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Abstract

Water body mapping is an important application of optical remote sensing. Methods for classifying water

bodies using multispectral image data have been successfully developed for water resource monitoring and

management. However, in most cases, these traditional methods provide only partial automation capabilities.

In this study, we propose a new spectral-pattern-analysis-based (SPAB) method for water body extraction using

simplified spectral patterns (SSPs). Simplified spectral patterns are a generalized transformation of spectral pat-

terns from analogue to digital format, realized by nonrepetitive pairwise comparison of reflectance values

between two bands. Simplified spectral patterns allow for the direct incorporation of spectral patterns into the

recognition process. The advantage of this method compared to traditional methods is that the SPAB method

allows automation of water body classification using an SSP database. In this study, we selected a mountainous

region in central Vietnam and southern Laos as a study site. Four Landsat 8 OLI scenes from 2015 and four

Landsat 7 ETM1 scenes from 2001 and 2002 were used. The results of our proposed method were compared

with visual interpretation, normalized differential water index (NDWI) thresholding, and the Global Inland

Water (GIW) dataset provided by the Global Land Cover Facility of the University of Maryland. It is concluded

that the classification results of the SPAB method agree by more than 98.0% with NDWI results for Landsat

8 OLI images, and by more than 95.0% with the GIW dataset for Landsat 7 ETM1 images.

Water bodies are important components of Earth’s envi-

ronment. They reserve water for use in agriculture, power gen-

eration, and daily human consumption. Timely and accurate

information of the extent of water bodies is important for

many applications, including flood prediction, monitoring,

and relief, wetland mapping, and the evaluation of water

resources (Smith 1997; Tholey et al. 1997; Livingston et al.

2000). Especially, monitoring water body changes over

Tibetan Plateau can provide us many important information

about climate change since lakes and other water bodies in

this area is minimally disturbed by human activities and their

information can be used as key indicator of climate change

and climate variability (Song et al. 2014; Zhang et al. 2017b).

Remote sensing data are considered an important infor-

mation source for water surface mapping and are used in the

extraction of water body extent and the analysis of temporal

changes (Papa et al. 2010). With the integration of geospatial

data, remote sensing techniques provide sophisticated data

for studying issues related to water resource, for example,

flood hazards and changes in surface water (Haas et al. 2009;

Ji et al. 2009; Gardelle et al. 2010; Proud et al. 2011).

There are four basic types of open water body classification

methods (Ji et al. 2009; Feyisa et al. 2014): (1) Thematic classi-

fication, (2) Linear unmixing, (3) Single-band thresholding,

and (4) Two-band spectral water indices (McFeeters 1996; Xu

2006; Zhanget al. 2017a).

Some scientists have proposed combining various meth-

ods, including geospatial analysis, to improve water extrac-

tion accuracy (Sheng et al. 2008; Verpoorter et al. 2012;

Jiang et al. 2014). The use of single-band or two-band

methods for water extraction is common because of their

ease of application (Ryu et al. 2002). Even though there are a*Correspondence: duong.nguyen2007@gmail.com
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number of methods for water body extraction detailed in the

literature, the selection of a particular technique depends on

many factors such as accuracy requirements, purpose of the

application, and availability of resources (remote sensing

data, ancillary information, and human resources).

The need for automated water classification over large areas

has recently become urgent, but published algorithms are

either too complicated or need substantial ancillary data. For

example, automated mapping of inland surface water based

on atmospherically corrected reflectance, topographic indices,

and prior coarse-resolution water layers was applied to the

Global Land Survey collection of Landsat images (Feng et al.

2016). This required computation of the normalized differen-

tial vegetation index (NDVI), the normalized differential water

index (NDWI), and the modified NDWI, as well as application

of a predetermined threshold of these indices. Another algo-

rithm, which was recently used to study surface water dynam-

ics in the North American high northern latitudes, was based

on a decision tree with multiple Landsat data converted from

radiance to surface reflectance (Carroll et al. 2016). Each Land-

sat scene was processed through a decision tree classification

to generate six land cover classes: water, vegetated land, bare

ground, snow/ice, cloud, and cloud shadow.

