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Abstract

Deoxyribonucleic acid (DNA) microarray is an important technology, which supports a simulta-
neous measurement of thousands of genes for biological analysis. With the rapid development of
the gene expression data characterized by uncertainty and being of high dimensionality, there is a
genuine need for advanced processing techniques. With this regard, Fuzzy Possibilistic C-Means
Clustering (FPCM) and Granular Computing (GrC) are introduced with the aim to solve problems
of feature selection and outlier detection. In this study, by taking advantage of the FPCM and GrC,
an Advanced Fuzzy Possibilistic C-Means Clustering based on Granular Computing (GrFPCM) is
proposed to select features as a preprocessing phase for clustering problems while the developed
granular space is used to cope with uncertainty. Experiments were completed for various gene
expression datasets and a comparative analysis is reported.

Keywords: fuzzy clustering, fuzzy possibilistic c-means clustering, granular computing, feature
selection, microarray technology, DNA analysis, gene expression data.

1. Introduction1

Deoxyribonucleic acid (DNA) microarray is an important technology which facilitates the2

measurement of thousands of genes coming from different samples [16]. However, the large3

number of genes and the complexity of biological networks greatly increase the challenges of4

comprehending and interpreting the gene expression data, which often involves millions of mea-5

surements.6

Clustering is a technique widely used in data mining consisting of bioinformatic. Currently,7

clustering problems often deal with large and highly dimensional datasets. This also raises im-8

portant issues to be addressed on how to retrieve useful information from such datasets [36]. In9

this section, a literature review is given on the addressed issues: 1) the usage of the clustering10

techniques in DNA microarray problem and 2) the advantage of possibilistic approach to fuzzy11

clustering and 3) feature selection approaches to highly dimensional DNA problem.12

Preprint submitted to Elsevier June 16, 2017
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Many clustering algorithms have been adapted or directly applied to gene expression data to13

partition a given data set into groups based on specified features to reveal natural structures, which14

have drawn a great deal of attention in the bioinformatics community. Genes or samples with sim-15

ilar expression patterns can be clustered together with similar cellular functions. This approach16

may further foster understanding of the functions of many genes for which information has not17

been previously available [13]. The clustering methods which were used for gene expression data,18

are mainly hierarchical clustering and some other conventional clustering algorithms such as a19

mixture of multivariate Gaussians (FMG), K-Means and spectral clustering (SPC) [13]. Eisen et20

al. [17] presented cluster analysis for genome-wide expression data which uses standard statistical21

algorithms to arrange genes according to similarity in patterns of gene expression, which cluster-22

ing methods have been shown the usefulness in analysis of gene expression data. The drawbacks23

of various clustering methods for performing a large-scale dimensionality of gene expression data24

were also shown by Souto et al [13] where the applications of seven different clustering methods25

were studied. Those methods included finite mixture of Gaussians (FMG), K-Means and hierar-26

chical methods to analyze 35 cancer gene expression datasets where the FMG exhibited the best27

performance, followed closely by K-Means.28

Besides, Wang et al. [12] proposed a modified K-Means algorithm for human genetic re-29

search and other biomedical applications. Chen [8] proposed a neighbour-based method for gene30

assessment which is used for enhancing the discovery of interesting clusters. Mukhopadhyay et31

al. [4] proposed a way to improve fuzzy clustering by combining it with support vector machine32

(SVM) classifier for gene expression data. Sun et al. [3] proposed a new clustering method for33

gene expression datasets which is the combination of K-Means algorithm and a modified version34

of Quantum-behaved Particle Swarm Optimization (QPSO) algorithm, known as the Multi-Elitist35

