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Abstract—In data mining, anomaly detection aims at iden-
tifying the observations which do not conform to an expected
behavior. To date, a large number of techniques for anomaly de-
tection have been proposed and developed. Recently, researchers
have paid their attention to ensemble methods to improve the ac-
curacy of anomaly detection algorithms. Particularly, Sequential
Ensemble Method (SEQ) proposed recently has shown significant
improvement over other techniques. The idea of SEQ is to
evaluate the scores of samples by using a second algorithm
with respect to the first algorithm’s output. In other words, an
algorithm is firstly used to choose a set of the highest suspect
abnormal samples (Dref ) and then a second algorithm is applied
to evaluate the final score of each data samples in the dataset with
respect to only Dref . In this paper, we propose an improvement of
SEQ by introducing a new way to build Dref that is based on the
highest suspect normal samples instead of abnormal samples. The
new algorithm is applied to a number of benchmark datasets. The
experimental results show that the proposed method provided
better and more stable performance compared to the previous
version of SEQ and six individual algorithms.

I. INTRODUCTION

In data mining, anomaly detection aims at identifying the
observations which do not conform to an expected behavior.
These observations are often referred to as anomalies or
outliers. Anomaly detection methods are extensively used
in a wide variety of applications such as fraud detection
for credit cards, insurance or health care, intrusion detection
for cyber-security. In recent years, ensemble methods for
anomaly detection has received more attention in the research
community [1], [2], [3], [4]. The objective of ensemble
method is to combine various algorithms to create a robust
algorithm for different problems. In anomaly detection, a
particular algorithm may be well suited to the characteristics
of one dataset and be effective in identifying anomalies of the
specific application domain. However, that algorithm may not
work well with other datasets whose properties are different.
Ensemble methods, which use a variety of algorithms, may
reduce the impact of such mismatch between an algorithm
and an application, so as obtain better performance than the
constituent algorithms alone and produce more robust results.

Regarding to component independence, ensemble algo-
rithms are categorized into two classes: sequential ensemble
and independent ensemble [5]. In independent ensembles,
outlier detection are performed by using different algorithms
or different portions of the data. The same algorithm may

be used, with different initialization, parameter set or random
seed. Then the results of those different applications are
combined somehow to obtain a more robust detection effec-
tiveness. In sequential ensembles, one or more outlier detection
algorithms are sequentially applied on entire or some parts of
data. Each application of the algorithms gives understanding
to some aspects of the data, so using a modified algorithm or
dataset would refine the detection results.

In a recent study, Zhao et al. proposed a new ensemble ap-
proach for anomaly detection based on sequential application
of two algorithm (SEQ). The idea is to determine a reference
dataset Dref of the highest suspect abnormal samples based
on the first algorithm and then the second algorithm is used to
evaluate the final rank of data samples with respect to Dref .
The experimental results showed the promising performance
on detection effectiveness of SEQ [6]. However, SEQ has a
potential weakness in calculating the abnormal score based on
the highest suspect abnormal subset Dref especially when the
second algorithm is the density based algorithm. Since Dref

is the suspect abnormal subset, the density of its samples may
be very low. Subsequently, if the second algorithm is density-
based, its evaluation for the density of all data samples based
on Dref will not be accurate (since evaluating the density of
all samples with respect to Dref (a low density subset) will
result in a very small value).

In this paper, we proposed a variant of SEQ by selecting
Dref as the highest suspect of normal samples instead of
abnormal samples. We evaluated this method on a larger
range of public benchmark datasets with various values of
main parameter k (the number of neighbor samples used
to calculate the abnormal score for each data sample). The
experimental results show that the proposed method achieved
better performance than other tested algorithms.

