − α(1 − α)‖Szk − zk‖2 − μ(1 − μ‖A‖2)‖T uk − Atk‖2

−μ‖uk − Atk‖2
≤ ‖xk − x∗‖2 − α(1 − α)‖Szk − zk‖2 − μ(1 − μ‖A‖2)‖T uk − Atk‖2

−μ‖uk − Atk‖2. (25)

Since 0 < α < 1, 0 < μ < 1
‖A‖2 and (25), we get

‖sk − x∗‖ ≤ ‖tk − x∗‖ ≤ ‖zk − x∗‖ ≤ ‖xk − x∗‖ ∀k. (26)

Because x∗ ∈ C1 and (26), we get by induction that x∗ ∈ Ck for all k ∈ N
∗, i.e., � ⊂ Ck .

So Ck �= ∅ for all k. Define

Dk = {r ∈ H1 : ‖sk − r‖ ≤ ‖tk − r‖ ≤ ‖xk − r‖}, k ∈ N
∗.

Then, Ck+1 = Ck ∩ Dk . Since C1 and Dk are closed for all k, Ck is closed for all k.
Next, we verify that Dk is convex for all k. Indeed, let r1, r2 ∈ Dk and λ ∈ [0, 1], using

Lemma 2, we have

‖sk − (λr1 + (1 − λ)r2)‖2 = ‖λ(sk − r1) + (1 − λ)(sk − r2)‖2
= λ‖sk − r1‖2 + (1 − λ)‖sk − r2‖2 − λ(1 − λ)‖r1 − r2‖2
≤ λ‖tk − r1‖2 + (1 − λ)‖tk − r2‖2 − λ(1 − λ)‖r1 − r2‖2
= ‖tk − (λr1 + (1 − λ)r2)‖2.

So,
‖sk − (λr1 + (1 − λ)r2)‖ ≤ ‖tk − (λr1 + (1 − λ)r2)‖.

Similarly,

‖tk − (λr1 + (1 − λ)r2)‖ ≤ ‖xk − (λr1 + (1 − λ)r2)‖.
Thus,

‖sk − (λr1 + (1 − λ)r2)‖ ≤ ‖tk − (λr1 + (1 − λ)r2)‖ ≤ ‖xk − (λr1 + (1 − λ)r2)‖.
Therefore,

λr1 + (1 − λ)r2 ∈ Dk.

Since C1 and Dk are convex for all k, Ck is convex for all k.

Claim 2 The sequences {xk}, {sk} are bounded and xk → p.
By the definition of xk+1, we have xk+1 ∈ Ck+1 ⊂ Ck and xk = PCk

(x1). So

‖xk − x1‖ ≤ ‖xk+1 − x1‖ ∀k.

In addition, xk+1 = PCk+1(x
1) and x∗ ∈ Ck+1. Hence,

‖xk+1 − x1‖ ≤ ‖x∗ − x1‖.
Thus,

‖xk − x1‖ ≤ ‖xk+1 − x1‖ ≤ ‖x∗ − x1‖ ∀k.

Therefore, limk→∞ ‖xk − x1‖ exists and the sequence {xk} is bounded. Hence, by (26),
{sk} is also bounded.
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Furthermore, for all m > n, we have xm ∈ Cm ⊂ Cn, xn = PCn(x
1). Combining this

fact with Lemma 1, we get

‖xm − xn‖2 ≤ ‖xm − x1‖2 − ‖xn − x1‖2.
Since limk→∞ ‖xk − x1‖ exists, the sequence {xk} is a Cauchy sequence. Thus,

lim
k→∞ xk = p for some p ∈ C. (27)

Claim 3 p ∈ �, limk→∞ zk = p and limk→∞ uk = Ap.
From the definitions of Ck+1 and xk+1, we have

‖sk − xk+1‖ ≤ ‖tk − xk+1‖ ≤ ‖xk − xk+1‖.
Thus,

‖sk − xk‖ ≤ ‖sk − xk+1‖ + ‖xk+1 − xk‖
≤ ‖xk − xk+1‖ + ‖xk − xk+1‖
= 2‖xk − xk+1‖ (28)

and

‖tk − xk‖ ≤ ‖tk − xk+1‖ + ‖xk+1 − xk‖
≤ ‖xk − xk+1‖ + ‖xk − xk+1‖
= 2‖xk − xk+1‖. (29)

Combining with (27), we deduce from (28) and (29) that

lim
k→∞ ‖sk − xk‖ = lim

k→∞ ‖tk − xk‖ = 0. (30)

From (25), Claim 2, and (30), we can write

α(1 − α)‖Szk − zk‖2 + μ(1 − μ‖A‖2)‖T uk − Atk‖2 + μ‖uk − Atk‖2
≤ ‖xk − x∗‖2 − ‖sk − x∗‖2
= (‖xk − x∗‖ + ‖sk − x∗‖)(‖xk − x∗‖ − ‖sk − x∗‖)
≤ ‖xk − sk‖(‖xk − x∗‖ + ‖sk − x∗‖) → 0 as k → ∞. (31)

From 0 < α < 1 and 0 < μ < 1
‖A‖2 , we get from (31) that

lim
k→∞ ‖T uk − Atk‖ = lim

k→∞ ‖uk − Atk‖ = 0,

lim
k→∞ ‖Szk − zk‖ = 0. (32)

So (32) and the inequality

‖T uk − uk‖ ≤ ‖T uk − Atk‖ + ‖uk − Atk‖,
imply that

lim
k→∞ ‖T uk − uk‖ = 0. (33)

On the other hand, from (17), (18), (21), and limk→∞ xk = p, we have

lim
k→∞ yk = p, lim

k→∞ zk = p, lim
k→∞ tk = p. (34)
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Consequently, it follows from (32) and (34) that

‖Sp − p‖ ≤ ‖Sp − Szk‖ + ‖Szk − zk‖ + ‖zk − p‖
≤ ‖p − zk‖ + ‖Szk − zk‖ + ‖zk − p‖
= 2‖zk − p‖ + ‖Szk − zk‖ → 0 as k → ∞.

