
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Toward Socially Aware Robot Navigation in
Dynamic and Crowded Environments:

A Proactive Social Motion Model
Xuan-Tung Truong and Trung Dung Ngo, Member, IEEE

Abstract— Safe and social navigation is the key to deploy-
ing a mobile service robot in a human-centered environment.
Widespread acceptability of mobile service robots in daily life
is hindered by robot’s inability to navigate in crowded and
dynamic human environments in a socially acceptable way that
would guarantee human safety and comfort. In this paper, we
propose an effective proactive social motion model (PSMM) that
enables a mobile service robot to navigate safely and socially
in crowded and dynamic environments. The proposed method
considers not only human states (position, orientation, motion,
field of view, and hand poses) relative to the robot but also
social interactive information about human–object and human
group interactions. This allows development of the PSMM that
consists of elements of an extended social force model and a
hybrid reciprocal velocity obstacle technique. The PSMM is then
combined with a path planning technique to generate a motion
planning system that drives a mobile robot in a socially acceptable
manner and produces respectful and polite behaviors akin to
human movements.

Note to Practitioners—In this paper, we validated the effective-
ness and feasibility of the proposed proactive social motion model
(PSMM) through both simulation and real-world experiments
under the newly proposed human comfortable safety indices.
To do that, we first implemented the entire navigation system
using the open-source robot operating system. We then installed
it in a simulated robot model and conducted experiments in a sim-
ulated shopping mall-like environment to verify its effectiveness.
We also installed the proposed algorithm on our mobile robot
platform and conducted experiments in our office-like laboratory
environment. Our results show that the developed socially aware
navigation framework allows a mobile robot to navigate safely,
socially, and proactively while guaranteeing human safety and
comfort in crowded and dynamic environments.

In this paper, we examined the proposed PSMM with a
set of predefined parameters selected based on our empirical
experiences about the robot mechanism and selected social
environment. However, in fact a mobile robot might need to
adapt to various contextual and cultural situations in different
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social environments. Thus, it should be equipped with an online
adaptive interactive learning mechanism allowing the robot
to learn to auto-adjust their parameters according to such
embedded environments. Using machine learning techniques,
e.g., inverse reinforcement learning [1] to optimize the parameter
set for the PSMM could be a promising research direction to
improve adaptability of mobile service robots in different social
environments.

In the future, we will evaluate the proposed framework
based on a wider variety of scenarios, particularly those with
different social interaction situations and dynamic environments.
Furthermore, various kinds of social cues and signals introduced
in [2] and [3] will be applied to extend the proposed framework
in more complicated social situations and contexts. Last but not
least, we will investigate different machine learning techniques
and incorporate them in the PSMM in order to allow the robot
to automatically adapt to diverse social environments.

Index Terms— Human comfortable safety, mobile service
robots, proactive social motion model (PSMM), social robots,
socially aware robot navigation.

I. INTRODUCTION

THE ability to autonomously navigate in human and
dynamic environments, such as museums [4], airports [5],

offices and the home [6], shopping malls [7], and urban
environments [8], is crucial for mobile service robots. If we
wish to deploy the robots in such social environments, the
first and most important issue is that the robot must avoid
not only regular obstacles but also humans while navigating
safely toward a given goal. In this context, human safety
as regards robot navigation can be classified into two cat-
egories [9]: 1) physical safety and 2) psychological safety.
The first category—the most obvious issue—is to maintain a
minimum physical distance between the robot and humans.
The second category in the context of human–robot social
interaction implies that the mobile robot is not allowed to
cause stress and discomfort to humans during its navigation
and interaction.

Regarding the physical aspect of safety, conventional mobile
robot navigation systems usually consider humans as reg-
ular obstacles such that collision avoidance techniques can
be applied. Several obstacle avoidance and motion control
methods such as the artificial potential field [10], vector
field histogram [11], dynamic window approach [12], veloc-
ity obstacles (VOs) [13], randomized kinodynamic plan-
ning [14], [15], inevitable collision states [16], and reciprocal
VOs (RVOs) [17] techniques have been proposed. These
approaches have been evaluated such that robots are capable of
planning their trajectories to avoid undesired physical contact
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with humans. However, none of these methods goes beyond
the physical safety aspects to address the psychological safety
aspects, including human characteristics and social constraints.

To guarantee both physical and psychological safety, recent
research on human-aware robot navigation systems [18], [19]
has aimed to create more socially acceptable behaviors for
mobile robots. Some of these have been applied to real-world
environments and have achieved considerable success. The
existing navigation techniques, however, suffer some draw-
backs. First, the navigation system deals only with interactions
with a single human, making it difficult to apply such a system
to a real-world environment, where groups of humans are
more common [20]. Hence, such developed navigation systems
lack robustness in diverse social situations. Second, the author
applied 2-D costmaps and path planning-based approach, and
thus it is difficult to apply in crowded environments, because
of the higher computational cost. Finally, these techniques
address only the issue in the sparse and semidynamic envi-
ronment; therefore, it is difficult to apply in the dynamic and
crowded environments.

To overcome the above-mentioned weaknesses of the con-
ventional mobile robot navigation system and enhance the
navigability of mobile service robot in crowded and dynamic
human environments, we proposed a new system architec-
ture of mobile robot navigation in dynamic and crowded
environments. Specifically, based on the conventional nav-
igation scheme [21], we have developed a socially aware
navigation framework by extracting human features from the
socio-spatiotemporal characteristics of individuals and human
groups, and then incorporating that information into the robot
navigation system. In the new architecture, we have devel-
oped an extended social force model (ESFM) based on the
conventional social force model (SFM) [22] and integrated
human information into the hybrid RVO (HRVO) [23]. After
that, we have incorporated advantages of the ESFM model and
the HRVO into the proactive social motion model (PSMM)
for mobile robot in dynamic and crowded environments.
In addition, we have developed human comfortable safety
indices (HCSIs) including social individual index (SII), social
group index (SGI), and relative motion index (RMI) to eval-
uate the proposed framework. We have demonstrated the
effectiveness of the proposed model through statistical data
from simulations and real-world experiments, and evaluated
the results using the proposed HCSIs. Through results of
simulations and real experiments, we proved that the proposed
framework overcomes the shortcomings of the conventional
mobile robot navigation systems while guaranteeing both
physical and psychological safety of human coworkers in
crowded and dynamic workspaces. Specially, this method can
be used with any local and global path planning method (even
those with given waypoints) to navigate mobile robots toward
their destinations. The remainder of this paper is organized
as follows. Section II describes literature regarding human-
aware robot navigation. Section III presents the proposed
proactive social motion control. Section IV addresses how
to integrate the socially aware robot navigation framework
into the motion planning system of a differential-drive mobile
robot. Section V presents the newly proposed HCSIs used

to measure both the physical and psychological safety of
humans, and socially acceptable behaviors of the mobile robot.
Sections VI and VII show the simulation and experimental
results, respectively. We provide remarks and the conclusion
of this paper in Section VIII.

II. RELATED WORKS

Social environments are dynamic, uncertain, clustered, and
even crowded environments with the presence of humans.
Therefore, in order to ensure the human safety and comfort in
such environments, several human-aware mobile robot naviga-
tion systems [5], [24], [18], [19], [25], [26] have been proposed
in recent years. In this section, we review two research topics
associated with the human-aware robot navigation systems
in dynamic and crowded environments: 1) human infor-
mation-based human-aware mobile robot navigation systems
and 2) navigation techniques-based approaches. The former
involves the human information incorporated into the robot
navigation system, while the latter covers techniques applied
to develop the robot navigation system.

The human information-based human-aware mobile robot
navigation systems can be divided into two categories: 1) indi-
vidual state information and 2) social interaction information.
Individual state information (e.g., human position, orientation,
motion, and field of view) is identified in the former, while
human–object interaction and human group state information
is in the latter.

The conventional human-aware mobile robot navigation
systems are mostly based on individual state information.
Trautman et al. [27] proposed a human–robot cooperation
model for mobile robot navigation using a multiple goal
interacting Gaussian process. Although this proposed method
enables the mobile robot to navigate safely and efficiently in
dense human crowds, it does not take social human group
interaction into account; thus, under this model, the mobile
robot navigation system acts according to individual states
only. Chi-Pang et al. [28] introduced human-centered sensitive
navigation using human position and motion states. This
method proposed six harmonious rules that the robot has to
follow to guarantee human physical safety and socially accept-
able paths in the presence of humans and other robots. The
method was developed based on human position and motion,
but it does not consider human social group information.