The paper is organized as follows. The next section presents
the background of the paper. The proposed sequential ensem-
ble algorithm is presented in Section III. The tested datasets
and the experimental settings are described in Section IV.
The results are presented and discussed in Section V. Finally,
Section VI concludes the paper and highlights some future
work.
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II. BACKGROUNDS

A. Sequential Application of two Algorithms

Zhao et al. [6] proposed a new ensemble method for
anomaly detection that sequentially applies two substantially
different algorithms (SEQ method). The main idea of this
method is to correct the errors of the first algorithm by
applying the second algorithm based on the result of the
first algorithm. More detailedly, the process of SEQ includes
the following two phase: In the first phase, an anomaly
detection algorithm (the first algorithm) is applied on the
whole dataset and provide the ranks for the abnormal degree
of the samples, which are then used to select a subset Dref

that |Dref | = α ∗ 100%|D| - suspected to contain all outliers.
In the second phase, another algorithm (the second algorithm)
then is applied on the whole D with reference to Dref only.
For example, if the second algorithm search for k nearest
neighbors of an object, only its neighbors that in Dref are
taken into account. In other words, abnormal score of each
sample oi is calculated by applying the second algorithm
on dataset Di = Dref ∪ {oi} instead of dataset D. The
pseudo-code of this algorithm (shorted as SEQ-A) is given
in Algorithm 1 [6].

Algorithm 1 SEQ-A algorithm
Input: dataset D, detection algorithm A and B
Output: a list of rank associated with each of the objects in

D
1: ScoreListA(D)=Apply algorithm A on D.
2: RankListA(D)=Assign each object in D a rank sorted

by ScoreListA(D) in decreasing order.
3: Dref = Identify the top α × 100% objects in
RankListA(D)

4: ScoreListFinal(D) = For each object o ∈ D, apply algo-
rithm B and get anomaly score calculated with reference
to Dref .

5: RankListFinal(D) = Assign each object in D a rank
sorted by ScoreListFinal(D) in decreasing order.

As shown in Algorithm 1, the output of two algorithms
are utilized by different ways. First algorithm’s output is used
to create RankListA, which then is used to build a subset
Dref and does not directly contribute to the final output.
Second algorithm’s output is used to create the final output
RankListFinal. Since the final output is rely not only on the
second algorithm but also the subset Dref , if Dref is selected
to well represent dataset’s distinctive characteristics, the final
output will be better.

SEQ-A was tested on 3 datasets including Packed Executa-
bles, KDD 99, Wisconsin and with several values of parameter
k (2, 4, 10). The results shows that the sequential method
achieved very good performance. Moreover, the authors also
provided a procedure for selecting a best pair of algorithms
for sequential method by using correlation coefficient between
algorithms’ output. According to Zhao et al., SEQ-A work best
when the output of two selected algorithms are most different.

B. Individual Algorithms

In order to use ensemble algorithm, a set of single algo-
rithms need to be selected first. In in this paper, we follow
Zhao et al. in selecting the six following single algorithms.

LOF (Local Outlier Factor) [7] compares the local reacha-
bility density (lrd) of the test object, with those of the object’s
k nearest neighbors Nk(p): a high value indicates outlierness.

LOFk(p) =
1

|Nk(p)|
∑

o∈Nk(p)

lrdk(o)

lrdk(p)
. (1)

Local reachability density is defined as the inverse of average
reachability distance from the neighbors of an object.

lrdk(p) = 1/

∑
o∈Nk(p)

reach− distk(p← o)

|Nk(p)|
. (2)

The reachability distance of object p with respect to object o
is defined as reach−dist(p← o) = max{k−dist(o), d(p, o)}
where k−dist(o) denote the distance from o to its kth nearest
neighbor.

COF (Connectivity-based Outlier Factor) [8] compare the
average chaining distance from an object to its k nearest
neighbors Nk(p) and the average of the average chaining
distances from its k nearest neighbors to their own k nearest
neighbors.

COFk(p) =
|Nk(p)|ac− distNk(p)(p)∑
o∈Nk(p)

ac− distNk(o)(o)
. (3)

The concept of average chaining distance is based on two
other concepts: Set Based Nearest Path (SBN-Path) and Set
Based Trail (SBT). SNN-Path represents objects pi ∈ Nk(p)
as a sequence {p1, p2, . . . , pr} such that for all 1 ≤ i ≤
r − 1, pi+1 is the nearest neighbor of set {p1, . . . , pi} in
{pi+1, . . . , pr}. A SBT is an ordered collection of k−1 edges
associated with a given SBT-Path such that the ith edge ei
connects the (i + 1)th point pi+1 in SBN-Path to one of
the nearest earlier points in the path; each edge is assigned
a weight proportional to the order in which it is added to SBT
set. Average chaining distance of p is defined as the weighted
sum of the lengths of the edges:

ac− distNk(p)(p) =
1

r − 1
·
r−1∑

i=1

2(r − i)
r

· dist(ei). (4)