Spectral pattern analysis has been in use for many years

in the analysis of multispectral data (Zhang and Sriharan

2005). The basis of spectral pattern analysis is the use of a

reference spectral library or reference endmembers selected

from the image. Popular spectral analysis methods include

Spectral Feature Fitting, Spectral Angle Mapper, or binary

encoding classification (Zhang and Sriharan 2005; Canty

2014). A common feature of these methods is the direct use

of spectral values for computation, which is typically com-

plex and resource demanding, and cannot adequately exploit

the graphical characteristics of the spectral reflectance curve,

such as shape or modulation, required for classification.

Modulation of the spectral pattern of water has been pro-

posed for water body classification (Duong 2012). In this

method, four spectral bands (green, red, near infrared, and short-

wave infrared bands) are used to assess the spectral pattern of

open water, and the pattern is combined with the ratios of green

to short-wave infrared or red to short-wave infrared to extract

the water body. The procedure is not fully automated because

threshold values can change both spatially and temporally.

In this paper, we introduce a novel spectral-pattern-analysis-

based (SPAB) method for automated water body extraction. In

contrast to traditional spectral analysis methods, the proposed

method uses geometrical characteristics of the spectral pattern,

such as modulation, for water classification so that computa-

tion is significantly simplified and overall performance is fun-

damentally improved. This method relies on a simplified

spectral pattern concept, described by Duong in Decomposi-

tion of Landsat 8 OLI Images by Simplified Spectral Patterns

(unpubl.), applied to the Landsat TM/ETM1 and OLI reflective

bands. We conducted an experiment using eight Landsat 7

ETM1 and Landsat 8 OLI scenes (Table 1) that cover the study

area. To evaluate the reliability of the proposed method, we

compared our results with visual interpretations, the NDWI,

and the Global Inland Water (GIW) dataset for the study area.

The comparison with the NDWI was performed using Landsat

8 OLI scenes while the comparison with the GIW dataset was

performed using Landsat 7 ETM1 images. The GIW dataset

(Feng et al. 2016) was downloaded from the Global Land Cover

Facility website (http://glcf.umd.edu/data/watercover/). The

proposed method allows the processing of multiple time series

image data and the classification of water types by different sim-

plified spectral patterns (SSPs). It improves on previous methods

in faster processing and simpler classification procedure. This

method lays the foundation for rapid water body monitoring

over large areas covered by multiple Landsat scenes.

Materials and procedures

Study area

The study area is located in the central part of Vietnam and

southern Laos (Fig. 1). The terrain is rugged, steep, and

Table 1. Image data used in this study.

Dataset Scene ID Date of observation Land cloud cover (%)

Landsat image data LC81240492015161LGN00 10/06/2015 1.73

LC81250492015024LGN00 24/01/2015 0.35

LC81240502015065LGN00 6/03/2015 2.95

LC81250502015104LGN00 14/04/2015 0.13

LE71240492001082SGS00 23/03/2001 1.0

LE71240502001290EDC00 17/10/2001 6.0

LE71250492001329SGS00 25/11/2001 6.0

LE71250502002044SGS00 13/02/2002 0.0

Global Inland Water dataset p124r049_WC_20010323.TIF 23/03/2001 1.0

p124r050_WC_20011017.TIF 17/10/2001 6.0

p125r049_WC_20011125.TIF 25/11/2001 6.0

p125r050_WC_20020213.TIF 13/02/2002 0.0
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Fig. 1. Location of the study area in Vietnam and major inland water body types. (a) Location of the study area in central Vietnam and southern

Laos, (b) Footprints of Landsat scenes with path/row numbers of 124/49, 124/50,125/49, and 125/50, (c) DEM of the study area, (d) artificial water
reservoir, (e) river, and (f) natural lake.
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mountainous with extremely high elevation differences

(2000 m) over a relatively small region. In this area, the climate

has two distinct seasons: dry and rainy. The rainy season lasts 3

months from September to December and the dry season lasts

from January to August. Cultivation of two rice crops forms the

major agricultural component in the part of the study area in

Vietnam, while only one rice crop is cultivated in the study area

in Laos. Water bodies in the study area include artificial reser-

voirs, natural lakes, streams and rivers, and submerged low land

functioning as water reservoirs (Fig. 1). The water level is not sta-

ble and varies throughout the year according to the season.