A few mobile robot navigation systems have been developed
by taking both individual states and human group information
into consideration, but most of them are still in the early
stages of development. Rios-Martinez et al. [29] proposed a
risk-based navigation algorithm for mobile robot navigation
in dynamic populated environments. Although the personal
space [30] and O-space [31] concepts are taken into account
to model the space around the humans, the system only takes
into account groups of two standing people. Gomez et al. [32]
presented a personal space model for both individuals and
human groups using a mixture of two Gaussian functions, and
developed six different subproblems of social path planning
using a fast-matching squares method. However, this paper
incorporates only a single static human, without considering
information about human social groups.
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The navigation techniques-based human-aware mobile
robots can be roughly classified into two groups: 1) 2-D
costmap-based methods and 2) reactive control-based tech-
niques. In the first group, 2-D Gaussian or linear techniques
are used to model the space around the humans—i.e., social
costmaps—such that these costmaps can be used to guide the
motion of a mobile robot. In the second group, obstacle avoid-
ance algorithms are to avoid collision with human obstacles
in the vicinity of the robot. The costmaps model imports the
socio-spatiotemporal characteristics of humans into a local
path planner to generate a feasible path for the robot that
satisfies socially acceptable behaviors [33], [34]. However, this
approach is time consuming, and it is highly computationally
difficult to find a feasible path in crowded and dynamic
environments [25], [26]. In contrast, the SFM is a useful way
to drive a mobile robot in high density conditions because
of its reasonable computational costs [22], [35]. Social cues
and social signals can be incorporated into the motion model,
such as face orientation [36]. However, this method does not
explicitly deal with potential collisions in which the robot
might cause humans discomfort, thereby violating human
psychological safety. The RVO, based on VOs [13], takes into
account the motions of nearby humans and other objects, but
again it is difficult to incorporate social constraints directly
into this model. Furthermore, these human-aware navigation
techniques based on costmaps, SFM, and RVO only deal with
human features and characteristics extracted from a single
person rather than the social characteristics and constraints
of human interactive information such as human–object and
human group interactions, which are more common in social
environments [20]. Hence, such developed navigation systems
lack robustness in diverse social situations.

Several 2-D costmap-based human-aware robot navigation
algorithms have been proposed to generate socially acceptable
behaviors for mobile robots [26], [33], [34], [37], [38]. In [33],
a generalized framework for representing social conventions,
such as the concept of personal space and rules designating
directional paths to either side of a hallway or set of stairs,
is used for path planning and motion control. These social
conventions are modeled as costmaps, and the A* planner is
applied to generate a path. However, this framework has only
been implemented and verified in simulation. Sisbot et al. [34]
proposed a human-aware mobile robot motion planner to
generate safe and socially acceptable paths. An extension of
this system with two additional blocks, including perspective
placement and a trajectory planner, was also proposed in [37].
Although the framework takes human position, human field of
view, and human postures into account, it does not consider
human motion or human group information. In [38], a com-
plicated model of personal space was presented, where four
different Gaussian functions were integrated to develop the
robot’s motion control. In this approach, however, the mobile
robot is able to detect only a single-person situation, and per-
ceives the real-world environment as a 2-D image captured by
a laser range finder. Lu and Smart [26] proposed an efficient
navigation framework for mobile robots navigating in a corri-
dor using social cues. In this system, human postures and gaze
behaviors are taken into account to model the socially aware

costmaps around humans. These costmaps are then used to
guide the robot to avoid humans during robot navigation.

The reactive control-based human-aware mobile robot nav-
igation systems can also be divided into two subgroups:
1) potential field-based approaches and 2) VOs-based tech-
niques. In the former, the SFM is used to develop the motion
model of the mobile robots. In the later, the HRVO model is
applied to design the motion control of the mobile robots.

Recently, some algorithms [35], [36], [39] have been pro-
posed for human-aware mobile robot navigation using the
SFM introduced in [22]. Despite the fact that these techniques
have been able to generate socially acceptable behaviors for
mobile robots, they do not proactively deal with different
social situations in crowded environments such as socially
avoiding human group interaction or human–object interac-
tion. Ferrer et al. [35] presented a robot companion using the
SFM for human-aware mobile robot navigation in an urban
environment. An interactive learning is also used to adjust
the parameters of the proposed model and ensure that the
system works correctly and smoothly. Ratsamme et al. [36]
proposed a human–robot collision avoidance technique based
on an ESFM modified from the conventional SFM [22] using
additional human factors including body pose, face orienta-
tion, and personal space. The model is then used to predict
human motion and perform human–robot collision avoidance.
Shiomi et al. [39] presented a socially acceptable collision
avoidance technique for a mobile robot navigating among
pedestrians. The modified SFM introduced in [40] was used to
model pedestrian motion and to develop human-like collision
avoidance. Although the robot provides safe and comfortable
collision avoidance behaviors toward humans, the technique
has been verified only in single-human situations.

More recently, a few human-aware robot navigation sys-
tems [41], [42] based on the RVOs technique [17], [43] have
been proposed. Although these methods have been success-
fully verified in a real-world environment, they might not
be able to handle all social situations and they are still in
an early stage of development. Zhang et al. [41] proposed a
local collision avoidance method using the optimal reciprocal
collision avoidance system introduced in [43]. To reduce
the uncertainties in the state estimation process of pedestri-
ans and the robot, the encircling particle method is used.
Daniel et al. [42] presented a human-safe navigation algo-
rithm using the VOs paradigm introduced in [23]. Instead of
choosing the optimal velocity based on the preferred velocity
space, the authors used Monte Carlo sampling throughout the
velocity space and evaluated the samples by incorporating
factors of differing importance consisting of humans, other
robots, and obstacles into a cost function. In spite of the fact
that these navigation systems are capable of guaranteeing the
human safety during the robot navigation, they do not consider
the information about social interaction such as human group
and human–object interaction.

In contrast to the aforementioned human-aware mobile
robot navigation systems, a few recent studies focus on
machine learning-based human-aware robot navigation sys-
tems [44], [45], [46]. Luber et al. [44] proposed a socially
aware robot navigation system. They first extracted human
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Fig. 1. Relative position between a person and a robot.

paths using observations of behavior in publicly available
large-scale surveillance data sets. An unsupervised learn-
ing technique was then used to produce a set of rela-
tive motion prototypes for collision avoidance. However,
the model is used only for a single interactive person.
Beomjoon and Pineau [45] presented socially adaptive path
planning based on inverse reinforcement learning for assistive
robots. Although the algorithm generates a human-like trajec-
tory using features extracted from the density and velocity of
pedestrians and surrounding obstacles, state information about
human social groups and human–object interactions has not
been incorporated into the state features for the cost function of
the local path planner. More recently, Kretzschmar et al. [46]
proposed a socially compliant mobile robot navigation system,
which allows a mobile robot to learn a model of the navigation
behaviors of cooperatively navigating agents, such as pedes-
trians, using inverse reinforcement learning techniques.

III. PROACTIVE SOCIAL MOTION MODEL

Mobility is the most essential navigation issue of mobile
robots. To allow a mobile robot to navigate safely in a
real-world environment, the mobile robot must deal with
typical functional blocks of the navigation system, including
perception, localization, motion planning, and motion control
as explained in [21]. However, such a conventional navigation
scheme does not take human information and social constraints
into account, so the mobile robot can only treat humans like
regular obstacles. As a result, the robot is not capable of
guaranteeing human comfort and safety during its navigation
in social environments, especially in crowded and dynamic
environments.

To ensure human safety and comfort when working in
human–robot shared workspaces, mobile robots must distin-
guish humans from other obstacles, recognize human features
from the socio-spatiotemporal characteristics of an individual
human and a group of humans, and then incorporate such
information into their navigation systems. To accomplish this,
we propose an extended navigation scheme based on the
conventional navigation scheme introduced in [21] by adding
a socially aware mobile robot navigation framework.

Fig. 2 shows the new system architecture of the extended
navigation scheme for mobile service robots in crowded
and dynamic human environments. The navigation system

Fig. 2. Extended navigation scheme for mobile service robots is composed
of two main parts: 1) a conventional navigation scheme and 2) a socially
aware robot navigation framework (in cyan).

consists of two major parts: 1) a conventional navigation
scheme and 2) a socially aware robot navigation framework
(in cyan). The conventional navigation scheme is typically
based on the composition of four functional blocks: perception,
localization, motion planning, and motion control. In the
second part, the socially aware navigation framework aims
to distinguish humans from regular obstacles, extracting the
socio-spatiotemporal characteristics of humans in the vicinity
of the robots for the development of the PSMM. The human
detection and tracking block is used to detect and track humans
in the real-world environment, while the social interaction
modeling block is used to detect and identify social interactive
information from human groups and human–object interac-
tions. Both the ESFM and the HRVO use human states, includ-
ing position, orientation, motion and hand poses, and social
interactive information extracted by the robot vision system,
to model the PSMM of the robot. The PSMM functions as a
human-aware motion control framework for any local or global
path planning in the motion planning system, and guarantees
human safety and comfort by ensuring that the mobile robot
exhibits socially acceptable behaviors in dynamic and crowded
environments.

