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Abstract: This study is concerned with outage performance analysis of a cognitive two-way relay system having a primary
network of one transmitter and multiple receivers over Nakagami-m fading channels. In the considered cognitive radio system,
the secondary network facilitates information exchange between source nodes with the aid of multiple decode-and-forward two-
way relays. In the presence of multiple relays, opportunistic relay selection is employed to obtain a relay with the best channel
quality for reliable information recovery. To analyse the performance of the considered cognitive radio system, exact and
asymptotic closed-form expressions of outage probability (OP) are derived in this study. The derived theoretical OP expressions
are in good agreement with related empirical values which show that using relays can enhance the performance of secondary
networks without sacrificing that of the primary network.

1 Introduction
Wireless multiple access has been extended from the frequency
dimension in the first generation (1G) of mobile communications
to the space dimension in 4G [1]. For 5G, a new multiple access
dimension has not been standardised yet and existing ones will be
exploited in more flexible and efficient fashions. Over the
frequency dimension, a more dynamic and intelligent alternative of
frequency division multiple access (FDMA) and orthogonal FDMA
is the principle of cognitive radio communications, where multiple
secondary (unlicenced) networks and a primary (licenced) network
can simultaneously access a common frequency band [2].

To maintain co-channel interference power below a tolerable
level in the licenced network, transmit signal powers in unlicenced
networks are limited to pre-determined thresholds. This in turn
reduces the coverage of unlicenced networks [3]. To extend the
coverage of unlicenced networks without sacrificing the licenced
network's performance, relaying nodes can be employed for adding
more space diversity to wireless links between source nodes [3, 4].
In particular, one-way relays can be used in secondary networks
and the resulting diversity gains have been verified by theoretical
and empirical values of outage performance [5]. However,
diversity gains of adding one-way relays to secondary networks
come at the expense of doubling the number of time slots used for
one round of information exchange between source nodes. This
results in a significant spectral efficiency loss in secondary
networks.

To alleviate the spectrum efficiency loss while maintaining
diversity gain, two-way relaying [6–10] can be deployed in
secondary networks as an alternative of one-way relaying. In
particular, Hatamnia et al. [6] considered a cognitive radio system
having a secondary network with a single two-way relay node.
Exact closed-form expressions of outage probability (OP)/symbol
error rate and their lower bounds were derived to analyse the
performance of the considered cognitive system over Nakagami-m
fading channels. Unlike [6] considering a single two-way relay,
Duy and Kong [7] addressed a cognitive radio system using
multiple two-way relay nodes in the secondary network.
Opportunistic relay selection is used to obtain a relay with the best
channel quality for information recovery in the system. The system
outage performance was analysed by using the derived closed-form

OP expression and its related empirical values [7]. Addressing the
problem of power allocation for multiple two-way relays,
Ubaidulla and Aissa [8] proposed an optimal scheme for power
allocation and relay selection that maximises the system
throughput under constraints on the secondary transmit power and
primary users' interference. Unlike [7, 8] analysing performance
metrics of OP and system throughput, Ben Fredj and Aissa [9]
derived the closed-form expression of average bit error rate in a
cognitive two-way relay system over Rayleigh fading channels.

Different from [6–9] considering only co-channel interference
from secondary networks to primary receivers, Zhang et al. [10]
investigated a cognitive two-way relay system with co-channel
interference from a primary transmitter to secondary receivers.
More specifically, exact and asymptotic expressions of the system
OP were derived to analyse the effect of the mutual interference
between the primary and secondary networks on the diversity
order. Considering a more general model than [10–12] evaluated
the system quality having many primary transceivers and derived
an optimal factor that creates zero-forcing beamforming [11, 12].
However, these analyses are only valid when the numbers of the
secondary relay nodes are more than the number of the primary
receivers. Considering a two-way cognitive system in the presence
of multiple primary users [13], the authors derive closed-form
expressions for the user OP. In [14], Nguyen et al. analyse the
impact of transceiver impairments on OP two-way cognitive
decode-and-forward (DF) relay network, in which the relay node is
self-powered by harvesting energy from the transmitted signals of
two terminal nodes.