Materials

Four Landsat 8 OLI scenes with different acquisition times

from the first half of 2015 were used for the study (Table 1).

Cloud coverage in these scenes is low and mostly affects the

sea and high mountain areas. Four Landsat 7 scenes with the

same path/row number, used to develop the GIW dataset,

were selected to achieve results that could be compared to

those of the GIW dataset (Feng et al. 2016). Pseudo natural

color composites have been used to illustrate our research

(Fig. 2), which give clear distinctions between land

and water surfaces and provide a suitable means for visual

inspection of the subsequent classification.

Procedures

We introduce a new method for water classification using

the shape of spectral patterns, which has previously received

little attention. The mathematic background of our proposed

method builds on the application of SSPs. An SSP is a

Fig. 2. Pseudo natural color composite of Landsat 8 OLI, Landsat 7 ETM1 scenes, and four Global Inland Water (GIW) dataset scenes: (a) LC81250492015024LGN00,

(b) LC81240492015161LGN00, (c) LC81250502015104LGN00, (d) LC81240502015065LGN00, (e) LE71250492001329SGS00, (f) LE71240492001082SGS00, (g)
LE71250502002044SGS00, (h) LE71240502001290EDC00, (i) p124r049_WC_20010323.tif, (j) p124r050_WC_20011017, (k) p125r049_WC_20011125.tif, and (l)
p125r050_WC_20020213. In the GIW dataset, blue represents surface water, light gray represents land, and dark gray represents cloud.
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transformation of the full spectral pattern into a simplified

digital form, which allows direct incorporation of the spec-

tral pattern into the classification. The SSP is constructed by

nonrepetitive pairwise comparison of reflectance values

between two bands of the same image (Charalambides

2002). Given a pixel value vector B6 5 {b1,b2,b3,b4,b5,b6},

where b1, b2,. . .,b6 denote top of atmosphere (TOA) reflec-

tance of bands 2, 3, 4, 5, 6, and 7 of OLI, and bands 1, 2, 3,

4, 5, and 7 of ETM1 sensor, respectively, the simplified spec-

tral pattern is defined by a new 15 digit vector, shown in

Eq. 1.

where mi,j is the result of comparison between the reflec-

tance of bi and bj and has values of 0 (if bj<bi.), 1 (if bj 5 bi),

or 2 (bj> bi). An example of SSP construction is presented in

Fig. 3.

The construction of SSPs for a given image is performed

for pixels that have valid digital numbers without saturated

values. To perform an automated classification of water bod-

ies using TOA reflectance, we first developed an SSP database

for various water body types. Development of the SSP data-

base was realized by interactive visual inspection using a spe-

cial software tool. A pixel of water area was selected for SSP

construction and the remaining pixels in the image with

similar SSPs were rendered by a given color. If the SSP being

assessed accurately depicts a water area, it is added to the

SSP database.

Due to slight differences in spectral characteristics of sen-

sors TM, ETM1, and OLI, we need to develop different data-

bases of SSPs for each sensor and apply them correspondingly

during classification.

In some cases, topographic and cloud shadows have spec-

tral characteristics similar to water, complicating water classifi-

cation (Liao et al. 2014; Carroll et al. 2016; Feng et al. 2016).

When using SSPs for experimental water mapping, we found

that cloud and topographic shadow affected only some SSPs of

water. To separate water bodies from shadows with the same

SSP, we used the total reflected radiance index (TRRI) from

Duong (1998), using Eq. 2.

TRRI5

Ð n
1 IiDÐ n

1 ImaxD
(2)

where Ii is the reflectance of band I, n is the number of

spectral bands, Imax is the maximal reflectance for a given

quantization level, and D is the spectral band difference.

In this research, we computed the TRRI based on red,

green, and blue bands using a simplified Eq. 3:

TRRIrgb5
br12bg1bb

� �
2

(3)

where br, bg, and bb stand for the TOA reflectance of the red,

green, and blue bands, respectively.

Two methods were used to validate our proposed method:

visual interpretation and water extraction using the NDWI.