A. Human States, Robot States, and Relative Positions

We assume that there are N people appearing in the vicinity
of the robot, P = {p1, p2, . . . , pN }, where pi is the i th
person. The human states of person pi are represented as
pi = (x p

i , y p
i , θ

p
i , v

p
i , xrh

i , yrh
i , xlh

i , ylh
i ), where (x p

i , y p
i ) is the

position, θ
p
i is the orientation, v

p
i is the velocity, (xrh

i , yrh
i ) is

the right-hand position, and (xlh
i , ylh

i ) is the left-hand position
in the xy plane. Note that θ

p
i ∈ [−π, π]. We define the state

of the robot as r = (xr , yr , θr , vr ), where the position is
(xr , yr ), the orientation is θr , and the linear velocity is vr .
Fig. 1 shows an example of human states including human
position, orientation, velocity, field of view, and hand poses;
robot states including robot position, orientation, and velocity;
and the relative pose between a person and a robot.
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Fig. 3. Examples of the center and shape (magenta) of the social interaction spaces. (a) Group of two standing people. (b) Group of four standing people.
(c) Group of two moving people. (d) Group of three moving people. (e) Human–object social interaction space. (f) Two human–object social interaction
spaces.

B. Social Interaction Modeling

1) Human–Object Interaction: In a real-world environment,
we pay more attention to the objects with which we interact,
such as televisions, refrigerators, telephones, screens, and
paintings. Thus, the robot needs to estimate human–object
interaction, because this information is the key to defining an
interaction space between humans and interesting objects.

We assume that a person pi = (x p
i , y p

i ) is interacting
with an interesting object obj j = (xobj

j , yobj
j ) as illustrated

in Fig. 3(e). The set of parameters extracted from this
human–object interaction space is om = (xo

m, yo
m, ro

m), where
om is the mth human–object interaction space in the vicinity of
the robot. (xo

m, yo
m) and ro

m are the center point and the radius
of the human–object interaction space, respectively, and are
computed as follows:

(xo
m, yo

m) = (
x p

i + xobj
j

2
,

y p
i + yobj

j

2
) (1)

ro
m =

√
(xobj

j − x p
i )2 + (yobj

j − y p
i )2

2
. (2)

Note that the human–object interaction space is created by
pairing a human and an interesting object. Fig. 3(f) shows
an example of two human–object interaction spaces, in which
two humans are interacting with an interesting object. In this
example, two humans also form a human group that is studied
in the next section.

2) Human Group Interaction: Findings in [20] show that
70% of humans intend to form interactive groups in social
environments. Hence, detecting interactive human groups
plays an essential role in the socially aware navigation frame-
work. Methods for detecting social group interaction have been
recently proposed [47], [48]. In this paper, we develop a human
group detection technique that is modified from the graph cuts
of F-formation (GCFF) algorithm [48].

Here, we briefly describe the original GCFF technique.
The original GCFF technique was proposed for detecting
social groups in still images using the formal definition of
the F-formation described in [31] and the efficient graph-cut-
based optimization [49]. The number of people in the vicinity
of the robot P = {p1, p2, . . . , pN } with corresponding poses
pi = (x p

i , y p
i , θ

p
i ) are used as the inputs of this algorithm.

In the graph formulation, the nodes are represented by individ-
uals and the candidate o-space centers, while edges are defined

between each pair of nodes of different type (i.e., between a
transactional segment and a candidate o-space center). The
authors modeled the probability of each individual belonging
to a specific o-space, and then built the objective function by
adding a minimum description length prior and considering the
log function of the probability obtained. They also introduced
an additive term that acts as the visibility constraint on the
individual i regardless of the person j in a group that i
is assigned to. The final objective function was defined as
follows:

J (OG |TS) =
∑

i∈P

(uGi − xμi )
2 + (vGi − yμi )

2

+ σ−2|OG | +
∑

i, j∈P

Ri, j (OGi ) (3)

where OGi = [uGi , vGi ] represents the position of a candidate
o-space center for an unknown F-formation Gi = g contain-
ing i ; [xμi , yμi ] = [x p

i + Dcos(θ p
i ), y p

i + D sin(θ
p
i )] with D

is the distance between the individual i and the center of its
transactional segment; Og = [ug, vg ] indicates the position of
a candidate o-space center for F-formation g ∈ {1, K } while
|OG | is the number of distinct F-formations; and Ri, j (OGi )
acts as a visibility constraint on i regardless of the person j
in the group that i is assigned to. The output of the GCFF
algorithm is the number of groups of humans. A detailed
description of the method can be found in [48].

Unlike the original algorithm [48], instead of using only the
spatial position and orientation information of static humans,
we have used additional human motion information to make
the model suitable for dynamic and crowded environments.
A set of four parameters pi = (x p

i , y p
i , θ

p
i , v

p
i ) extracted

from the spatial and temporal characteristics of humans in
Section VII-B is used as the inputs for the GCFF technique.
In other words, we added motion constraints into the objective
function of the GCFF in (3), meaning that an individual is
added into an F-formation if it has a similar velocity to all
the other members in that F-formation. Equation (3) can be
rewritten as follows:

J new(OG |TS) = J (OG |TS) +
∑

i, j∈P

Vi, j (OGi ) (4)

where

Vi, j (OGi ) =
{

0, if vi = 0, v j = 0

exp(β|vi − v j |) − 1, otherwise
(5)
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where vi and v j are the velocities of the person i and j , respec-
tively; β > 0 is the normalization factor of the human velocity;
and Vi, j (OGi ) acts as a velocity constraint on i regardless of
the person j in the group that i is assigned to. Note that
Vi, j (OGi ) = 0 when vi = v j , and Vi, j (OGi ) > 0 when
vi �= v j . The output of the algorithm is the number of human
groups and its center point. To model the interaction space
with these parameters, we used the circle fitting method [50] to
find the center point and radius of each human group. Let G =
{g1, g2, . . . , gK } be the number of detected human groups in
the vicinity of the robot; each social group interaction gk has
a set of parameters gk = (x g

k , yg
k , θ

g
k , v

g
k , r g

k ), where (x g
k , yg

k )
is the center point, θ

g
k is the orientation, v

g
k is the velocity, and

r g
k is the radius of the human group interaction. Note that if

too many people exist in the robot’s vicinity, we separate the
large group into smaller groups of fewer than four people so
that the robot can better deal with the dynamic situations of
human groups. Fig. 3(a)–(d) shows an example of the human
group detection algorithm for groups of two and four standing
humans, and two and three moving humans, respectively.

C. Conventional Social Force Model

The conventional SFM [22] uses various attractive and
repulsive forces to model both agent–agent and agent–object
social force fields. These forces are based on both physical
and psychological factors reflecting how agents avoid and
approach each other. Formally, the SFM of an agent i is
defined according to Newton’s second law of motion

mi ai (t) = Fs f m
i (t) (6)

where mi is the mass, ai (t) is the acceleration vector, and
Fs f m

i (t) is the social force incorporated by the force vectors
(attractive and repulsive forces) influencing the motion of
agent i at time t .

1) Attractive Force to the Goal: Each agent i tends to move
toward a desired direction ei with a desired speed v0

i , and thus
the desired velocity v0

i = v0
i ei . The desired velocity’s direction

is given by a vector pointing from the present position of the
agent to the next goal, while the speed is selected so that the
agent feels more comfortable. Let us assume that the agent’s
actual velocity at time t is vi (t), and the relaxation time K −1

i
is the time that agent i needs to adjust its actual velocity to
the desired velocity. Therefore, the force attracting agent i to
the goal is defined as follows:

Fgoal
i = Ki (v0

i − vi (t)). (7)

2) Repulsive Force From Other Agents: The agent i wants
to maintain its desired velocity v0

i toward the goal because of
the attractive force Fgoal

i ; however, its motion is also influenced
by other agents j in its surrounding area. This influence is
modeled as the repulsive force from agent j to agent i , and
is defined as follows:

fi, j = Aa
i e

(ri, j −di, j )

Ba
i ni, j (8)

where Aa
i and Ba

i are the strength and range of the repulsive
force, respectively; ri, j = ri + r j is the sum of the radius of

agent i and agent j ; di, j is the Euclidean distance between two
agents; and ni, j describes the unit vector pointing from agent
j to agent i . The influence of the repulsive force is limited to
the field of view of the agent; therefore, the anisotropic term
is computed as follows:

w(γi, j ) =
(

λ + (1 − λ)
1 + cos(γi, j )

2

)
(9)

where λ ∈ [0, 1] is defined as the strength of the anisotropic
factor, γi, j is the relative direction of agent j with respect
to the line through the centers of the foci of agents i and j .
Finally, the repulsive forces Fa

i of all agents j in the vicinity
of agent i are defined as follows:

Fa
i =

∑

j �=i

Aa
i e

(ri, j −di, j )

Ba
i ni, j

(
λ + (1 − λ)

1 + cos(γi, j )

2

)
.