Unlike existing studies [6–14] on performance analysis of
cognitive relay systems, the main contribution of this manuscript is
the consideration of multiple secondary two-way relays and
opportunistic relay selection in formulating the outage performance
of a secondary network over Nakagami-m fading channels. The
considered model in this paper can be used for a cognitive radio
system consisting of (i) multiple unlicenced networks and (ii) a
licenced cellular network of one base station and multiple mobile
stations (receivers) simultaneously sharing a common spectrum
band. More specifically, this paper derives exact and asymptotic
OP expressions in the secondary network having multiple two-way
relays over Nakagami-m fading channels under a given constraint
on co-channel interference power from the secondary network to
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multiple receivers in the primary network. Moreover, the outage
analysis in this manuscript is valid without any restriction on the
number of secondary relay nodes or primary receivers. The derived
theoretical OP expressions and related empirical values are in good
agreement which reveals several insights into effects of network
settings and power constraints on the performance of cognitive
two-way relay systems.

The remaining parts of this paper are organised as follows.
Section 2 introduces the considered cognitive two-way relay
system model. Detailed derivations of exact and asymptotic OP
expressions for analysing the considered system performance are
presented in Section 3. Section 4 provides numerical results of the
derived theoretical OP and related empirical ones to evaluate the
outage performance of the considered cognitive radio system.
Finally, Section 5 concludes this paper.

2 System model
In the considered cognitive radio system, the secondary network
consists of two source nodes (denoted by A and B) and N relays
(denoted by Ri with i = 1, 2, …, N). Sharing the same frequency
band with the secondary network, the primary network has a
primary transmitter denoted as T and L receivers denoted by Uk

with k = 1, 2, …, L as illustrated in Fig. 1. Like [15–17], this
manuscript assumes the distance between the primary transmitter
and the secondary network is far enough, so that the interference
from the primary network to the secondary network can be
negligible. In the considered system, it is assumed that there is no
direct link between node A and node B due to severe shadowing
and channel path loss. This paper assumes that each node in the
system is equipped with a single antenna. 

Wireless channels are assumed to be Nakagami-m flat fading.
hXY represents the channel gain of the X → Y link, where
X ∈ A, B, Ri  and Y ∈ A, B, Ri, Uk . More specifically, hXY is a
random variable having gamma distribution with parameters mXY
and ΩXY. As a result, the cumulative distribution function (CDF)
and probability density function (PDF) of hXY

2 can be written,
respectively, by

F|hXY|2(z) = 1 − Γ mXY, αXYz
Γ mXY

(1)

and

f hXY
2 z = αXY

mXY

Γ mXY
zmXY − 1 e−αXYz, (2)

where αXY = mXY/ΩXY.

Powers of transmit signals from nodes in the secondary network
are properly adjusted, so that co-channel interference powers at
primary receivers Uk do not exceed the peak power denoted by I p.
It is assumed that the maximum allowable transmit signal power at
nodes in the secondary network is denoted by Pm. The powers of
transmit signals from node A, node B and relay Ri are denoted by
PA, PB and PRi, respectively. Under the power constraints, the
transmit signal powers of node X, X ∈ A, B, Ri , in the secondary
network can be determined as follows:

PX = min Pm, I p
maxk = 1, 2, …, L hXUk

2 . (3)

In the considered secondary network, one round of information
exchange between node A and node B consists of three phases. In
the first phase, node A transmits its signal o all relay nodes. In the
second phase, node B transmits its signal to all relay nodes. The
instantaneous signal-to-noise ratios (SNRs) at the ith relay node in
the first and second phases can be written, respectively, by

γARi = hARi
2 min Pm, Ip

maxk = 1, 2, …, L hAUk
2 , (4)

and

γBRi = hBRi
2 min Pm, Ip

maxk = 1, 2, …, L hBUk
2 , (5)

where Pm = Pm/σ2, Ip = Ip/σ2 and σ2 is the variance of noise at
the receivers.

At the end of the second phase, all relays will decode the
received signals from A and B using selective DF. The set of relays
successfully decoding signals received from A is denoted by ℛA
and that from B is denoted by ℛB. The set of relays successfully
decoding signals received from both A and B is denoted by
ℛ = ℛA ∩ ℛB.