Finally, the results of our method were compared to the

GIW dataset provided by the Global Land Cover Facility of

the University of Maryland.

Assessment

Simplified spectral patterns of water bodies

In nature, open water is composed of water of highly

variable quality. This includes clear water with very low lev-

els of contamination, turbid water with organic or inor-

ganic particles, and water with different levels of nutrient

richness (i.e., eutrophic, oligotrophic, or mesotrophic

water). Each water type presents a typical spectral pattern

associated with a particular SSP. By visual inspection, we

identified six SSPs from Landsat 8 OLI and nine SSPs from

Landsat 7 ETM1, representative of different water types in

the study area. Five common SSPs were observed for both

sensors (Fig. 4).

Simple spectral patterns 1 and 7 are associated with water

spreading over the sea, reservoirs, lakes, and parts of rivers

where water is sufficiently clear and deep that there is no

bottom reflectance. The spectral pattern of this water shows

a gradual decreasing trend from the blue region to the short-

wave infrared region without any local maximum. Simple

spectral patterns 2, 5, 8, and 10 have a local maximum in

the near infrared band. This maximum value may be affected

Fig. 3. Example of a transformation of the spectral pattern into a sim-
plified spectral pattern. The curve line on the left site shows full spectral

pattern of the given pixel value vector and the fifteen digits on the right
site is the simplified spectral pattern.
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by the existence of submerged aquatic vegetation along the

beach of water bodies or a high concentration of algae. Sim-

ple spectral pattern 3 has a local maximum in the green

band and a relatively high reflectance in the red band. This

characteristic denotes high turbidity of water. Water display-

ing SSP 3 is distributed in some parts of rivers and natural

ponds. Water displaying SSP 4, 6, or 9 has a local maximum

in the red band and relatively high reflectance in the blue,

green, and red bands. This type of water does not cover large

areas and may be associated with a type of turbid water. In

some cases, it could be the result of a spectral mixture of

water and other ground-based objects.

Fig. 4. Simplified spectral patterns from ETM1 and OLI sensors for different water types in the study area.
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Algorithm for automated water body extraction

We propose an algorithm for automated water body extrac-

tion, which is schematically presented in Fig. 5. The algorithm

was implemented in a software module using the C11 pro-

gramming language. This module runs in command mode with

three basic input parameters: name of the Landsat metadata

file, classification rule file, and output file names for classified

images. The results were stored in GeoTIFF format. Areas with

no associated data were indicated with no data values. This data

structure allows fast mosaicking of multiple scenes when map-

ping a large area, as well as fast per-scene processing. It takes

approximately 20 s for the classification of one OLI or ETM1

scene using a Windows-based laptop with Intel Core i7 CPU

2.20 GHz and 8 GB of RAM. The classification rule is organized

as a text file composed of classes to be classified. Each class is

arranged into a structure that provides information on class

name, SSP code, color used for class display, and additional

parameters used for classification. The source code of a demon-

stration module is given in the Supplementary material.

Algorithm testing and validation

We carried out automated water body extraction with the

predefined SSPs and proposed algorithm (Fig. 5) for the eight

Landsat 8 OLI and Landsat 7 ETM1 scenes (Table 1).

Fig. 5. Schematic diagram of the algorithm for automated water body extraction using SSPs. DN, digital number; SSP, simplified spectral pattern;

TOA, top of the atmosphere; TRRI, total reflected radiance index; LUT, look up table for conversion of DN to TOA; k, index of SSP members, k 5 1–15;
i,j, spectral band number; b, pixel value vector; N, number of spectral bands, N 5 6.

Duong et al. Automated water body extraction method

7



Although these eight scenes were acquired at different times,

the proposed algorithm successfully classified the water

bodies (Figs. 6, 7), and the results can be compared to those

produced by other methods.

To determine their accuracy, we compared our results

with pseudo natural color composites and overlays for two

selected windows in scene LC81240492015161LGN00 (Fig.

8). The boundaries of open water bodies extracted by our

method followed the waterlines of hydrographical features

in the study window, such as reservoirs, ponds, rivers,

streams, and sea. Based on a visual inspection, there was

good agreement between the automated extraction results

and the visual interpretation results. There was agreement

over the sea, inland water, and water of different qualities.