INFLO (INFLuenced Outlierness) [9] is a variant of
LOF in which outlierness is measured based on both nearest
neighbors and reverse nearest neighbor relationship. Jin et
al. [9] defined Influential Space for object p as ISk(p) =
Nk(p)∪RNk(p) where reverse nearest neighbor is defined as
RNk(p) = {q|q ∈ D, p ∈ Nk(q)} and defined the density of
an object as the inverse of its k-distance den(p) = 1/kdist(p).
Influenced outlierness of an object p then is defined as:

INFLOk(p) =

∑
o∈ISk(p)

den(o)

|ISk(p)|
/den(p). (5)

RBDA (Ranking-based Detection Algorithm) [10] identi-
fies outliers based on mutual closeness of an object and its
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neighbors using ranks instead of distances. The outlierness of
an object is defined as the average of its ranks among all
nearest neighbors of its nearest neighbors

Ok(p) =

∑
q∈Nk(p)

rankq(p)

|Nk(p)|
. (6)

RADA (Rank with Averaged Distance Algorithm) [11]
is a variant of RBDA which utilize the useful information
contained in the distance of an object to its neighbors. The
outlierness of object p is adjust by the average of the distances
from the object to its neighbors.

Wk(p) = Ok(p) ·
∑

q∈Nk(p)
d(p, q)

|Nk(p)|
. (7)

where Ok(p) is defined as in Equation 6.
ODMR (Outlier Detection using Modified-Ranks) [11] is

a variant of RBDA using objects’ modified-ranks in order to
overcome the effect of cluster density. In ODMR, all clusters
are assigned weight 1, so each object p ∈ C is assigned an
equal weight = 1/|C|. The modified-rank of an object p with
respect to q is defined as the sum of weights of all objects
within the circle of radius d(q, p) centered at q. The outlierness
of object p is measure by Equation 6 with modified rank of p
replace for rankq(p).

III. METHODS

In this section, we proposed an extension of SEQ-A by
introducing a new way to select Dref . Instead of selecting
Dref based on the suspect abnormal samples, we select Dref

based on the suspect normal samples. We hypothesize that this
method will be more robust compared to the SEQ-A especially
when the second algorithm is the density based algorithm. The
proposed algorithm is call sequential ensemble method based
on normal dataset and shorted as SEQ-N. The pseudo-code of
the SEQ-N is given in Algorithm 2.

Algorithm 2 SEQ-N algorithm
Input: dataset D, detection algorithm A and B
Output: a list of rank associated with each of the objects in

D
1: ScoreListA(D)=Apply algorithm A on D.
2: RankListA(D)=Assign each object in D a rank sorted

by ScoreListA(D) in increasing order.
3: Dref = Identify the top α × 100% objects in
RankListA(D)

4: ScoreListFinal(D) = For each object o ∈ D, apply algo-
rithm B and get anomaly score calculated with reference
to Dref .

5: RankListFinal(D) = Assign each object in D a rank
sorted by ScoreListFinal(D) in decreasing order.

Compared to Algorithm 1, there is only one line in Al-
gorithm 2 that is different from Algorithm 1. In the second
line of Algorithm 2 the samples in D is sorted in increasing
order (from the highest suspect normal to the highest suspect

abnormal) instead of decreasing order in Algorithm 1. Algo-
rithm SEQ-N will be compared with SEQ-A and six individual
algorithms on a large number of popular datasets with a wide
range of their parameters (k). The performance of the tested
algorithms will be presented in the following section.

IV. EXPERIMENTAL SETTINGS

A. Selection of Pair of Algorithms for The Sequential Algo-
rithm

The selection of individual algorithms has a profound im-
pact to the performance of the ensemble methods. In this paper,
we followed Zhao et al. [6] in selecting COF or LOF as the
first algorithm and RADA for the second phase of sequential
method. Subsequently, there are totally 4 sequential algorithms
that were evaluated in this study, denote by SEQ-A.COF, SEQ-
A.LOF, SEQ-N.COF, and SEQ-N.LOF.