QPSO (MEQPSO) model. Their results showed a promising research direction for gene cluster-36

ing but still exhibits some restrictions especially when encoding the particle. Hastie et al. [9]37

presented a statistical method called ”gene shaving” which defines subsets of genes through the38

coherent expression patterns and large variation across conditions. Gene shaving differs from the39

other widely used methods for gene expression analysis in which genes may belong to more than a40

single cluster, and the clustering may be controlled by some outcome measures. /The gene shaving41

method was used to analyze gene expression data with diffuse large B-cell lymphoma by deter-42

mining a small cluster of genes whose expression is highly predictive of survival. However, the43

shaving process requires repeated computation of the largest principal component of a large set of44

variables. Thus, the gene shaving method is usually used for feature selection problem of the gene45

expression data which will be covered in more detail later.46

Although these algorithms have exhibited usefulness for identifying biologically relevant groups47

of genes and samples, they do not work efficiently and produce sound results when coping with48

noisy, incomplete and uncertain data. Addressing the above challenges, fuzzy clustering algo-49

rithms were designed to deal with uncertain or vague data. Fuzzy C-Means (FCM) was consid-50

ered as one of the most widely used fuzzy clustering which allows a data point to belong to more51

than one cluster with different membership grades [33]. The FCM algorithm assigns a pattern to52

a cluster on the basis of the inverse distance between them. In case the distances of a pattern to53

two centroids are approximately equal, confusion appears when assigning the pattern to clusters,54

which is considered as the noise sensitivity of fuzzy clustering [31]. To overcome this problem,55
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a certain version of fuzzy clustering is based on possibilistic approach which was first proposed56

by Krishnapuram et al. [32]. This algorithm determines a possibilistic partition in which a pos-57

sibilistic membership is used to quantify a degree of typicality of a point belonging to a certain58

cluster. The larger the distance between an object to a centroid (prototype) is, the lower the possi-59

bilistic membership grade is, and the lower the impact of the particular object on the centroid is.60

Therefore, methods of outlier detection or noise removal are of interest.61

However, in the possibilistic approach some drawbacks still exist, especially when it comes62

to choosing suitable values of the parameters of the clustering method. Pal et al. [31] proposed63

a method called Fuzzy Possibilistic C-Means which uses the membership values [33] as well as64

the typicality values of the PCM [32] to produce a better clustering algorithm. The constraint65

stating that the sum of all the typicality values of all data to a cluster must be equal to one causes66

problems; in particular for big data [30]. In order to handle this problem, Zhang et al. [30]67

proposed a combination of Fuzzy C-Means and Possibilistic C-Means, called Fuzzy Possibilistic68

C-Means (FPCM), to address some shortcomings associated with the possibilistic approach such69

as the noise sensitivity of FCM, resolve the coincident clusters of the possibilistic approach and70

eliminates the sum constraints of FPCM. Ferraro et al [44] focused on robust analysis of non-71

precise data on the basis of a fuzzy and possibilistic clustering method in which parameters were72

chosen by minimizing the Xie and Beni validity index.73

Meanwhile, clustering techniques are commonly used in gene expression data. They also74

demonstrate some shortcomings when coping with highly dimensional data. Feature selection is75

one of the broadly used techniques to reduce the data dimensionality. It aims to select a subset of76

the relevant features according to a certain evaluation criterion so that the selected features fully77

represent the dataset to solve the problem [35, 36]. Many feature selection methods were proposed78

to analyze gene expression data. However, feature selection methods, which were proposed for79

clustering as filter, wrapper and hybrid models, are usually designed based on the greedy approach80

following a given evaluation criterion. This makes the methods time-consuming and of low effi-81

ciency when facing with very highly dimensional data. In such cases, forming relevant features is82

unclear and has to be carefully addressed.83

Several studies related to DNA microarray problems have mentioned feature selection as an84

elementary tool for processing highly dimensional data. L.Shen et.al [7] used the penalized lo-85

gistic regression combined feature reduction methods to cancer classification using microarray86

data. Zhu et al. [28] proposed a novel Markov blanket embedded genetic algorithm (MBEGA)87

for gene selection problem. The embedded Markov blanket based memetic operators are able88

to add or delete features (or genes) from a genetic algorithm (GA) solution so as to quickly im-89

prove the solution and fine-tune the search. Jaziri et al. [1] presented an efficient parallelization90

method for speeding up the complete backtranslation in generating all possible nucleic acid se-91

quences for functional DNA microarrays. Kim et al. [10] also presented a meta-classifiers for92

high-dimensionality with the farthest-first clustering algorithm. Chen et al. [2] proposed a kernel-93

based clustering method for gene selection which was formed based on the best weights of genes94

by a process of kernel clustering. Vimaladev et al. [6] proposed Back Propagation Neural networks95