However, water bodies that were too narrow and water that

was too shallow were not correctly extracted, although they

were detected by visual interpretation.

One advantage of our method, in comparison to tradi-

tional methods, is its capability to differentiate dissimilar

water types. In most cases, traditional water classification

methods (e.g., thematic classification or spectral indices)

only distinguish water extent from land areas. Theoretically,

it is possible to use unsupervised or supervised classification

techniques to recognize water types, but it is difficult to col-

lect training samples and, thus, it is rarely applied in prac-

tice. In our method, water is classified by different SSPs

according to water type. When dissimilar SSPs are visualized

with different colors, the water body can be mapped by both

water extent and water type (Fig. 9). The spatial distribution

of different water types can provide useful information about

Fig. 6. Results of the automated water body extraction for the Landsat 8 OLI scenes: (a) LC81250492015024LGN00, (b)
LC81240492015161LGN00, (c) LC81250502015104LGN00, and (d) LC81240502015065LGN00. Water is represented as cyan. Land is shown in

black. The black patterns over the sea in (b) and (d) indicate the presence of cloud.
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the water environment, and the environment of an area

through which a stream passes.

To assess the reliability of our proposed method, we com-

pared our results with other methods both qualitatively, by

visual examination, and quantitatively, using the perfor-

mance index (PI) (Bagli et al. 2004). The PI is computed

from Eq. 4:

PI51002
Xn

i

Ai

Npix

 !
(4)

where Ai is the area of discrepancy and Npix is the area of

the reference water body. Pi refers to the ability of a method

to detect water relative to other methods.

Assessment with Landsat 8 OLI data

We applied our method to Landsat 8 OLI data and

compared the results with those achieved by application of

the NDWI. The NDWI is a widely accepted method for water

body mapping (Du et al. 2016) and is computed using Eq. 5

(McFeeters 1996):

NDWI5
qGreen2qNIR

qGreen1qNIR

(5)

where q is the TOA reflectance of the respective bands.

A threshold value of 0.07 was selected for the NDWI for

the delineation of open water bodies. Figure 10 shows a

visual comparison of water classification using NDWI

and our proposed method. The comparison of our results

Fig. 7. Results of the automated water body extraction for the Landsat 7 ETM1 scenes: (a) LE71250492001329SGS00, (b)

LE71240492001082SGS00, (c) LE71250502002044SGS00, and (d) LE71250492001329SGS00. Water is represented as cyan. Land is shown in black.
The black patterns over the sea in (b) and (d) indicate the presence of cloud.

Duong et al. Automated water body extraction method

9



Fig. 8. Layout of the two windows used for detailed study. Window (a) covers part of Thu Bon River and Cua Dai estuary. Window (b) covers inland

water bodies including the Vu Gia River (upper), Thu Bon River (lower), and Khe Tan reservoir (the largest one), as well as several small lakes and
ponds. This figure shows the overlay of our classification results over a pseudo natural color composite. Water bodies are colored cyan.
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with the NDWI for Landsat 8 OLI images showed high

agreement between the two methods. In this case, we

did not apply any cloud or shadow mask. Both methods

provide good classification of large water surfaces but for

smaller ponds, the SSP method yielded more detailed

results.

Fig. 9. Example of the spatial distribution of water bodies of different SSPs represented by different colors.
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To objectively evaluate the performance of our method,

we used the water area classification results from the NDWI

method as a reference. Because this method has been

accepted and validated, we were able to compute the PI of

our method for each Landsat 8 OLI scene (Table 2).

Assessment with Landsat 7 ETM1

Furthermore, we compared our results with the GIW data-

set published by the University of Maryland. Although all four

Landsat 7 ETM1 scenes used for the comparison have high

cloud cover, two have particularly high cloud coverage

(LE71250492001329SGS00 and LE71240502001290EDC00);

therefore, we used a cloud and shadow mask to reduce their

impact on the water classification. We kept the cloud and

shadow mask from the GIW to maintain consistency between

the results of our method and the GIW. The PI was computed

for the four scenes using the GIW as reference data (Table 3).