In the third phase, the SNRs at nodes A and B, denoted by γRiA
and γRiB, respectively, can be determined as follows:

γRiA =
hRiA

2PRi

σ2 (6)

and

γRiB =
hRiB

2PRi

σ2 . (7)

In the presence of multiple relaying nodes, the motivation of
selecting the most suitable relay with the best channel quality leads
to the principle of an opportunistic relay selection scheme which
provides the system with additional diversity gain. As compared to
exhaustive relay selection which finds an optimal subset of relay
nodes among all existing relays for optimising a certain system
performance metric (e.g. capacity, OP, signal-to-interference-plus-
NR, …) [18, 19], opportunistic relay selection offers a much lower
complexity at the expense of poorer performance.

Using an opportunistic relay selection scheme, a selected relay
denoted by Ri∗ will broadcast its encoded signal toward nodes A
and B. In particular, the selected relay Ri∗ is obtained as follows
[10]:

i∗ = arg max
i = 1, 2, …, n

γRi, (8)

where n is the cardinality of ℛ (i.e. n = |ℛ|) and

γRi = min γRiA, γRiB . (9)

Fig. 1  Cognitive two-way relay network with multiple primary receivers
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Using the fact that γRi are independent on each other, we can
write γRi∗ as

γRi∗ = max
i = 1, …, n

γRi . (10)

In the considered cognitive radio system, it is assumed that
channel state information (CSI) of wireless links is perfectly
known and perfect CSI can be exchanged among nodes in the
considered system via error-free zero-latency connections. Relay
selection can be performed by a distributed or centralised manner
[20, 21]. This paper considers a distributed process of relay
selection as follows. On the basis of the known CSI, all n relay
nodes calculate the channel quality in the third time slot. In
particular, the ith node will calculate γRi = min γRiA, γRiB . Then, in
each relay node, a countdown timer is activated from an initial
value which is determined by Ti = 1/γRi. As a result, for a relay
node having better channel quality, its initial value Ti is smaller and
its countdown timer quickly approaches to zero value. When a
countdown timer of a relay reaches to zero value that relay will
transmit signal to the other relays, so that they know that the
secondary network has already selected the best relay. At the same
time, other relays are switched to a receive mode for the next
selection process. For a mathematical representation, the
opportunistic relay selection can be expressed by (8) and (9).

In a cognitive relay system, one round of information exchange
between nodes A and B in a secondary network with conventional
one-way relays has four time slots. Unlike the conventional one-
way relays, two-way relays for an information exchange round
between A and B using three time slots are considered in this
paper. Under the considered opportunistic relay selection, during
each time slot (either in the conventional one-way relaying or in
the considered two-way relaying), only one node (A or B or Ri)
transmits signal whose power is bounded, so that corresponding
co-channel interference powers at primary receivers do not exceed
the peak power I

~
p. As a result, adding conventional one-way or

two-way relay nodes in the secondary network does not affect the
performance of the primary network. In addition, adding relays to
the secondary network produces an additional diversity gain which
translates into performance enhancement of the secondary network.
Hence, conventional one-way or two-way relays can enhance the
performance of the secondary networks without degrading that of
the primary network.

3 OP formulation
3.1 Exact expression of OP

This section derives a closed-form expression of OP in the
secondary network over Nakagami-m fading channels. It is noted
that the number of successfully decoding nodes in the first phase is
a discrete random number. As a result, the probability of the event
ℛA = nA with nA ∈ 0, 1, 2, …, N  is computed as follows:

Pr ( |ℛA| = nA)

= N
nA

Pr ∩
i ∈ ℛA

γARi ≥ γth , ∩
i ∉ ℛA

γARi < γth . (11)

Since all wireless channel links are assumed to be statistically
independent, one can have

Pr ( |ℛA| = nA)

= N
nA

1 − FγARi
γth

nA FγARi
γth

N − nA, (12)

where γth is the outage SNR threshold and FγARi
(γ) denotes the CDF

of γARi.
Similar to the above computations for the first phase,

Pr ( |ℛB | = nB) for the second phase can be determined by

Pr ( |ℛB| = nB)

= N
nB

Pr ∩
i ∈ ℛB

γBRi ≥ γth , ∩
i ∉ ℛB

γBRi < γth

= N
nB

1 − FγBRi
γth

nB FγBRi
γth

N − nB .