(10)

The primary set of parameters of the repulsive forces from
other agents is [Aa

i , Ba
i , λ].

3) Repulsive Force From Objects: In addition to the repul-
sive forces from other agents, the motion of agent i is also
influenced by the repulsive forces from objects. Similar to the
repulsive forces from other agents, the repulsive forces Fo

i of
all objects o ∈ O in the vicinity of agent i are defined as
follows:

Fo
i =

∑

o∈O

Ao
i e

(ri,o −di,o )

Bo
i ni,o

(
λ + (1 − λ)

1 + cos(γi,o)

2

)
. (11)

The primary set of parameters of the repulsive forces from
objects is [Ao

i , Bo
i , λ].

Ultimately, the SFM for agent i is synthesized by the force
Fgoal

i attracting it to the goal, the repulsive forces Fa
i from

other agents j , and the repulsive forces Fo
i from objects o as

follows:
Ffsm

i = Fgoal
i + Fa

i + Fo
i . (12)

The primary set of parameters of the conventional SFM is
[Ki , Aa

i , Ba
i , Ao

i , Bo
i , λ].

D. Extended Social Force Model

In the conventional SFM [22], the repulsive force from other
agents presented in (10) uses only the relative position between
agents. However, many other factors, such as human actions,
social cues, and social constraints, influence the motion of
the robot in dynamic and crowded environments. Hence, this
information including relative positions, human actions, social
cues, and social constraints should be incorporated into the
socially aware navigation framework to ensure human comfort
and safety, and to generate socially acceptable behaviors for
the mobile robot. In this paper, we propose a new method that
takes the socio-spatiotemporal characteristics of the humans
including human body pose, field of view, hand poses, and
social interactions consisting of human–object interaction and
human group interaction into account to develop the ESFM.
Fig. 5 shows an example of the social forces that influence
the motion of the robot.
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1) Human Body Pose-Based Repulsive Forces: The repul-
sive forces Fh

r based on all the humans in the vicinity of the
robot can be computed using (10). The set of parameters of
the human body-based repulsive forces is [Ah

r , Bh
r , λ], where

Ah
r and Bh

r are the strength and the range, respectively.
2) Object-Based Repulsive Forces: The repulsive forces Fo

r
based on the objects in the robot’s vicinity can be computed
using (10). The set of parameters of the repulsive forces of
the robot from objects o is [Ao

r , Bo
r , λ], where Ao

r and Bo
r are

the strength and the range, respectively.
3) Human Hand Pose-Based Repulsive Forces: To exploit

the influence of the human hand poses of the person pi on the
robot’s motion, we use the right-hand position (xrh

i , yrh
i ) and

left-hand position (xlh
i , ylh

i ) in the xy plane. As a result, the
repulsive forces of the left hand Flh

r and the right hand Frh
r of

the people influencing the robot are computed using (10). The
sets of parameters of the repulsive forces from the left hand
and right hand are, respectively, [Ah

r , Blh
r , λ] and [Ah

r , Brh
r , λ],

where the Blh
r and Brh

r values are computed as follows:

Blh
r = Bh

r

√
(xlh

i − x p
i )2 + (ylh

i − y p
i )2

rh
(13)

Brh
r = Bh

r

√
(xrh

i − x p
i )2 + (yrh

i − y p
i )2

rh
(14)

where rh is the radius of the human body. As a result, the
repulsive force based on the human hands is Fhh

r = Flh
r +Frh

r .
4) Human–Object Interaction-Based Repulsive Forces:

To take the human–object interaction into account for the
ESFM, we propose a virtual human at the center of the
human–object interaction space. Therefore, the repulsive force
Fho

r of the human–object interaction can be calculated using
(10). The set of parameters of the repulsive forces from
the human–object interaction is [Ah

r , Bho
r , λ], where Bho

r is
computed as follows:

Bho
r = Bh

r
ro

m

rh
(15)

where rh is the radius of the human body and ro
m is computed

using (2).
5) Human Group-Based Repulsive Forces: Similar to the

repulsive forces from the human–object interaction, the repul-
sive forces based on the social group of people Fhg

r are
computed using (10). The set of parameters of the repulsive
forces from the human group interaction is [Ah

r , Bhg
r , λ]

Bhg
r = Bh

r
r g

k

rh
(16)

where rh is the radius of the human body and r g
k is computed

in Section III-B2.
Ultimately, we integrate all the repulsive forces including:

the human repulsive forces Fh
r , the object repulsive forces

Fo
r , the human hands’ repulsive forces Fhh

r , the human–object
repulsive forces Fho

r , and the human group repulsive forces
Fhg

r to create the ESFM as in

Fesfm
r = Fh

r + Fo
r + whhFhh

r + whoFho
r + whgFhg

r (17)

where whh, who, and whg are, respectively, the weights of the
repulsive forces of the human hands, human–object interac-
tion, and human group interaction. The set of parameters of
the ESFM Fesfm

r is [Ah
r , Bh

r , Ao
r , Bo

r , λ,whh , who, whg].

E. Hybrid Reciprocal Velocity Obstacle Model

The HRVO method introduced in [23] is an extension of the
RVO method [17]. The novelty of the HRVO is that it allows
the robot to smoothly avoid humans, and reduce the possibility
of oscillations of the robot motion. The HRVO has successfully
been applied to multirobot collision avoidance [51]. This
technique is a velocity-based approach [13] that takes the
motion of other agents into account for collision avoidance in
multiagent systems. HRVO can also be understood as a control
policy where each agent selects a collision-free velocity from
the 2-D velocity space in the xy plane. A construction of the
HRVO of a robot and a human is illustrated in Fig. 4.

Suppose that a set of humans P and a set of dynamic and
static obstacles O appear in the robot’s vicinity. The combined
HRVO for the mobile robot given in the existence of several
humans and obstacles is the union of all the HRVOs induced
by all the humans and the VOs induced by all the obstacles

HRVOr =
⋃

h∈P

HRVOr |h ∪
⋃

o∈O

V Or |o. (18)

According to [23], to avoid collisions with humans and objects,
the velocity vhrvo

r (t) of the robot is calculated as

vhrvo
r (t) = arg min

v(t)/∈H RV Or
‖v(t) − vpref

r (t)‖2 (19)

where vpref
r is computed as follows:

vpref
r (t) = v

pre f
r

pr − pgoal
r

‖pr − pgoal
r ‖2

(20)

where pr is the current position, pgoal
r is the goal position, and

v
pref
r is the preferred speed of the robot.

F. Hybrid Reciprocal Velocity Obstacle Based on Human
States and Social Interactions

The conventional HRVO technique incorporates only the
human pose and velocity into the model. In a social environ-
ment, however, human groups and human–object interactions
are very common. Moreover, the motion of the robot is
also affected by human action. Therefore, we incorporate
this information into our proposed model to generate socially
acceptable behaviors for the mobile robot. To do so, we add all
the HRVOs induced by the human left hand, human right hand,
human group, and human–object interaction into the union as
in (18). Therefore, (18) is recalculated as follows:
HRVOnew

r = HRVOr ∪
⋃

lh∈P

HRVOr |lh ∪
⋃

rh∈P

HRVOr |rh

∪
⋃

ho∈HOI

HRVOr |ho ∪
⋃

hg∈HGI

HRVOr |hg

(21)
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Fig. 4. Procedure of the HRVO of a robot and a human. (a) Configuration of a disk-shaped robot and a human in the xy plane with radii rr and rh , positions
pr and ph , and velocities vr and vh , respectively. (b) VO [13] for the robot induced by the human. (c) RVO [17] for the robot induced by the human.
(d) HRVO [23] for the robot induced by the human.

Fig. 5. Example of the social forces influencing the motion of a mobile
robot: the extended social force Fesfm

r , the attractive force to the goal Fgoal
r ,

and the final force affecting the motion of the robot Fsmm
r .

where HRVOr is computed using (18); HRVOr |lh and
HRVOr |rh are the HRVOs for the robot induced by the human
left hand and the human right hand, respectively; HRVOr |ho

is the HRVO for the robot induced by a human–object by a
human–object interaction; and HRVOr |hg is the HRVO for the
robot induced by a human group interaction. Note that P is
the set of humans, O is the set of static and dynamic objects,
HOI is the number of human–object interactions, and HGI is
the number of human group interactions in the robot’s vicinity.