(BPN) and fast Genetic Algorithms (GA) to estimate the feature selection in gene expression data.96

Kah et al. [11] proposed a combined method of Gram-Schmidt orthogonal forward selection97

(OFS) and FunCluster to search for high-dimensional data in microarray data. Li et al. [5] study98
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the problem of building multiclass classifiers for tissue classification based on gene expression.99

The process of building multiclass classifiers is divided into two components: selection of the100

features (i.e. genes) to be used for training and testing and selection of the classification method.101

Recently, Granular Computing (GrC) has emerged as a powerful vehicle to construct and pro-102

cess information granules. Information granules are formed by grouping similar objects, based103

on their similarity, closeness or proximity. It is used for handling complex problems, coping with104

massive data, capturing uncertainty, representing data of high dimensionality [36, 40]. In [39], W.105

Pedrycz synthesizes and reviews the granular fuzzy models which were built from the fuzzy data106

analysis and fuzzy regression. This paper also exhibited the direction of promising research on the107

fuzzy model based on GrC. Qian et. al [37] introduced the fuzzy granular structure distance to108

discriminate the difference between any two fuzzy granular structures which can be used to estab-109

lish a generalized axiomatic constraint for fuzzy information granularity. Thus, this distance is a110

basis for granular clustering applications. In addition, GrC was applied to support vector machine111

(SVM) forming Granular support vector machine (GSVM) [34]. In this application, GSVM can112

improves the generalization ability and learning efficiency to a large extent when comparing with113

the traditional SVM and points out the research and development prospects. GrC can be used to114

solve the big data problems by hierarchical attribute reduction algorithms [38]. Beside, GrC can115

be combined with a clustering method to utilize feature selection for clustering to alleviate the116

negative impact of high dimensionality of the problem [40]. Sun et al. designed a feature selection117

method based on rough entropy [35] and GrC [40]. However, these feature selection methods are118

similar to the classification methods, which need labeled samples as training samples to select the119

necessary features, these applications were only focused on the classification or decision system120

problems.121

From the above, we can see that the combination of clustering techniques and GrC is a promis-122

ing way to apply clustering techniques to gene expression data problem while still dealing with123

the feature selection problem by GrC.124

Thus, in this study, an advanced Fuzzy Possibilistic C-Means Clustering is proposed on a125

basis of a combination of FPCM algorithm [30] and Granular Computing [40] with an ultimate126

objective to handle the noise removal or outlier detection and feature selection for dealing with127

highly dimensional data. The proposed method not only takes advantage of the FPCM ability to128

handle noise, but also uses the concepts of GrC to assess the significance of the features, thus129

leading to the elimination of the effects of irrelevant features and noise. Namely, GrC is used130

to remove the irrelevant features and to form the granules which can handle the uncertainties131

to improve the efficiency of clustering methods. Thus, this algorithm potentially enhances the132

clustering results when working with gene expression data. Experiments are reported by using133

several publicly available gene expression data.134

This paper is organized as follows: Section 2 briefly introduces some background concern-135

ing Fuzzy Possibilistic C-Means Clustering and Granular Computing; Section 3 proposes the ad-136

vanced Fuzzy Possibilistic C-Means Clustering Based on Granular Computing; Section 4 offers137

some experimental results and section 5 covers conclusions and future research directions.138
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2. Preliminaries139

2.1. Fuzzy Possibilistic C-Means Clustering Algorithm140

Fuzzy Possibilistic C-Means Clustering Algorithm (FPCM) was proposed by Zhang et al. [30].141

FPCM produces two types of membership grades: 1) A possibilistic membership that expresses142

the absolute degree of typicality of a point to any particular cluster, and 2) a membership that143

relates to the relative degree of sharing of the point among the clusters.144

The objective function for FPCM is formed as follows:

JFPCM(T, U, V ;X, γ) =
c∑

i=1

n∑

k=1

umikt
p
ikd

2
ik, 1 ≤ m, p ≤ ∞ (1)

+
c∑

i=1

γi

n∑

k=1

umik (1− tik)p (2)

in which dik =‖ xk − vi ‖ is the Euclidean distance, c is the number of clusters, n stands145

for the number of objects, p is a weighting exponent (fuzzification coefficient) of the possibilistic146

membership (p > 1) and fuzzifier m (m > 1).147

The scale parameter γi standing in (2) is to incorporate the possibilistic membership degrees148

and membership ones:149

γi = K

∑n
k=1 t

p
iku

m
ikd

2
ik∑n

k=1 t
p
iku

m
ik

, K > 0 (3)

where K is a certain constant.150

tik denotes the possibilistic membership degree of xk belonging to the ith cluster and uik stands151

for the degree of membership. They are determined as follows:152

tik =
1

1 +
(
d2ik
γi

) 1
p−1

,∀i, k (4)

153

uik =
1

∑c
j=1

(
t
(p−1)/2
ik dik

t
(p−1)/2
jk djk

) 2
m−1

(5)

in which i = 1, 2, ..., c; k = 1, 2, ..., n.154

The centroids (prototypes) are computed in the same way as in case of the FCM algorithm155

[33]:156

vi =

∑n
k=1 t

p
iku

m
ikxk∑n

k=1 t
p
iku

m
ik

,∀i (6)

i = 1, 2, ..., c.157

Defuzzification (decoding) realized in the FPCM is realized in the following way: if uik > ujk158

for j = 1, 2, ..., c and j 6= i then xk is assigned to the ith cluster.159

This algorithm is concisely described as follows:160

Algorithm 1 Fuzzy Possibilistic C-Means Clustering algorithm161
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1 Input: A dataset X = {xi, xi ∈ Rd}, i = 1, 2, ..., n, the number of clusters c (1 < c < n), weighting162

exponents p,m(1 < p,m < +∞) and error ε.163

2 Output: The possibilistic membership matrix T, membership matrix U and the centroid matrix V.164

3 Step 1:165

3.1 The number of iterations is set to l = 0.166

3.2 Execute a Fuzzy C-Means Clustering algorithm to find an initial U (l) and V (l).167

3.3 Compute γ1, γ2, ..., γc based on the U (l) and V (l) as follows: γi =
∑n

k=1 u
m
ikd

2
ik∑n

k=1 u
m
ik

168

4 Step 2:169

repeat :170

4.1 l = l + 1.171

4.2 Update the possibilistic membership matrix T (l) by using (4).172

4.3 Update the membership matrix U (l) by using (5).173

4.4 Update the centroid matrix V (l) =
[
v
(l)
1 , v

(l)
2 , ..., v

(l)
c

]
by using (6).174

4.5 Apply (3) to compute γ1, γ2, ..., γc based on the T (l),U (l) and V (l).175

until :176

Max
(
||U (l+1) − U (l)||

)
≤ ε

5 Assign data xk to ith cluster if uik > ujk, j = 1, 2, ..., c and j 6= i.177

2.2. Granular Computing178

The framework of granular computing was proposed by Zadeh [42]. GrC is a computing179

paradigm of processing information [41]. When using granular computing in clustering, a gran-180

ule is formed by a set of elements which are drawn together by indistinguishability, similarity,181

proximity or functionality.182

Considering a clustering system S = (X,A, V, f) denoted as S(X,A) withX = {x1, x2, ..., xn}183

being a non-empty finite set of objects; A = {a1, a2, ..., ad} is a non-empty finite set of features;184

V =
⋃
a∈A

Va with Va is called the value domain of the feature a, f is the information function of185

the system, f : X × A→ V .186

Some definitions [43] were introduced to granulate the clustering system. An indiscernibility187

relation on X is used to form a granule based on selecting the subsets of features.188