(13)

At the end of the second phase, a selected relay is obtained from
the intersection of two sets ℛA and ℛB. Let us define n = ℛ , then
we have n ≤ nA, n ≤ nB. For the sake of simplicity and without
loss of generality, it is assumed that

ℛA = R1, R2, …, Rn, Rn + 1, …, Rn + tA , (14)

ℛB = R1, R2, …, Rn, Rn + tA + 1, …, Rn + tA + tB , (15)

ℛ = R1, R2, …, Rn , (16)

where 0 ≤ tA ≤ N − n and 0 ≤ tB ≤ N − n − tA.
For a given combination of (n, tA, tB), we shall have

N
n

N − n
tA

N − n − tA
tB  instances having n relay nodes decoding

successfully both from node A and node B, where tA is the number
of nodes successfully decoding from only node A and tB is that
from only node B. On the basis of the theorem of total probability,
we have

OP = ∑
n = 0

N
Pr ℛ = n Pr γRi∗ < γth . (17)

The following theorem provides a closed-form expression of OP.
 
Theorem 1: Over Nakagami-m fading channels, the system OP

is expressed by a closed-form expression as follows:

OP = ∑
n = 0

N

∑
tA = 0

N − n

∑
tB = 0

N − n − tA N
n

N − n
tA

N − n − tA
tB

× 1 − FγARi
γth

n + tA FγARi
γth

N − n − tA

× 1 − FγBRi
γth

n + tB FγBRi
γth

N − n − tB

× FγRi
γth

n,

(18)

where FγARi
γ , FγBRi

γ  and FγRi
(γth) are given by (19)–(21),

respectively.

FγARi
γ = FXai

γ
Pm

FXak ε + 1 − FXak ε

− ∑
u1 = 0

L − 1 L − 1
u1

−1 u1 ∑
l1, l2, …, lmak ≥ 0

l1 + l2 + ⋯ + lmak = u1

u1!
l1!l2!…lmak!

× ∏
w1 = 0

mak − 1 αak
w1

w1!

lw1 + 1
Lαak

mak

Γ mak
∑

s1 = 0

mai − 1 αaiγ /Ip
s1

s1!

×
Γ mak + l

~
ak + s1, u1 + 1 αak + αaiγ /Ip ε

u1 + 1 αak + αaiγ /Ip
mak + l

~
ak + s1

.

(19)
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FγBRi
γ = FXbi

γ
Pm

FXbk ε + 1 − FXbk ε

− ∑
u2 = 0

L − 1 L − 1
u2

−1 u2 ∑
l1, l2, …, lmbk ≥ 0

l1 + l2 + ⋯ + lmbk = u2

u2!
l1!l2!…lmbk!

× ∏
w2 = 0

mbk − 1 αbk
w2

w2!

lw2 + 1
Lαbk

mbk

Γ mbk
∑

s2 = 0

mbi − 1 αbiγ /Ip
s2

s2!

×
Γ mbk + l

~
bk + s2, u2 + 1 αbk + αbiγ /Ip ε

u2 + 1 αbk + αbiγ /Ip
mbk + l

~
bk + s2

.

(20)

(see (21)) .
 
Proof: To obtain OP, we need to calculate FγARi

(γth), FγBRi
(γth)

and FγRi
(γth). We first consider FγARi

(γ) which can be written as

FγARi
γ = Pr γARi < γ

= Pr hARi
2 min Pm, Ip

maxk = 1, 2, …, L hAUk
2 < γ .

(22)

For notational simplicity, we introduce Xai = hARi
2, Xia = hRiA

2,
Xak = maxk = 1, 2, …, L hAUk

2, Xip = maxk = 1, 2, …, L hRiUk
2,

ε = (Ip/Pm), the CDF of γARi can be rewritten as

FγARi
γ = Pr Xai < γ

Pm
, Xak < ε

+ Pr Xai < γXak
Ip

, Xak > ε .
(23)

It is noted that Xak is the maximum of L independent and
identically distributed gamma random variables. The following
corollary will be useful in deriving the CDF and PDF of γARi.

 
Corollary 1: Let Z be the maximum of L i.i.d. gamma random

variables Zi, i = 1, 2, …, L  with parameters mz and αz. The CDF
and PDF of the random variable Z are given, respectively, by

FZ z = ∑
u = 0

L L
u −1 u ∑

l1, l2, …, lmz ≥ 0
l1 + l2 + ⋯ + lmz = u

u!
l1!l2!…lmz!