G. Proactive Social Motion Model

The SFM works well in high density conditions with rea-
sonable computational costs [22]. In addition, this technique
provides a mechanism to incorporate human psychological
factors such as social signals and social cues. However, this
method is typically a type of reactive control, so it does not
proactively deal with potential collisions when the robot is
moving close to humans and obstacles [40]. In contrast, the
HRVO, which is known as a velocity-based approach [13],
has the advantage of proactive collision avoidance by taking
the motions of humans and objects into account. But, it is
difficult to directly incorporate social signals and social cues

into this model. Therefore, to exploit the advantages of these
techniques, we combine the ESFM with the HRVO so that the
mobile robot is capable of socially dealing with human states
and social constraints, and of proactively handling potential
collisions with both humans and objects. Specifically, the robot
velocity vhrvo

r generated by the HRVO in (19) is used as the
desired velocity v0

i of the robot of the ESFM in (7). As a result,
the attractive goal force Fgoal

r and the total proactive social
force Fpsmm

r (t) influencing the robot motion are, respectively,
computed as follows:

Fgoal
r = K v

r (vhrvo
r (t) − vr (t)) (22)

Fpsmm
r (t) = Fgoal

r (t) + Fesfm
r (t) (23)

where the relaxation time (K v
r )−1 is the time interval that

the robot needs to adjust its actual velocity vr (t) to the desired
velocity vhrvo

r ; and Fesfm
r is computed in (17). The PSMM of

the mobile robot is computed as follows:

ar (t) = Fpsmm
r (t)

mr
(24)

vnew
r (t) = vr (t) + ar (t)dt (25)

where ar (t) and mr are the acceleration and mass of the
robot, respectively; vr (t) is the current velocity of the robot;
dt denotes the time interval; and vnew

r (t) is the velocity
command that is then incorporated into the motion planning
system.

IV. INCORPORATING THE PROACTIVE SOCIAL MOTION

MODEL INTO MOTION PLANNING

Once the velocity command vnew
r (t) of the mobile robot

has been computed using (25), the control command of
the robot is calculated to drive the robot to proactively
and socially avoid the humans, human group social inter-
action space, human–object social interaction space, and
obstacles. In this paper, we apply the velocity command to
a robot model consisting of a two-wheel differential drive
mobile robot platform with two additional castor wheels.
We define the state of the robot r(t) = (xr (t), yr (t), θr (t))
at time t , with position (xr (t), yr (t)), and orientation θr (t).
The state of the robot at time (t + 1) is governed by the
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following equations:

⎡
⎣

xr (t + 1)
yr (t + 1)
θr (t + 1)

⎤
⎦ =

⎡
⎣

xr (t)
yr (t)
θr (t)

⎤
⎦ +

⎡
⎢⎢⎢⎢⎢⎣

vr
r + vl

r

2
cos(θr (t))dt

vr
r + vl

r

2
sin(θr (t))dt

vr
r − vl

r

L
dt

⎤
⎥⎥⎥⎥⎥⎦

(26)

where vr
r and vl

r are the linear velocity commands of the right
and left wheels of the robot, respectively, and L denotes the
wheelbase of the robot.

Suppose that the velocity command vnew
r (t) =

(vx
r (t), v y

r (t)), and the preferred orientation of the robot

is θ
pref
r (t) = atan2(v

y
r (t), vx

r (t)). The following equations are
used to compute vr

r and vl
r :

vr
r = ‖vnew

r (t)‖2 + K θ
r

L(θ
pref
r (t) − θr (t))

2
(27)

vl
r = ‖vnew

r (t)‖2 − K θ
r

L(θ
pref
r (t) − θr (t))

2
(28)

where (K θ
r )−1 is the time interval that the robot needs to adjust

its current orientation θr (t) to the preferred orientation θ
pref
r (t).

Substituting the new high-level control inputs from (27) and
(28) into (26), we obtain the proactive social motion controller
for the socially aware robot navigation framework. This can be
used with any path planning method (even a set of waypoints)
to navigate the robot toward a destination while socially and
safely avoiding humans, and taking into account human group
social interactions, and human–object social interaction in a
socially acceptable manner
⎡
⎣

xr (t + 1)
yr (t + 1)
θr (t + 1)

⎤
⎦ =

⎡
⎣

xr (t)
yr (t)
θr (t)

⎤
⎦ +

⎡
⎣

‖vnew
r (t)‖2 cos(θr (t))dt

‖vnew
r (t)‖2 sin(θr (t))dt

K θ
r (θ

pref
r (t) − θr (t))dt .

⎤
⎦ (29)

V. HUMAN COMFORTABLE SAFETY INDICES

To validate the proposed socially aware robot navigation
framework, we propose HCSIs using the proxemics-based per-
sonal space introduced in [30] and the F-formation definition
of a social interactive human group proposed in [31]. The
HCSI consists of three metrics: the SII, the SGI, and the
RMI. The social individual and social group indices are used
to measure the physical safety and comfort—psychological
safety—of individuals, and human groups and human–object
interactions, respectively. The RMI is used to measure the
relative motion between a robot and a human. The combination
of SII, SGI, and RMI values is used to measure socially
acceptable behaviors in the mobile robot.

To use these indices to evaluate the physical and psycho-
logical safety of humans, and human group and human–object
interactions, we define the radius of the human body rh and
the radius of the robot rr . According to the concept of personal
space under the proxemic model [30], the physical safety of
a human is violated if the relative distance between a robot
and a human is less than dp = rh + rr . The psychological
safety is disregarded if the relative distance between them is
less than dc, dc > dp. Note that dc varies across cultures
and is dependent on social situations and contexts. According

Fig. 6. Graph of the SII and SGI where σ
p

0 = 0.45 and σ
g
k = 0.9.

to the F-formation of social interactive human groups [31],
the psychological safety of a human group is violated if the
robot moves beyond the circular boundary of human group
interaction space with radius r g

k [see Fig. 3(a)], because a
human must approach this circular boundary if they wish to
join the human group. Similar to the circle of social human
group interaction, the human in a human–object interaction
feels uncomfortable if a robot moves beyond the circular
boundary of the human–object interaction space with radius
ro

m [see Fig. 3(e)]. The maximum velocities of the human v
p
max

and the robot vr max are also set, respectively, for the estimation
of the RMI

SII = max
i=1:N exp

⎛
⎝−

⎛
⎝

(
xr − x p

i√
2σ

p
0

)2

+
(

yr − y p
i√

2σ
p

0

)2
⎞
⎠

⎞
⎠ . (30)

A. Social Individual Index

SII value is calculated using (30), where (x p
i , y p

i ) is the
position of a human pi , (xr , yr ) denotes the position of a
robot, σ

p
0 is the standard deviation, and N is the number

of humans in the vicinity of the robot. As the value of SII
increases, the relative distance between the robot and the
human decreases. The SII is equal to a physical threshold
Tp—the highest value—when a robot crashes into a human:
((xr − x p

i )2 + (yr − y p
i )2)1/2 = dp. The σ

p
0 = dc

2 value is
selected according to the Hall’s personal space criterion [0.45,
1.2 m], so that the SII value is less than a psychological
threshold Tc, which we consider as the threshold of psycho-
logical safety of humans, when the relative distance between
the human and the robot is greater than dc. As a result, a
human feels less safe psychologically if the SII is greater than
Tc. The value of SII with the corresponding distance between
human and robot is shown in Fig. 6

SGI = max
k=1:K exp

⎛
⎝−

⎛
⎝

(
xr − x g

k√
2σ

g
k

)2

+
(

yr − yg
k√

2σ
g
k

)2
⎞
⎠

⎞
⎠

(31)

σ
g
k =

⎧
⎪⎪⎨
⎪⎪⎩

rm
o

2
, if human–object interaction

r g
k

2
, if human group interaction.

(32)

B. Social Group Index

SGI is calculated using (31) for human group inter-
action or human–object interaction. Here, σ

g
k is com-

puted in (32); ro
m and r g

k are, respectively, computed in
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Fig. 7. Shopping mall-like simulated scenario consisting of walls, objects, humans, and social interactions. The scenario is composed of two main areas: a
dynamic human area and a stationary human area. We deployed 41 humans and a mobile robot into the scenario. In the dynamic human area, the number of
groups of moving humans was created randomly using a distributed function to generate the moving social group interactions. In the stationary human area,
three social interactions were created including: 1) a group of three standing people; 2) a human–object interaction; and 3) a group of two standing people.
The robot sequentially navigates from the start position (Start) through landmarks (A)–(G), and then returns to the start position while avoiding dynamic
humans and human groups in the corridor-like dynamic human area, as well as social interaction situations in the shop-like static human area.