Definition 2.1. For each subset of features B ⊆ A, the non-empty set determines an indiscerni-189

bility relation on X as follows:190

RB = {(xi, xj) ∈ X ×X|fa (xi) = fa (xj) , ∀a ∈ B}191

RB is an equivalence relation on X, and it forms a partition of X , denoted by X/RB =192

{[xi]B|xi ∈ X} where [xi]B = {xj ∈ X| (xi, xj) ∈ RB} is called an equivalence class of xi with193

respect to B.194

A granule used for clustering system is defined as follows:195

Definition 2.2. Let S = (X,A) be a clustering system. An information granule is defined as196

grk = (ϕk,m(ϕk)), where ϕk refers to the intention of information granule, andm(ϕk) represents197

the extension of information granule.198
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Suppose that B = {a1, a2, ..., ad′} ∈ A then there must exist ϕk = {I1, I2, ..., Id′} such that199

Ij ∈ Vaj is a set of feature values corresponding to B. Then, the intention of an information200

granule can be denoted by ϕk = {I1, I2, ..., Id′}, and the extension can be denoted by m(ϕk) =201

{x ∈ X|f(x, a1) = I1 ∧ f(x, a2) = I2 ∧ ... ∧ f(x, ad′ ) = Id′ , aj ∈ B}, j ∈ {1, 2, ..., d
′}. Here,202

m(ϕk) describes the internal structure of the information granule.203

A granularity of system of features set B, denoted GK(B), which is defined for examining the204

maintenance of clustering system.205

Definition 2.3. Let S = (X,A) be a clustering system, the concept Granularity of System of206

features set B based on the Granules set Gr = {grk} denoted GK(B), B ⊆ A, is determined as207

follows:208

GK(B) =

|Gr/B|∑

k=1

|m (ϕk)|2/|X|2,m (ϕk) ∈ grk (7)

For example, the dataset X = {x1, x2, x3, x4}, xi ∈ R3, the set of features A = {a1, a2, a3} and209

B = {a1, a2}, where x1 = (1, 2, 3), x2 = (1, 2, 1), x3 = (2, 3, 1) and x4 = (1, 2, 2). Suppose210

Ij = f(xi, aj) = x
(j)
i then we obtain the set of granules Gr/B = {gr1, gr2}, in which gr1 =211

(ϕ1,m(ϕ1)), ϕ1 = (1, 2), m(ϕ1) = {x1, x2, x4}, and gr2 = (ϕ2,m(ϕ2)), ϕ2 = (2, 3), m(ϕ2) =212

{x3}. Resulting in GK(B) = (32/42) + (12/42) = 10/16.213

3. Advanced Fuzzy Possibilistic C-Means Clustering based on Granular Computing214

3.1. Feature reduction based on Granular Computing215

According to the underlying concepts of Granular Computing, the significance of a set of216

features in clustering system was proposed [43]. Given a clustering system S = (X,A), there is a217

feature in A, denoted a ∈ A, so that we can express the degree of importance through the quantity218

of the granularity of A when the feature a is removed.219

Definition 3.1. The significance degree of feature a ∈ A, denoted SigA−{a}(a), is defined as220

follows:221

SigA−{a}(a) = GK(A− a)−GK(A) (8)

Note that the larger degree SigA−{a}(a) takes, the more important the feature a is.222

Definition 3.2. Given an information system S = (X,A) and feature a ∈ A, the feature a is223

called redundant feature to A if the value of GK(A − a) is equal to GK(A). Otherwise, the224

feature a is called necessary feature to A. The set of all the necessary features is the core of A,225

denoted Core(A).226

Definition 3.3. Given an information system S = (X,A) and a set of features C : C ⊆ A. Set C227

is called a reduction of A if C is independent. All the reduction of A is denoted by Red(A).228
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The reduction algorithm is described as follows:229

Algorithm 2 Feature reduction based on Granular Computing230

1 Input: A granular information system S=(X,A) where X 6= ∅ is the universe and A 6= ∅ is the set of231

features. The granularity of A is denoted as GK(A).232

2 Output: C is as the minimum reduction of A.233

3 Step 1. Determine the core of features Core(A) as follow: Calculate the significance degree of each234

feature a ∈ A, denoted SigA−{a}(a), if SigA−{a}(a) 6= 0 then select feature a into Core(A).235