× ∏
w = 0

mz − 1 αz
w

w!

lw + 1

zl
~

z e−αzuz,

(24)

and

f Z z = ∑
u = 0

L − 1 L − 1
u −1 u ∑

l1, l2, …, lmz ≥ 0
l1 + l2 + ⋯ + lmz = u

u!
l1!l2!…lmz!

× ∏
w = 0

mz − 1 αz
w

w!

lw + 1

zmz + l
~

z − 1 e− u + 1 αzz,

(25)

where l
~

z = ∑w = 0
mz − 1 wlw + 1, n

k =Δ n!/(k! n − k !) and 0 ≤ k ≤ n.
 
Proof: See [22]. □
On the basis of (22) and Corollary 1, we have

FγARi
= FXai

γ
Pm

FXak ε

+ ∫
ε

∞∫
0

(γ /Ip)xak

f Xai

γxak
Ip

f Xak xak dxai dxak

= FXai
γ

Pm
FXak ε + 1 − FXak ε

−∫
ε

∞
Γ mai,

αaiγxak /Ip
Γ mai

f Xak xak dxak .

(26)

Using [23, Eq. (8.352.2)] to expand the incomplete gamma
function as a finite sum, the integral in (26) is computed as

∫
ε

∞
Γ mai,

αaiγxak /Ip
Γ mai

f Xak xak dxak

= ∫
ε

∞
mai − 1 ! 1

Γ mai
e−αaiγxak /Ip ∑

s1 = 0

mai − 1 αaiγxak /Ip
s1

s1!

× ∑
u1 = 0

L − 1 L − 1
u1

−1 u1 ∑
l1, l2, …, lmak ≥ 0

l1 + l2 + ⋯ + lmak = u1

u1!
l1!l2!…lmak!

× ∏
w1 = 0

mak − 1 αak
w1

w1!

lw1 + 1
Lαak

mak

Γ mak
xak

mak + l
~

ak − 1 e− u1 + 1 αakxak dxak,

(27)

where l
~

ak = ∑w1 = 0
mak − 1 w1lw1 + 1.

With the help of [23, Eq. 3.351.2] and using the fact that γARi

and γBRi take the same form, the CDFs of γARi and γBRi are derived
by (19) and (20), respectively, where Xbk = maxk = 1, 2, …, L hBPk

2,
l
~

bk = ∑w2 = 0
mbk − 1 w2lw2 + 1.

Having FγARi
γ  and FγBRi

γ  at hands, we are now in a position
to derive the CDF of γRi γ = min (γRiA, γRiB). It is noted that γRiA
and γRiB are correlated due to the common random variable Xip.
Using the conditional probability, we can write the CDF of γRi as
follows:

FγRi
(γ) = ∫

0

∞
FγRi | Xip(γ) f Xip(xip) dxip (28)

FγRi
γ = 1 −

Γ mia,
αiaγ
Pm

Γ mia

Γ mib,
αibγ
Pm

Γ mib
1 − Γ mip, αipε

Γ mip

L

− ∑
wa = 0

mia − 1 αiaγ /Ip
wa!

wa

∑
wb = 0

mib − 1 αibγ /Ip
wb!

wb

∑
u3 = 0

L − 1 L − 1
u3

× −1 u3 ∑
l1, l2, …, lmip

≥ 0
l1 + l2 + ⋯ + lmip = u3

u3!
l1!l2!…lmip!

∏
w3 = 0

mip − 1 αip
w3

w3!

lw3 + 1
Lαip

mip

Γ mip

×
Γ wa + wb + l

~
ip + mip, αia + αib

Ip
γ + u3 + 1 αip ε

αia + αib γ /Ip + u3 + 1 αip
wa + wb + l

~
ip + mip

.

(21)
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where FγRi | Xip(γ) is given by

FγRi | Xip(γ) = 1 − Pr γRiA > γ Xip Pr γRiB > γ Xip

= 1 − 1 − FγRiA Xip
γ 1 − FγRiB Xip γ .