Sections III-B1 and III-B2; and K is the number of human
groups or human–object interactions in the robot’s vicinity.
The range of SGI values is from 0.0 to 1.0. The SGI value
decreases when the robot moves further from the center of
the social space of a human group interaction (xg

k , yg
k ) or

a human–object interaction (xo
m, yo

m). This value is approxi-
mately equal to the psychological group threshold Tg when
the relative distance between the robot and the center of the
social interaction space is equal to the radius of the circle of the
human group formation r g

k , or the human–object formation ro
m ,

as shown in Fig. 3. If the SGI value is greater than the
psychological group threshold Tg , the humans in the human
group or human–object interaction feel uncomfortable, that is,
the robot behaviors do not guarantee the psychological safety
aspects of the human group and human–object interactions.
Fig. 6 shows an example of the SGI value corresponding to
the distance between the robot and the center of the social
interaction space

RMI = max
i=1:N

2 + vr cos(βi ) + v
p
i cos(ϕi )√

(x p
i − xr )2 + (y p

i − yr )2
. (33)

C. Relative Motion Index

RMI is used to measure the relative motion between a robot
and a human, computed in (33). The parameters in (33) are
shown in Fig. 1, where βi is the angle between the robot
orientation and the vector projected from the robot to the
human pi ; ϕi is the angle between the human orientation and
the vector projected from the human pi to the robot; v

p
i and

vr are the velocities of person pi and the robot, respectively;
and N is the number of people. The RMI has a maximum

value when a robot and a human are moving toward each
other at the highest velocities at the closest distance dp—the
situation where the robot crashes into the human. The RMI
value decreases when the velocities of the human and the
robot decrease, and the relative distance and relative angle
βi and ϕi (see Fig. 1) between them increase. We define a
motion threshold Tm of the RMI when a robot and a human
are moving toward each other at the highest velocities at
the distance dc; the robot reaches the circular boundary of
psychological safety of the human. As a result, the higher the
value of RMI, the less socially acceptable the behavior of the
robot.

VI. SIMULATION

We have chosen to implement and test our proposed method
in the robot operating system (ROS) and visualized the result
in Rviz—a visualization tool in ROS. We created a shopping
mall-like scenario consisting of walls, interesting objects,
static and dynamic humans, and social interactions for our
experiments, as shown in Fig. 7.

A. Simulation Setup

In this paper, the PEDSIM library1 and HRVO library2 were
inherited and modified to develop the ESFM and proposed
PSMM. The simulation environment is developed based on
the available software platform.3 Note that we utilized only

1http://pedsim.silmaril.org
2http://gamma.cs.unc.edu/software/
3Designed by the Social Robotics Laboratory, University of Freiburg,

Germany, https://github.com/srl-freiburg
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TABLE I

PARAMETERS SET IN EXPERIMENTS

the conventional SFM, the function to add individual humans,
groups of moving humans, objects, and walls in this software
platform. Using this software platform, we developed a shop-
ping mall-like environment, added humans, social interaction
situations, and interesting objects for our demonstration. We
then incorporated the social group modeling, the ESFM, the
HRVO, and the PSMM into this simulation environment.

For each experiment, the robot was planned to navigate
from the start position (Start) through landmarks (A)–(G), and
then to return to the start position while dealing with social
situations and human contexts, human–object interactions, and
human groups. A total of 41 humans are deployed in the
scenario. In the stationary human area, three social interactions
are created, including: 1) a group of three standing people; 2) a
human–object interaction—a group of two people looking at
an interesting object; and 3) a group of two standing people. In
the dynamic human area, the initial positions of the moving
humans are randomly distributed in the scenario, and their
initial velocities are set at 0.0 m/s. The maximum velocity
of each human is set to 1.0 m/s and their actual velocities
are randomly generated using a normal distribution function
N (0.8, 0.2), where the mean and the standard deviation of
the human’s velocity are 0.8 and 0.2, respectively, that is, the
human’s velocity is randomly selected around 0.8 m/s. We also
generated numerous social group interactions of two moving
humans using a normal distribution function N (7, 2), where
the mean and the standard deviation of the number of the social
group interaction are 7 and 2, respectively, that is, the number
of the social group interactions is randomly selected around
seven interactive groups for each simulation. Note that all the
human behaviors are equipped with either the SFM or the
PSMM to ensure that human behaviors are either reactive or
proactive to moving objects like natural human movements.
Their positions are randomly initialized for their movement
routines in the scenario. To get empirical data, we executed the
robot in a loop until more than 70 000 samples were archived
(each sample corresponding to a time step)—more than 22
rounds in the scenario.

We experimented with the set of parameters selected accord-
ing to the definition of personal space in Hall’s model [30]
and our empirical experiences of this robot platform as shown
in Table I. Specifically, we chose the radius of the human
body rh = 0.25 m and the radius of the robot body rr =
0.25 m, corresponding to the relative distance dp = 0.5 m
for the physical safety of humans. We chose the relative
distance dc = 0.9 m for the psychological safety of humans.

Human psychological safety is assured if the SII value is
smaller than the threshold Tc = 0.14 (i.e., the relative
distance between the human and the robot is greater than
0.9 m). In contrast, human physical safety is violated—the
robot crashes into the human—if the SII value is greater than
the psychological threshold Tp = 0.54 (the relative distance
between them is smaller than 0.5 m). The SGI value is equal
to 1.0 when the robot navigates across the center of the social
interaction space. The psychological safety of humans in a
human group interaction or a human–object interaction is
guaranteed if the SGI value is less than the psychological
group threshold Tg = 0.14, that is, the robot navigates
outside the circular boundary of social interaction spaces
(see Fig. 3). We empirically chose the maximum velocity of
humans v

p
max = 1.0 m/s and the robot vrmax = 1.0 m/s so that

the maximum value of the RMI is 8.0 when the robot and the
human are moving toward each other at their highest velocities
at the closest distance dp = 0.5 m. The RMI value decreases
when the velocities of the human and the robot decrease, and
the relative distance and the relative orientation βi and ϕi

between them increase. Note that the motion threshold of the
RMI Tm is 2.2 where the relative distance between the human
and the robot dc = 0.9 m, the human velocity v

p
i = 0, and

the robot velocity vr = 0.

B. Simulation Results

To demonstrate the effectiveness and usefulness of the
proposed method, we have implemented three experiments
to compare our PSMM with the conventional SFM using the
HCSIs presented in Section V. We also conducted statistical
analysis of all the experiments to illustrate the effectiveness
of our method. A video clip of our simulation results can be
found at this link.4

1) Simulation 1 (SFM–SFM): First, we examined the
robot’s behaviors when the robot motion model and humans
were equipped with SFM. The SII, SGI, and RMI are
shown in Fig. 8(a), (d), and (g), respectively. The SII values
higher than the psychological threshold Tc = 0.14 and those
higher than the physical threshold Tp = 0.54 (existing in
simulation only) indicate that the robot moved too close
to the humans several times, and even crashed into them;
thus, physical safety and psychological safety were not sat-
isfied. The SGI values were much greater than those for
psychological group safety Tg = 0.14, implying that the
robot crossed through the social interaction spaces between
the human groups and human–object interactions, leading to
human discomfort in social interactive situations and contexts.
In addition, the RMI values being higher than the motion
threshold Tm = 2.2 show that the robot moved too close
to the humans, instead of proactively and socially avoiding
them.

2) Simulation 2 (PSMM–SFM): Next, we studied the
robot’s behaviors when the robot motion model was installed
with the proposed PSMM while humans were equipped with
the SFM. The SII values, SGI values, and RMI values are,

4https://youtu.be/6mqPzCjRZAc



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 8. HCSIs of three simulations (three pairs). The HCSI values of simulation 1—SFM–SFM, simulation 2—PSMM–SFM, and simulation 3—PSMM–
PSMM are, respectively, presented in the first column—SII, the second column—SGI, and the third column—RMI.

respectively, shown in Fig. 8(b), (e), and (h). The SII val-
ues were sometimes higher than the psychological threshold
Tc = 0.14, and were even higher than the physical threshold
Tp = 0.54, because the robot could not actively avoid humans
when individuals or human groups intended to move toward
it. However, the density of the SII values that were higher than
Tp and Tc shown in Fig. 8(b) was much less than that of the
SII values shown in Fig. 8(a), indicating that a robot equipped
with the PSMM better maintained physical and psychological
safety than a robot equipped with the SFM. The SGI values
were mostly maintained lower than the psychological group
threshold Tg = 0.14, except that the SGI value reached 0.58,
where the robot was heading to a destination while a group
of two people were leaving from the same destination. The
SII and SGI values also show that the robot inconsistently
navigated in a socially acceptable manner. The RMI values
were maintained lower than the motion threshold Tm = 2.2,
that is, the robot proactively avoided humans.