4 Step 2.236

4.1 Assign C := Core(A).237

4.2 If GK(C) = GK(A) then terminal criteria is meet.238

4.3 repeat :239

4.3.1 For each feature a ∈ A− C to C, calculate its significance degree to C ∪ {a}: SigC(a).240

4.3.2 Find the feature a so that its significance degree toC reaches the maximal value, i.e. SigC(a) =241

max
a′∈A−C

(
SigC

(
a
′
))

.242

4.3.3 Add feature a to the core, i.e. C := C ∪ {a}.243

until : GK(C) = GK(A)244

For example, the datasetX = {x1, x2, x3, x4}, xi ∈ R4, the set of featuresA = {a1, a2, a3, a4},245

where x1 = (1, 1, 2, 1), x2 = (2, 2, 1, 1), x3 = (2, 2, 3, 1) and x4 = (3, 1, 2, 1).246

Step 1:247

Using Def.2.1, we have248

X/A = {{x1} , {x2} , {x3} , {x4}} and |X/A | = 4, Xi = {xi} , i = 1..4249

Using Eq.7, GK(A) =
|X/A|∑
i=1

|Xi|2/|X|2 = (12 + 12 + 12 + 12)/4
2
= 1/4250

Step 2:251

Using Def.2.1, we have252

X/ (A− {a1}) = {{x1, x4} , {x2} , {x3}}253

X/ (A− {a2}) = {{x1} , {x2} , {x3} , {x4}}254

X/ (A− {a3}) = {{x1} , {x2, x3} , {x4}}255

X/ (A− {a4}) = {{x1} , {x2} , {x3} , {x4}}256

Using Eq.7, GK(A− {ai}) =
|X/(A−{ai})|∑

i=1

|Xi|2/|X|2 , we have257

GK(A− {a1}) = 3/8258

GK(A− {a2}) = 1/4259

GK(A− {a3}) = 3/8260

GK(A− {a4}) = 1/4261

Calculate the significance degree of feature ai ∈ A using (8):262

SigA−{a1} (a1) = GK (A− {a1})−GK {A} = 3/8 − 1/4 = 1/8263

SigA−{a2} (a2) = GK (A− {a2})−GK {A} = 1/4 − 1/4 = 0264

SigA−{a3} (a3) = GK (A− {a3})−GK {A} = 3/8 − 1/4 = 1/8265

SigA−{a4} (a4) = GK (A− {a4})−GK {A} = 1/4 − 1/4 = 0266

So Core (A) = {ai ∈ A|SigA−ai (ai) > 0} = {a1, a3}, GK(Core(A)) = GK(a1, a3) =267

1/4, GK(Core(A)) = GK(A). Thus, Core(A) is the minimum reduction of A.268
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3.2. Granular space construction and feature selection269

Let consider a clustering system S = (X,A) whereX = {x1, x2, ..., xn} andA = {a1, a2, ..., ad}.270

We construct a granular space as follows:271

First, the objectsX = {x1, x2, ..., xn} are clustered into c clusters on each jth feature by FPCM272

algorithm, j ∈ A. On each jth feature, the clusters are labeled by numbering them in ascending273

order starting from 1.274

Secondly, a cluster label matrix, denoted F, is formed from f(i, j) which is the label of the ith275

object on the jth feature, 1 ≤ f(i, j) ≤ c, i.e. F = [f(i, j)](n×d).276

Finally, from the values {f1, f2, ..., fd} of a row in the cluster label matrix F, we can construct277

a granule grk = {ϕk,m(ϕk)} where ϕk = {f1, f2, ..., fd}, m(ϕk) = {xi ∈ X : f(i, 1) =278

f1 ∧ f(i, 2) = f2 ∧ ... ∧ f(i, d) = fd}. So a granular space, denoted G, is formed from the set279

of granules, i.e. G = {grk}, k = 1, 2, ..., ng with ng is the number of the granules, 1 ≤ ng ≤ n,280

denoted ng = |G|.281

Definition 3.4. Consider a granular clustering system S = (G,A), granular spaceG = {grk}, k =282