The number of neighbors used for calculating abnormal
score (k) in all individuals algorithm is varied from 1 to 40.
After that, the best values for each algorithm was selected
and the performance of the algorithms with the best value of
k is reported as the final performance of the algorithm. The
value of α in the ensemble algorithms was 20 for all ensemble
versions. In other words, we selected |Dref | = 0.2|D|.

B. Datasets

The lack of useful, publicly available benchmark data for
outlier detection tasks has been been a challenge for evaluation
the performance of algorithms. Recently, Campos et al. [12]
collected, and made publicity a repository of anomaly detec-
tion benchmark datasets 1. Since those datasets are publicly
provided with full details of their preprocessing, they are
chosen to evaluate the algorithms in this study. Moreover,
Campos et al. also showed that, the performance of anomaly
detection on the normalized datasets are often better than on
unnormalized datasets. In this paper, nine normalized datasets
that frequently used in the literature were selected for testing
ensemble algorithms. The datasets and their characteristics
were described in Table I. In nine datasets, there is only
Lymphography that has categorical properties, the Lymphog-
raphy idf variant was chosen 2, in which categorical attribute
is encoded as the inverse document frequency IDF (t) =
ln(|D|/ft).

C. Evaluation Measures

To evaluate the performance of the tested algorithm, we
use a well-know performance metric, ROC AUC. ROC AUC
is based on a curve known as the Receiver Operating Charac-
teristic (ROC). ROC AUC is a single value that summarized
ROC curve, that defined as the area under the ROC curve
(AUC). The ROC AUC value ranges between 0 and 1. A
perfect ranking of the data objects would result in a ROC
AUC value of 1, whereas an inverted perfect ranking would
produce a value approaching 0. A random ranking of the data

1http://www.dbs.ifi.lmu.de/research/outlier-evaluation/
2Algorithms’ performance on Lymphography 1ofn variant are very similar
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TABLE I
LITERATURE DATASETS

No Dataset Instance Normal Abnormal Rate
1 Glass 214 205 9 4.2
2 Ionosphere 351 225 126 35.9
3 Lymphography 148 142 6 4.1
4 PenDigits 9868 9848 20 0.2
5 Shuttle 1013 1000 13 1.3
6 WBC 223 213 10 4.5
7 WDBC 367 357 10 2.7
8 WPBC 198 151 47 23.7
9 Waveform 3443 3343 100 2.9

Fig. 1. Result on dataset Ionosphere
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objects would result in a ROC AUC value close to 0.5. Since
Campos et al. [12] confirmed the tendency that ROC AUC
is expected to be less sensitive to variation in the number of
true outliers than the other evaluation measures, we used ROC
AUC as the main evaluation measure in this study.

V. RESULTS AND DISCUSSION

This section presents the performance of 10 tested anomaly
detection algorithms on the datasets introduced in Sect. IV.

To compare methods according to their quality scores we
firstly consider the best-case performance, selecting k for
which the performance of a method on a data set is maximal
(representing the optimistic case when the optimal value of k
for a method is known in advance), then the case when the
optimal values of k are not known.

Figure 1 to Figure 9 show the best-case performance these
methods on nine datasets. In these figures, SA and SN are
shorthanded for SEQ-A and SEQ-N ensemble methods. For
example SN.COF is the sequential ensemble method using
COF as the first algorithms to select Dref of normal samples
and then using RADA as the second algorithm with respect to
Dref . Moreover, the ROC AUC of the best algorithm on each
dataset is presented by the red color. kopt indicates the optimal
values of parameter k at which each algorithm reaches its best
performance.

It can be seen from Figure 1 to Figure 9 that SEQ-
As (including SEQ-A.LOF and SEQ-A.COF) and SEQ-Ns
(including SEQ-N.LOF and SEQ-N.COF) are often the best
algorithms among all tested methods. Obviously, SEQ-As

Fig. 2. Result on dataset Waveform
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Fig. 3. Result on dataset Lymphography
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achieved the best result on five datasets (Lymphography, WBC,
Glass, WPBC and WDBC) while SEQ-Ns (SEQ-N.LOF or
SEQ-N.COF) achieved the best result on four over nine tested
datasets (Ionosphere, Waveform, Lymphography, WBC) and
RADA achieved the best performance on only two datasets
(Shuttle and PenDigits).