Figure 11 presents a visual comparison of the two methods.

We observed high agreement between the results for both

large and small water bodies.

Accuracy assessment

The classification accuracy was assessed by using 100 valida-

tion points generated by a random sampling scheme for each

OLI image and compared with visual interpretation of Google

Earth high spatial resolution images in 2015 (Table 4.).

Discussion

Methods for mapping water have shown gradual develop-

ments in recent years. However, there are still many problems

that must be resolved concerning the automation of water

mapping, simultaneous detection of both water extent and

water type, and analysis using multitemporal image series. Tra-

ditional water classification methods require extensive

floating-point computation, including surface reflectance esti-

mation, decision tree classification or threshold value compu-

tation, cloud and terrain mask generation, etc. (Verpoorter

et al. 2012; Feyisa et al. 2014; Jiang et al. 2014; Carroll et al.

2016; Feng et al. 2016). This computation slows the overall

performance of water classification. In our method, the com-

putation is based on integers and is kept as simple as possible.

The computation in our proposed algorithm is essentially a

comparison of the SSP of every pixel to those pre-collected in

Fig. 10. Comparison of water classification by (a) NDWI with water body boundaries highlighted in red color and (b) the proposed SSP method
with boundaries of water bodies highlighted in blue color using scene LC81240492015161LGN00.

Table 2. Comparison of water area in individual Landsat 8 OLI
scenes derived from the simplified spectral pattern (SPP) and
normalized difference water index (NDWI) methods and the
performance index (PI).

Scene ID SSP (m2) NDWI (m2) PI SSP

LC81240492015161LGN00 27,728,235,952 28,206,571,424 98.30

LC81250492015024LGN00 5,547,227,360 5,556,296,224 99.84

LC81240502015065LGN00 3,619,963,804 3,566,228,084 98.49

LC81250502015104LGN00 247,693,500 249,301,800 99.35

Table 3. Comparison of water area in individual Landsat 7
ETM1 scenes derived from the simplified spectral pattern (SSP)
method and Global Inland Water (GIW) dataset and performance
index (PI).

Scene ID SSP (m2) GIW (m2) PI SSP

LE71240492001082SGS00 23,777,297,096 23,186,757,488 97.45

LE71240502001290EDC00 4,315,610,052 4,162,490,528 96.32

LE71250492001329SGS00 2,038,573,432 1,935,378,700 94.67

LE71250502002044SGS00 190,215,000 194,435,100 97.83
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the SSP database. Thus, the overall performance of the analysis

is improved. Due to the simplicity of the algorithm, which

does not require special computer resources, and the fact that

input image data is available online, it has great potential for

large-scale, or even global, water classification using a cloud

computing facility such as Google cloud computing.

Our study shows that SSPs enable mapping of both the

extent and type of water bodies. This is a unique feature of

our proposed method that is not available in other methods.

We analyzed Landsat images from different time periods

without atmospheric correction, and achieved results compa-

rable to those that have undergone atmospheric correction

(i.e., the GIW dataset). This implies that SSPs are stable

against variable atmospheric conditions and can enable the

automation of water body detection. Since the construction

of SSPs is simple, with no complex computation, the classifi-

cation process is quick and can potentially process a large

number of images in a short time. The novelty of our

method offers the possibility of fast water body dynamics

monitoring in large areas that cannot currently be accessed

with existing methods.

The requirements of the input optical image data for

water classification vary with the algorithm used. For exam-

ple, in the GIW dataset, the input data consists of atmo-

spherically corrected Landsat 7 scenes from circa 2000 (Feng

et al. 2016). The Automated Water Extraction Index (Feyisa

et al. 2014) employs Landsat 5 data after atmospheric correc-

tion using the Fast Line-of-site Atmospheric Analysis of

Hypercubes method. The Global Wildland Fire Emission

Model dataset (Verpoorter et al. 2012) uses GeoCover data

circa 2000. Our method can accept any Landsat TM, ETM1,

and OLI data for analysis without atmospheric correction.

This advantage enables the rapid study of changes in surface

water using Landsat archives from the 1980s to the present

for any location in the world.