(29)

From (6) and (7), we can easily find the following:

FγRiA| Xip(γ) =
FXia

γ
Pm

for Xip < ε

FXia
γ
Ip

Xip for Xip > ε
(30)

and

FγRiB| Xip(γ) =
FXib

γ
Pm

for Xip < ε

FXib
γ
Ip

Xip for Xip > ε
. (31)

On the basis of the above equations, (29) can be represented by the
following form:

FγRi
γ = ∫

0

ε
FγRi Xip

(γ) f Xip xip dxip

I1

+∫
ε

∞
FγRi Xip

(γ) f Xip xip dxip

I2

.
(32)

To obtain FγRi
γ , we need to derive I1 and I2. We first consider

I1, which can be computed by

I1 = ∫
0

ε
1 − 1 − FXia

γ
Pm

1 − FXib
γ

Pm
f Xip xip dxip

= ∫
0

ε
f Xip xip dxip

− Γ mia, αiaγ /Pm
Γ mia

Γ mib, αibγ /Pm
Γ mib

1 − Γ mip, αipε
Γ mip

L
.

(33)

For I2, we have

I2 = ∫
ε

∞
1 − Γ mia, αiaγxip/Ip

Γ mia

Γ mib, αibγxip/Ip
Γ mib

× f Xip xip dxip

(34)

Using Corollary 1 and [23, Eq. (8.352.2)] to expand the
incomplete gamma function as a finite sum, I2 can be computed by

I2 = ∫
ε

∞
f Xip xip dxip

−∫
ε

∞
∑

wa = 0

mia − 1 αiaγ /Ip
wa!

wa

∑
wb = 0

mib − 1 αibγ /Ip
wb!

wb

× ∑
u3 = 0

L − 1 L − 1
u3

−1 u3 ∑
l1, l2, …, lmip ≥ 0

l1 + l2 + ⋯ + lmip = u3

u3!
l1!l2!…lmip!

× ∏
w3 = 0

mip − 1 αip
w3

w3!

lw3 + 1
Lαip

mip

Γ mip
xip

wa + wb + mip + l
~

ip − 1

× e− αia + αib γ /Ip + u3 + 1 αip xip dxip,

(35)

where l
~

ip = ∑w3 = 0
mip − 1 w3lw3 + 1.

Observing I1 and I2, we note that
∫0

ε f Xip xip dxip + ∫ε
∞ f Xip xip dxip = 1. In addition, using the identity

[23, Eq. (8.352.2)] for the second integral in (35), after tedious
manipulations, we can obtain the closed-form expression for FγRi

γ
as in (21), which also completes the proof. □

In the next sections, we will derive the asymptotic expression of
OP at high and low SNR regimes to give insights. By considering
two cases of Pm ≪ I p and Pm ≫ I p, we have

PX = min Pm, I p
maxk = 1, 2, …, L hXUk

2

⋍
Pm, Pm ≪ I p

Ip
maxk = 1, 2, …, L hXUk

2 , Pm ≫ I p
,

(36)

where X = {A, B, Ri}.

3.2 Asymptotic expression of OP at high SNR regime

For the case of Pm ≪ I p, we adopt PA = PB = PRi = Pm for
analysis simplicity leading to

γARi = Pm hARi
2, γBRi = Pm hBRi

2,
γRiA = Pm hRiA

2, γRiB = Pm hRiB
2 .

(37)

We can easily compute the CDF of γARi at high SNR as follows:

FγARi
∞ γ = Pr Pm hARi

2 < γ = 1 − Γ mai, ((αaiγ)/Pm)
Γ mai

. (38)

Similarly, we have the CDF of γBRi given by

FγBRi
∞ γ = F hBRi

2 γ
Pm

= 1 − Γ mbi, ((αbiγ)/Pm)
Γ mbi

. (39)

The CDF of γRi at high SNR, FγRi
∞ can be computed as

FγRi
∞ γ ⋍ Pr min Pm hRiA

2, Pm hRiB
2 < γ

= Pr min hRiA
2, hRiB

2 < γ
Pm

.
(40)

It is noted here that hRiA
2 and hRiB

2 are independent of each other.
Hence, with the help of [24, Eq. (6-81)], we have

FγRi
∞ γ = F hRiA

2 γ
Pm

+ F hRiB
2 γ

Pm

−F hRiA
2 γ

Pm
F hRiB

2 γ
Pm

= 1 − Γ mia, ((αiaγ)/Pm)
Γ mia

Γ mib, ((αibγ)/Pm)
Γ mib

.