Comparing between two ensemble methods (SEQ-Ns and
SEQ-As), we can see that the proposed ensemble methods
(SEQ-Ns) are more robust than the previous version (SEQ-

Fig. 4. Result on dataset WBC
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Fig. 5. Result on dataset WPBC
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Fig. 6. Result on dataset WDBC
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As). This is presented by the fact that, on some problems,
although, SEQ-Ns does not achieved the best result, their
performance are still very convincing and their ROC AUC
values are often very close to the best result on that dataset.
Conversely, the performance of SEQ-As on some datasets
is very unsatisfied (Ionosphere and Waveform). On these
two datasets (Ionosphere and Waveform), SEQ-As obtained
the worst results among all tested algorithms. Moreover, the
performance of SEQ-Ns is also less sensitive regarding to the

Fig. 7. Result on dataset Glass
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Fig. 8. Result on dataset Shuttle
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Fig. 9. Result on dataset PenDigits
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selection of the algorithm in the first phase. Apparently, both
versions of SEQ-N (SEQ-N.LOF and SEQ-N.COF) achieved
good results while on some datasets, the performance of one
of the versions of SEQ-A is very unconvincing (SEQ-A.COF
on WPBC and SEQ-A.LOF on Shuttle).

Finally, comparing between ensemble algorithms with in-
dividuals algorithms, we can see that ensemble algorithms,
especially SEQ-N, are often better all tested individuals.
Moreover, the performance of SEQ-Ns is more robust than
any other individual algorithms. On most dataset, SEQ-Ns are
often among the three best algorithms.

Figure 10 presents the average value of ROC AUC over all
datasets with respect to the choice of k (consider the case when
the optimal values of k is not known). It can be observed that,
two ensemble algorithms often achieved good performance
with small values of k while the individuals algorithms only
achieved good performance when k is large enough. There are
two benefits of ensemble algorithms when they achieved good
performance with relatively small value of k. First, it will be
easier to tune this parameter for ensemble algorithms (since
we only need to search for a smaller range of values). Second,
this will help to reduce the computational time of ensemble
algorithms since we will only need to calculate the score for
each sample based on a smaller set. In the future, we will
quantitatively investigate this.
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Fig. 10. Overall Result on nine datasets
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Figure 10 also shows that SEQ-Ns are often much better
than SEQ-As when considering the average results on all tested
datasets. particularly, SEQ-Ns are much better than SEQ-As
when k is greater than 3. Moreover, we can see that SEQ-Ns
are the best algorithms among all tested algorithms and RADA
is the only algorithm that achieved the performance close to
SEQ-Ns.

Overall, the results in this section show that the proposed
ensemble method (SEQ-N) helps to improve the performance
of the previous version (SEQ-A) in detecting abnormal sam-
ples in the tested datasets. Moreover, SEQ-N also achieved the
best result among all tested algorithms including six individual
algorithms and four ensemble algorithms. Particularly, the
performance of SEQ-N is more robust and less sensitive to the
selection of the algorithm in the first phase than the previous
algorithm SEQ-A.

VI. CONCLUSION

In this paper, we have proposed a novel sequential ensemble
method (SEQ-N) for anomaly detection. The idea is using
an anomaly detection algorithm result to select a subset of
the dataset (Dref ) such that its members have the highest
probability to be normal samples. After that, a second algo-
rithm is used to calculate the final anomaly scores for all data
samples with reference to only Dref . The proposed algorithm
was tested on nine widely used datasets and compared with
the previous sequential ensemble algorithm by Zhao et al. [6]
and six individual algorithms. The experimental results show
that SEQ-N achieved the best results compared to all tested
algorithms based on a reliable performance metric (ROC
AUC).

There are some research areas for future work which arise
from this paper. First, we would like to evaluate the effect of
the sequential methods with different pair of base algorithms.
In this paper, we followed Zhao et al. [6] by selecting LOF
and COF for the first phase and RADA for the second phase of
the algorithm. However, the combination of other algorithms
including some recent reconstruction based methods [13], [14]
may give better performance of SEQ-N. Second, it will be
very interesting to study the effect of the size of Dref to the

effectiveness of SEQ-N. Last by not least, we want to test the
performance of SEQ-N on a wider range of datasets including
the datasets recently recommended by Campos et al. [12].
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