Cloud and cloud shadow are well-known error sources in

water mapping, and many algorithms for cloud and shadow

masking have been published. Therefore, we do not intend

to resolve this problem here. Instead, when working with

Landsat data, we use cloud and shadow masks provided by

the United States Geological Survey, together with image

scenes from The Landsat Collection 1 or pre-collection data-

set (https://landsat.usgs.gov/landsat-collections). In this data-

set, the C Function of Mask (CFMask) algorithm identifies

fill, cloud, cloud confidence, cloud shadow, and snow/ice in

Landsat 4–5, Landsat 7, and Landsat 8 scenes for representa-

tion in the Quality Assessment band. By accessing the Qual-

ity Assessment band, we can easily exclude cloud and

shadow from the water classification results.

The success of our method depends on the representative-

ness of SSPs in the database used for the classification. Theo-

retically, water bodies across the world have similar spectral

reflectance characteristics; however, due to different levels of

Fig. 11. Comparison of water classification using the (a) GIW dataset with water body boundaries highlighted in blue color and (b) proposed SSP

method with water body boundaries in red color using scene LE71240492001082SGS00. The methods provide almost identical results regarding the
detection of small and large water bodies for the area in the selected windows.

Table 4. Accuracy assessment using 100 reference data points
for each scene. The reference data are interpreted from high
spatial resolution images on the Google Earth.

Image ID

User’s

accuracy

Producer’s

accuracy

Kappa

coefficient

LC81240492015161LGN00 97.3 97.3 0.89

LC81250492015024LGN00 100.0 90.5 0.92

LC81240502015065LGN00 97.1 91.7 0.91

LC81250502015104LGN00 100.0 100.0 1.0
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pollution by either inorganic or organic contaminants, the

number of SSPs may vary between geographic regions. The

study area of this research includes various water types char-

acteristic of tropical regions such as seawater, lakes, and

ponds, swamps, and rivers and streams. The SSPs collected

for the ETM1 and OLI sensors work well for these water bod-

ies. However, there could be other water types present in

alpine and high latitude regions. To expand this method for

global water mapping, research covering different regions

should be conducted, and a common SSP database should be

gradually established by adding new SSPs. In this way, a

global SSP database representing all water types can be pro-

duced to support global water mapping.

Although a number of water extraction methods are used

in practice, we suggest that our SPAB method using SSPs is

the simplest, because it has minimal requirements for the

input image data and uses a straightforward algorithm pro-

viding fast computation and comparable accuracy to other

standard water extraction methods. Therefore, our method

makes a significant contribution to the development of tools

for monitoring spatiotemporal changes in water bodies,

which are of vital importance for limnologic studies, espe-

cially under the current changing global climate.

Conclusion

In this paper, we proposed a new spectral-pattern-

analysis-based (SPAB) method for automated water body

extraction using simplified spectral patterns (SSPs). This new

method allows mapping spatial extent as well as different

quality type of surface water. This is a unique capability that

traditional water classification methods can rarely afford.

The use of simplified spectral patterns instead of image digi-

tal numbers for computation results in high performance of

automated process, which is very demanding for computer

resources when mapping in a large region with massive

image data.

Our new method was successfully tested in the central

part of Vietnam and southern Laos, an area that encom-

passes different water body types, including seawater and

inland water, with various levels of pollution. Water body

were extracted for four Landsat 8 OLI scenes from 2015 and

four Landsat 7 ETM1 scenes from 2001 and 2002 to assess

the performance on water classification of the new method

by comparing with visual interpretation, normalized differ-

ential water index (NDWI) thresholding, and the Global

Inland Water (GIW) dataset provided by the Global Land

Cover Facility of the University of Maryland. It was found

that the classification results of our new method agree by

more than 98.0% with NDWI results by more than 95.0%

with the GIW dataset. When assessed by reference data from

high spatial resolution images on Google Earth, we also

achieved average user’s accuracy of 98%, producer’s accuracy

of 94.8%, and average Kappa coefficients of 0.93.

In the next phase of this research, study will be expanded

to other geographical areas to develop a SSPs database, which

will represent global water body types. This goal requires a

range of experiments to be conducted in different geographi-

cal regions including subarctic belt and Tibetan Plateau.
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