(41)

Substituting (38), (39) and (41) into (18), we obtain an
asymptotic closed-form expression of the system OP at high SNR
regime as shown in (42) at the top of the next page.
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OP∞ = ∑
n = 0

N

∑
ta = 0

N − n

∑
tb = 0

N − n − ta N
n

N − n
ta

N − n − ta
tb

× Γ mai, ((αaiγ)/Pm)
Γ mai

n + ta

× 1 − Γ mai, ((αaiγ)/Pm)
Γ mai

N − n − ta

× Γ mbi, ((αbiγ)/Pm)
Γ mbi

n + tb
1 − Γ mbi, ((αbiγ)/Pm)

Γ mbi

N − n − tb

× 1 − Γ mia, ((αiaγ)/Pm)
Γ mia

Γ mib, ((αibγ)/Pm)
Γ mib

n
.

(42)

3.3 Asymptotic expression of OP at low SNR regime

On the basis of (36), the transmit signal powers of the secondary
nodes in low SNR regime Pm ≫ I p  can be determined as
follows:

PX = I p
maxk = 1, 2, …, L hXUk

2 , (43)

where X ∈ A, B, Ri .
Noting that if Pm ≫ I p then ε → 0. Furthermore, according to

the definition of the incomplete gamma function as
Γ α, x = ∫x

∞e−ttα − 1 dt [23, Eq. (8.350.2)], we can see that if x → 0,
then Γ α, x → Γ α, 0 = Γ α . For α being a positive integer, with
the help of [23, Eq. (8.339.1)], i.e. Γ α = α − 1 !, we have

Γ mak + l
~

ak + s1, u1 + 1 αak + αaiγ /Ip ε

⋍
ε → 0

mak + l
~

ak + s1 − 1 !
(44)

and

FXak ε ⋍
ε → 0

0. (45)

From the CDF of γARi in (26), we can derive the asymptotic
expression of the CDF for γARi at low SNR regime, FγARi

0 γ , as
shown by (46). Using the same approximation method as for (46),
we also obtain the asymptotic CDF expressions of γBRi and γRi, i.e.
FγBRi

0 γ  and FγRi

0 γ , as shown in (47) and (48), respectively. Finally,
substituting (46)–(48) into (18), we obtain a more simplified
expression of the OP at low SNR regime

FγARi

0 γ = 1 − ∑
u1 = 0

L − 1 L − 1
u1

−1 u1 ∑
l1, l2, …, lmak ≥ 0

l1 + l2 + ⋯ + lmak = u1

u1!
l1!l2!…lmak!

× ∏
w1 = 0

mak − 1 αak
w1

w1!

lw1 + 1
Lαak

mak

Γ mak
∑

s1 = 0

mai − 1 αaiγ /Ip
s1

s1!

×
mak + l

~
ak + s1 − 1 !

u1 + 1 αak + αaiγ /Ip
mak + l

~
ak + s1

.

(46)

FγBRi

0 γ = 1 − ∑
u2 = 0

L − 1 L − 1
u2

−1 u2 ∑
l1, l2, …, lmbk ≥ 0

l1 + l2 + ⋯ + lmbk = u2

u2!
l1!l2!…lmbk!

× ∏
w2 = 0

mbk − 1 αbk
w2

w2!

lw2 + 1
Lαbk

mbk

Γ mbk
∑

s2 = 0

mbi − 1 αbiγ /Ip
s2

s2!

×
mbk + l

~
bk + s2 − 1 !

u2 + 1 αbk + αbiγ /Ip
mbk + l

~
bk + s2

.

(47)

(see (48)) .
In a cognitive system, imperfect CSI (due to channel estimation

error) incurs an erroneous transmit power adjustment at nodes in
the secondary network. Therefore, increasing channel estimation
error leads to an increase in the probability of the event that co-
channel interference from the secondary network to primary
receivers exceeds the peak power Ip. As a result, CSI imperfection
degrades the performance of the primary network. In the secondary
network, channel estimation error also degrades the performance of
coherent detection (at nodes A, B and Ri) and relay selection. A
detailed formulation of the performance degradation due to
imperfect channel estimation can be considered as a future work of
this paper.