3) Simulation 3 (PSMM–PSMM): Finally, we investigated
the robot’s behaviors when both the robot and the humans
were equipped with the same proposed PSMM. The SII, SGI,
and RMI values are, respectively, shown in Fig. 8(c), (f),
and (i). The SII values were always maintained lower than
the psychological threshold Tc = 0.14, while the SGI values
were maintained at approximately 0.0, much lower than the
psychological group threshold Tg = 0.14, that is, both the
physical and psychological safety aspects were satisfied and
the robot navigated in a socially acceptable manner. The RMI
values shown in Fig. 8(i) were maintained at lower than the
motion threshold Tm = 2.2, even lower than the RMI shown
in Fig. 8(h), that is, the robot proactively acted according to
human behaviors. Therefore, we believe that humans feel more
comfortable when both the robot and humans follow the given
rules of PSMM in social environments.

C. Statistical Analysis of the Simulation Results

In this section, we analyze the robot behaviors through
the statistical data collected from 70 000 samples for each
experiment. Using the psychological threshold Tc of the SII
value, the psychological group threshold Tg of the SGI value,
and the relative motion threshold Tm of the RMI value as the
baselines, we qualitatively verify how the PSMM performs in
comparison with the conventional SFM. The statistical data
help us to verify whether we can empirically select systematic
parameters for the robot if we have good knowledge about
human behaviors and their social environment as described in
Section VI-A.

1) Percentage: Fig. 9 illustrates the percentage distributions
of the SII, SGI, and RMI. Specifically, we take into account
only the percentage calculated from the number of the robot’s
running steps satisfying the psychological threshold Tc = 0.14
of the SII, the psychological group threshold Tg = 0.14 of the
SGI, and the relative motion threshold Tm = 2.2 of the RMI
values. The percentages of the (SII, SGI, and RMI) indices
of simulation 3 (PSMM–PSMM) are (0.02, 0.00, 0.00), com-
pared with (8.87, 5.22, 0.08) in simulation 1 (SFM–SFM) and
(1.16, 0.10, 0.00) in simulation 2 (PSMM–SFM), respectively.
These comparative results show that the robot and the humans
equipped with the proposed PSMM had the smallest percent-
age, that is, the robot did not frequently move too close to
the individuals and human groups when it was equipped with
the PSMM. In other words, the robot proactively and safely
avoided humans while navigating toward its given destination.

2) Mean and Standard Deviation of the Human Comfortable
Safety Indices: The means and the standard deviations of
the SII, SGI, and RMI values are shown in Fig. 10.
The mean values of the SII and SGI in simulation 3
(PSMM–PSMM) are (0.0027, 0.0001), compared with
(0.0387, 0.0275) in simulation 1 (SFM–SFM) and
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Fig. 9. Percentage of the samples that have values higher than the thresholds
Tc, Tg , and Tm corresponding to SII, SGI, and RMI, respectively.

Fig. 10. Mean and standard deviation of the values of the SII and the SGI (a),
and the RMI (b).

(0.0085, 0.0006) in simulation 2 (PSMM–SFM), respectively,
that is, these values are the smallest mean when the robot
and the humans are equipped with the proposed PSMM.
The corresponding standard deviations of simulation 3
(0.0087, 0.0005) are smaller than those in simulation 1
(0.1082, 0.1210) and simulation 2 (0.0340, 0.0142),
respectively. That means the robot with the PSMM did
not navigate too close to the humans and human groups, so it
behaved socially and safely to humans. Furthermore, the mean
and standard deviation values of the RMI in simulation 3
are (0.2639, 0.1183), compared with (0.3535, 0.2658)
in simulation 1 and (0.2919, 0.1521) in simulation 2,
respectively. The comparative results of the means and
standard deviations of the SII, SGI, and RMI indicate that,
different from the robot behaviors when installed with the
SFM, the robot equipped with the PSMM did not move too
close to the individuals and the human groups at a high speed
and at a small relative angle (see the relative pose in Fig. 1).
Therefore, the robot proactively planned its route to avoid
the humans when navigating toward its given destination.

3) Mean and Standard Deviation of Differentials of the
Robot’s Orientation and Velocity: To further demonstrate
the proactiveness of the PSMM in terms of generating a
smooth trajectory, so-called proactively planned trajectory,
for the mobile robot in dynamic and crowded environments,
we computed the mean and standard deviation of the differ-
ential of the robot’s orientation and velocity between time
steps (t) and (t + 1), as shown in Fig. 11. In simulation 3
(PSMM–PSMM), the values of the mean and the standard
deviation of the differential of the robot’s orientation and the
velocity are (0.02, 0.2694) and (0.8653, 0.1607), compared
with those in simulation 2 (PSMM-SFM) (0.0261, 0.3144)

Fig. 11. Mean and standard deviation of the differential of the robot’s
orientation (a), and the robot’s velocity (b) between time step t and (t + 1).

and (0.8422, 0.1805), respectively. We observed that the mean
and standard deviation values of the robot’s orientation in
simulation 3 are smaller than those in simulation 2. Moreover,
the mean value of the robot’s velocity in simulation 3 is
greater than that in simulation 2 while its corresponding
standard deviation value in simulation 3 is smaller than that in
simulation 2. These comparative results mean that the robot
equipped with the PSMM navigated at higher velocity but did
not need to rapidly change its navigation direction [measured
by the differential of moving direction between time step
(t) and (t + 1)]. In addition, the robot did not change its
orientation and velocity substantially. In contrast, the values
of the mean and standard deviation of the differential of the
robot’s orientation and velocity in simulation 1 (SFM-SFM)
are (0.0159, 0.2522) and (0.9273, 0.0806), respectively. These
values indicate that the robot navigated at the highest velocity
but did not change its direction smoothly, compared with those
in simulations 2 and 3. The fact that the robot equipped
with the SFM could not properly avoid the human groups
and human–object interactions, and thus it did not guarantee
human physical and psychological safety in dynamic and
crowded environments.

Overall, the statistical analysis proves that the PSMM is
capable of guaranteeing human safety and comfort in terms
of both physical and psychological aspects, while allowing
the mobile robot to proactively plan its smooth trajectory with
socially acceptable behaviors through crowded and dynamic
human environments. Moreover, we believe that the sys-
tem parameters can be accordingly selected for our mobile
robot platform in real-world experiment as presented in the
following.

VII. EXPERIMENTS

We have implemented the proposed framework on our
mobile robot platform to validate its feasibility and effective-
ness. To do that, we conducted experiments in an office-like
environment to examine whether our robot could proactively
avoid humans while navigating safely and socially in a real-
world environment.

A. Mobile Robot Platform

We used an Eddie mobile robot platform equipped with a
Microsoft Kinect sensor and a laser rangefinder, as shown
in Fig. 12(a). The standard Kinect sensor composed of an



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 12. (a) Eddie mobile robot platform provided with a Kinect sensor and
a laser range finder. (b) Data flow diagram of the proposed system.

infrared light projector, a depth sensor, an RGB camera, and
a multiarray microphone was positioned at a 1.35 m height
from the ground. The depth sensor range is from 0.8 to 6.0 m
with a vertical viewing angle of 43◦ and a horizontal viewing
angle of 57◦. This low-cost hardware can provide RGB-D data
with 640 × 480 pixels resolution at a maximal frame rate
of 30 frames/s. The laser range finder, UGR-04LX-UG01 posi-
tioned at a height of 0.4 m, provides distance measurements
up to 6.0 m in the angular field of view 240◦.

B. Human Detection and Tracking, and Extraction
of Human States

The human detection and tracking module provides an
important input for the remaining modules in our proposed
framework. However, the main focus of this paper is to
propose a PSMM for mobile service robot in dynamic and
crowded environments. Therefore, we adopted the result of
the human detection and tracking system from [52] and [53].
We integrated two techniques for the experiments because
the technique proposed in [52] provides us the 3-D pose of
the humans but it is only used with the static camera, while
the technique proposed in [53] can be used with the moving
camera but it does not provide the 3-D human pose.