So, Sp = p, i.e., p ∈ Fix(S).
On the other side, we obtain from Lemma 7 that

λk[f (xk, y) − f (xk, yk)] ≥ 〈yk − xk, yk − y〉 ∀y ∈ C.

Letting k → ∞, using the joint weak continuity of f , limk→∞ xk = p and (34), we get
in the limit that

f (p, y) ≥ 0 ∀y ∈ C.

It is immediate that p ∈ Sol(C, f ). Consequently,

p ∈ Sol(C, f ) ∩ Fix(S). (35)

From (34), it follows that limk→∞ Atk = Ap. Combining this fact with (32), one has

lim
k→∞ uk = Ap. (36)

From (33), (36), one can deduce

‖T Ap − Ap‖ ≤ ‖T Ap − T uk‖ + ‖T uk − uk‖ + ‖uk − Ap‖
≤ ‖Ap − uk‖ + ‖T uk − uk‖ + ‖uk − Ap‖
= 2‖uk − Ap‖ + ‖T uk − uk‖ → 0 as k → ∞.

Hence, T Ap = Ap, i.e., Ap ∈ Fix(T ).
In addition, we obtain from Lemma 6, limk→∞ Atk = Ap, and (32) that

‖T g
α Ap − Ap‖ ≤ ‖T g

α Ap − T g
αk

Atk‖ + ‖T g
αk

Atk − Atk‖ + ‖Atk − Ap‖
= ‖T g

α Ap − T g
αk

Atk‖ + ‖uk − Atk‖ + ‖Atk − Ap‖
≤ ‖Atk − Ap‖ + |αk − α|

αk

‖T g
αk

Atk − Atk‖ + ‖uk − Atk‖ + ‖Atk − Ap‖

= 2‖Atk − Ap‖ + |αk − α|
αk

‖uk − Atk‖ + ‖uk − Atk‖ → 0 as k → ∞,

which implies that T g
α Ap = Ap, i.e., Ap ∈ Fix(T g

α ) = Sol(Q, g). So,

Ap ∈ Sol(Q, g) ∩ Fix(T ). (37)

From (35) and (37), we get p ∈ �. The proof is complete.

The following corollary is immediate from Theorem 2 when S = IH1 and T = IH2 .

Corollary 4 Let g : Q × Q → R be a bifunction satisfying Assumptions A and f :
C × C → R be a bifunction satisfying Assumptions B. Let A : H1 → H2 be a bounded
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linear operator with its adjoint A∗. Choose x1 ∈ C and C1 = C. Consider the sequences
{xk}, {yk}, {zk} and {uk} generated by the following iteration⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = argmin
{
λkf (xk, y) + 1

2‖y − xk‖2 : y ∈ C
}
,

zk = argmin
{
λkf (yk, y) + 1

2‖y − xk‖2 : y ∈ C
}
,

uk = T
g
αk

Azk,

sk = PC(zk + μA∗(uk − Azk)),

Ck+1 = {r ∈ Ck : ‖sk − r‖ ≤ ‖zk − r‖ ≤ ‖xk − r‖},
xk+1 = PCk+1(x

1),

where 0 < α < 1, 0 < μ < 1
‖A‖2 , {αk} ⊂ (0; ∞) with lim infk→∞ αk > 0. Suppose that

� = {x∗ ∈ Sol(C, f ) : Ax∗ ∈ Sol(Q, g)} �= ∅, then the sequences {xk} and {zk} converge
strongly to an element p ∈ � and {uk} converges strongly to Ap ∈ Sol(Q, g).

IfH1 = H2 = H, g = f = 0, and A = T = IH. Then, we get the following result.

Corollary 5 [34] Let C be a nonempty closed convex subset of a real Hilbert spaceH and
S : C → C be a nonexpansive mapping such that Fix(S) �= ∅, x1 ∈ C and C1 = C. Define
a sequence {xk} as follows⎧⎪⎨

⎪⎩
tk = (1 − α)xk + αSxk,

Ck+1 = {r ∈ Ck : ‖tk − r‖ ≤ ‖xk − r‖},
xk+1 = PCk+1(x

1),

where 0 < α < 1. Then, the sequence {xk} converges strongly to an element p ∈ Fix(S).

4 Conclusion

We have proposed two algorithms for solving a split equilibrium and fixed problem (SEFPP)
in real Hilbert spaces, when the bifunctions are pseudomonotone and monotone, respec-
tively, and the fixed point mappings are nonexpansive. Then, we have proved that the
iterative sequences generated by the algorithms converge weakly and strongly to a solution
of this problem, respectively. Some special cases of (SEFPP) have also been considered.
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