4 Numerical results
This section provides numerous numerical results to verify the
derivations of OP expressions and analyse the performance of the
considered cognitive radio system. For the system model, it is
assumed that all nodes are located on a two-dimensional plane and
the distance between two primary source nodes is normalised to
one. Without loss of generality, we set coordinates of nodes as
follows: A(0,0), B(1,0), Uk(0.5,1) and Ri(0.5, 0) ∀i, k. Taking into
account channel path loss, we consider αXY = dXY

−η , where dXY is the
physical distance between nodes X and Y and η is the path loss
exponent. In the simulated system settings, we set η = 3 and
γth = 7. In figures of numerical results, curves of numerical OP
values obtained by (i) an exact theoretical expression, (ii) an
asymptotic expression in low SNRs, (iii) an asymptotic expression
in high SNRs and (iv) simulations are made legend by ‘exact’,
‘asym-low’, ‘asym-high’ and ‘simulation’, respectively.

Fig. 2 shows theoretical and empirical OP values of the
secondary network with the simulated system parameters as
follows mia = 1, mib = 3, map = 3, mip = 2, mbp = 1, L = 3 and Pm
= 10 dB. As observed, theoretical OP values and related empirical
ones are in good agreement which verifies the derivations of OP
expressions in this paper. As observed, when increasing Ip to a
certain value, the secondary network's OP will approach to
irreducible floor values corresponding to different numbers of relay
nodes N. This is due to the fact that when Ip is large enough,
transmit powers of secondary nodes are upper bounded by the
power constraint Pm. In addition, adding more relay nodes in the
secondary network will reduce the floor OP values. In other words,
increasing the number of relays N produces more diversity gains to
enhance the OP performance of the considered system. 

Fig. 3 shows the OP performance of the secondary network
under different numbers of receivers in the primary network. As
can be seen, when Ip is smaller than 16 dB, increasing the number
of primary receivers will degrade the performance of secondary
networks. More specifically, adding more receivers in the primary

FγRi

0 γ = 1 − ∑
wa = 0

mia − 1 αiaγ /Ip
wa!

wa

∑
wb = 0

mib − 1 αibγ /Ip
wb!

wb

∑
u3 = 0

L − 1 L − 1
u3

−1 u3 ∑
l1, l2, …, lmip

≥ 0
l1 + l2 + ⋯ + lmip = u3

u3!
l1!l2!…lmip!

× ∏
w3 = 0

mip − 1 αip
w3

w3!

lw3 + 1
Lαip

mip

Γ mip

wa + wb + l
~

ip + mip − 1 !
αia + αib γ /Ip + u3 + 1 αip

wa + wb + l
~

ip + mip
.

(48)
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network will increase the probability of having a co-channel
interference link (from a secondary node to a primary receiver)
with a large channel gain. According to (3), large channel gains of
interference links result in small transmit powers at secondary

nodes. In other words, increasing the number of primary receivers
likely induce an increase in OP of the secondary network.
However, when Ip is greater than a certain value (e.g. 16 dB), the
performances of secondary networks do not depend on the number
of primary receivers. In fact, when Ip is large enough, the
secondary network's performance mainly depends on the transmit
power constraint of secondary nodes (i.e. Pm). 

To investigate the effect of transmit power constraint at
secondary nodes on the system performance, Fig. 4 provides
several curves of OP values versus Pm under different numbers of
relay nodes N. In this figure, the simulated system settings are as
follows: mia = 1, mib = 3, map = 3, mip = 2, mbp = 1, L = 3 and Ip
= 10 dB. As observed, when transmit power constraint Pm is large
enough, the outage probabilities are approaching irreducible floors
whose values depend on the tolerable interference power level Ip at
primary receivers. As observed, the irreducible OP floor value can
be reduced by adding more relay nodes (having more diversity
gain) to the secondary network. 

5 Conclusion
This paper studied the outage performance of a cognitive two-way
DF relay system with multiple primary receivers and multiple two-
way relays in secondary networks over Nakagami-m fading
channels. The exact and asymptotic closed-form OP expressions
were formulated and verified by empirical OP performance. The
analytical and empirical OP values show that an increase in the
number of primary receivers results in performance degradation of
secondary network, which can be alleviated by adding more relay
nodes to secondary networks.
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