For Experiment 1 (avoiding stationary humans), we used
the results from [52] to extract the 3-D human pose including
human position, orientation, motion, and hand pose. Further-
more, to reduce the difficulty of estimating the gaze direction
of humans over long distances, especially in dynamic envi-
ronments, we used the human torso orientation information
instead of the gaze direction. As a result, the human states
extracted from the human states extraction model are pi =
(x p

i , y p
i , θ

p
i , v

p
i , xrh

i , yrh
i , xlh

i , ylh
i ). This information is then

used as the inputs of the ESFM and HRVO models, as seen
in Fig. 12(b).

Fig. 13. Experiment scenarios. (a) Three standing people. (b) Two people
interacting with an object. (c) Walking person. (d) Group of two walking
people.

For Experiment 2 (avoiding dynamic humans), we utilized
the human detection and tracking algorithm developed in [53]
to estimate the human position and velocity. The basic idea
of this approach is to fuse the human information detected
by laser data as presented in [54] and Kinect sensor data as
explained in [55] using a particle filter. A detailed description
of the technique can be found in [53]. As a result, the human
states are pi = (x p

i , y p
i , θ

p
i , v

p
i ). This information is then used

as the inputs of the social interaction modeling module, as
shown in Fig. 12(b).

C. Experimental Setup

The data flow diagram of the proposed system in the mobile
robot platform is shown in Fig. 12(b). The software core of
the robot is developed on the ROS [56] run on an Intel core
i7 2.2-GHz laptop. The proposed framework was implemented
using the C++ programming language and MATLAB. We also
used the OpenCV library [57] and the point cloud library [58].

In this paper, we conducted two experiments in our labora-
tory environment: Experiment 1—avoiding stationary humans
and Experiment 2—avoiding dynamic humans. In each
experiment, we verified the robot behavior in two cases:
1) SFM—using the conventional SFM introduced in [22] and
2) PSMM—using our proposed PSMM. We then compare
the experimental results between these methods to illustrate
the performance of the proposed framework. We executed
all the experiments with the parameter values presented in
Table I.

D. Experimental Results

1) Experiment 1 (Avoiding Stationary Humans): In this
experiment, we aimed to examine whether the robot was able
to avoid a stationary person or a group of standing people
safely and comfortably. A video with our experimental results
can be found at the hyperlinks.5

5https://youtu.be/vI6ovom97G0
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Fig. 14. Experimental results of Experiment 1—robot avoids stationary people, including: 1) a group of three standing people and 2) two human–object
interactions. Two cases studied are examined: SFM—the robot is equipped with the conventional SFM and PSMM—the robot is equipped with the proposed
PSMM. The first row shows the trajectory of the robot and the human. The second, third, and fourth rows illustrate the HCSIs including the SII, SGI, and
RMI, respectively.

a) Avoiding a standing person and a group of two stand-
ing people: The scenario was set up as seen in Fig. 13(a),
in which three people were positioned in the field of view of
the robot. The people p1 and p2 formed a group while the
person p3 stood alone. The experimental results of the SFM
are shown in Fig. 14(a), (e), (i), and (m), and the experimental
results of the PSMM are shown in Fig. 14(b), (f), (j), and (n).
As shown in Fig. 14(a), although the robot did not navigate
too close to the people, it crossed through the interaction space
between the people p1 and p2 so these people might not feel
comfortable. In contrast, the robot socially and politely moved
around the group of two people p1 and p2 and avoided the
person p3 socially and respectively, as seen in Fig. 14(b).

b) Avoiding a group of two people interacting with an
object: The scenario was set up as seen in Fig. 13(b), in
which a group of two standing people interacting with an
interesting object were positioned in the field of view of the
robot. The experimental results of the SFM are shown in
Fig. 14(c), (g), (k), and (o), and the experimental results of the
PSMM are shown in Fig. 14(d), (h), (l), and (p). As shown in
Fig. 14(c), although the robot did not navigate too close to the
people, it crossed through the interaction space between the

people p1 and p2, and also the interaction space between the
people and the object, and thus these people might not feel
comfortable, e.g., when they were watching TV. In contrast,
the robot respectively and socially moved around the group of
two people p1 and p2, as seen in Fig. 14(d).

The experimental results shown in Fig. 14 illustrate that the
robot equipped with our proposed PSMM proactively guided
the mobile robot to avoid not only a standing person but also
a group of standing people and a human–object interaction in
socially acceptable manners, which could not be done by the
conventional SFM.

2) Experiment 2 (Avoiding Dynamic Humans): In the sec-
ond experiment, we aimed to examine whether the robot was
able to avoid a dynamic person or a group of dynamic people
safely and comfortably. A video with our experimental results
can be found at the hyperlinks.6

a) Avoiding a walking person: The scenario was set
up as seen in Fig. 13(c), in which a walking person was
positioned in the field of view of the robot. The experimental
results of the SFM are shown in Fig. 15(a), (e), (i), and (m),

6https://youtu.be/lyK2vLSeaHE
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Fig. 15. Experimental results of Experiment 2—robot avoids dynamic people, including: 1) a moving person and 2) a group of two moving people. Two cases
studied are examined: SFM—the robot is equipped with the conventional SFM and PSMM—the robot is equipped with the proposed PSMM. The first row
shows the trajectory of the robot and the human (a), (b), (c), (d). The second (e), (f), (g), (h), third (i), (j), (k), (l), and fourth (m), (n), (o), (p) rows illustrate
the HCSIs including the SII, SGI, and RMI, respectively.

whereas the experimental results of the PSMM are shown
in Fig. 15(b), (f), (j), and (n). As shown in Fig. 15(a),
although the robot did not collide with the person p1, it only
started avoiding the person at the short distance, and thus the
moving person p1 might not feel comfortable with this robot
navigation. In contrast, the robot proactively avoid the walking
person p1, as seen in Fig. 15(b).

b) Avoiding a group of two walking people: The scenario
was set up as seen in Fig. 13(d), in which a group of two
walking people were positioned in the field of view of the
robot. The experimental results using the SFM are shown
in Fig. 15(c), (g), (k), and (o), and the experimental results
with the PSMM are shown in Fig. 15(d), (h), (l), and (p).
As shown in Fig. 15(c), although the robot still ensured
the human physical safety because it did not navigate too
close to the people, it crossed through the interaction space
between the people p1 and p2, so these people might not
feel comfortable. In contrast, the robot respected the group
interaction space of two people p1 and p2 and proac-
tively moved around the group to not interfere their social

interaction, e.g., when they were in a social conversation, as
seen in Fig. 15(d).

Overall, the experimental results shown in Figs. 14 and 15
illustrate that the robot equipped with the PSMM enabled the
mobile robot to proactively avoid not only a static human and
a human group but also a dynamic human and human group,
providing comfortable safety for the humans and socially
acceptable behaviors for the robot.

VIII. CONCLUSION

We have presented a PSMM for the socially aware navi-
gation framework of mobile service robots in dynamic and
crowded human environments. In our model, the socio-
spatiotemporal characteristics of humans and human groups
are taken into account to develop the PSMM for the mobile
robot by taking advantages of both the ESFM and the HRVO.
We have demonstrated the effectiveness of the proposed
method through both simulations and real-world experiments.
We emphasize that the newly developed PSMM can be incor-
porated into any path planning method to make a human-
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aware motion planning system that is capable of dealing
with different social situations and contexts of humans and
human groups to generate a proactively planned trajectory
for a mobile service robot in crowded and dynamic environ-
ments. We conclude that the PSMM is capable of enabling
a mobile robot not only to navigate safely and socially but
also to proactively plan its trajectory according to human and
human groups in dynamic social environments with socially
acceptable behaviors.

Our proposed PSMM has been developed on the background
of HRVO and SFM models, which are known as proactive and
reactive controllers for dynamic and crowded environments.
Therefore, PSMM can be used for a very crowded and chaotic
environment because new control commands are fast generated
for the robot. Our major concern when applying the PSMM for
a mobile service robot is about the robot perception because
the computational cost of the human detection and tracking
could dramatically increase at very crowded and chaotic
environment, effecting to the real-time data processing of the
PSMM. To make the robot to adapt to such environments, the
maximum velocity of the robot should proportionally decrease.
Therefore, robot perception and its computational complexity
could be a limit that we should further investigate in the future.

Another focus of our future research directions is to examine
how to incorporate more social signals and cues, and cultures
rules into this PSMM to make a robot behave like humans
in a social environment because the current PSMM enables
the robot to avoid humans smoothly but does not always react
like humans in terms of cultural rules, e.g., polite to give a
way, following the right-hand-side traffic laws. In addition, we
also think about how to incorporate the proposed PSMM with
various path planners in social environments. In this paper,
we used a set of waypoints, which are feasible in crowded
and dynamic environments, but a path planner is necessary in
a known environment. Incorporating a path planner and the
PSMM to make a new motion planner is another interesting
topic of our future research directions.
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