1, 2, ..., ng and ng = |G|. A non-conflict granular space with respect to A, denoted GrSP , is283

formed by GrSP = {grk1}, in which grk1 = {ϕk1 ,m(ϕk1)} where ϕk1 = {f1, f2, ..., fd} and284

f1 = f2 = ...fd. Otherwise, a conflict granular space with respect to A, denoted GrSN , is formed285

by GrSN = {grk2}, in which grk2 = {ϕk2 ,m(ϕk2)}, ϕk2 = {f1, f2, ..., fd} and ∃fp 6= fq286

Remark: The significance of a feature only affect theGrSN , thus the feature selection method287

can be only applied to the GrSN .288

In the FPCM algorithm, the outlier or noisy object xk can be removed, X := X − {xk} if xk289

satisfies the following conditions:290

t
(j)
ik < θ with ∀i = 1, 2, ..., c and j = 1, 2, ..., d (9)

where t(j)ik is the possibilistic membership degree of xk on the jth feature in cluster i and θ is a291

noisy parameter.292

Furthermore, the noisy feature aj , aj ∈ A can be also removed, if f(1, j) = f(2, j) = ... =293

f(n
′
, j), where n

′
is the number of object in X after removing the outlier features.294

A := A− {aj} (10)

The granular space construction and feature selection method can be briefly characterized as295

follows:296

Algorithm 3 Granular construction and feature selection297

1 Input: A dataset X = {xi}, i = 1..n, A = a1, a2, ..., ad, c is the number of cluster and θ is a noise filter298

parameter.299

2 Output: The feature set C is the minimum reduction of A and the granular space G=GrSN ∪GrSP300

3 Step 1:301

3.1 Execute Algorithm 1 for each feature aj ∈ A to form a cluster label matrix F = [f(i, j)](n×d)302

where f(i, j) is the cluster label of the ith object on the jth feature.303

3.2 Remove outlier objects and features by using (9) and (10), respectively.304
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4 Step 2: Construct granular space305

4.1 Initialize GrSP = ∅, GrSN = ∅, r = 0, ID = {1, 2, ..., n}, k = 0, where r is the index of row306

of the matrix F , ID is the index set and k is the number of granules.307

4.2 repeat308

4.2.1 k = k + 1309

4.2.2 repeat310

r = r + 1311

until r ∈ ID312

4.2.3 Set ϕk to set of values of rth row in the matrix F: ϕk = f(r, 1), f(r, 2), ..., f(r, d
′
), where d

′
313

is the number of features in A after removing the outlier features.314

4.2.4 Find m(ϕk) = {xi ∈ X : f(i, 1) = f(r, 1) ∧ f(i, 2) = f(r, 2) ∧ ... ∧ f(i, d′) = f(r, d
′
)}.315

if |m(ϕk)| > 0 then316

4.2.4.1 for each xi ∈ m(ϕk):317

X = X − {xi}, ID = ID − {i}318

4.2.4.2 grk = (ϕk,m(ϕk))319

4.2.4.3 if f(r, 1) = f(r, 2) = ... = f(r, d
′
) then320

GrSP = GrSP ∪ {grk}321

else322

GrSN = GrSN ∪ {grk}323

until ID = ∅324

5 Step 3: Apply Algorithm 2 on the the granular set GrSN to reach the minimum reduction C of A.325

3.3. Advanced FPCM based on Granular Computing326

Consider a granular clustering system S = (G,A), granular space G = {grk}, k = 1, 2, ..., n327

and n = |G|.328

The valued interval of the jth feature of an input granule grk = (ϕk,mk(ϕk)) is denoted329

I
(k)
j = [aj bj] where aj and bj are defined as follows:330

aj = min(x
(j)
i ),∀xi ∈ mk(ϕk) (11)

bj = max(x
(j)
i ),∀xi ∈ mk(ϕk) (12)

in which x(j)i is the value of the object xi on the jth feature.331

The new distance between a granule grk and the centroid vi = {vi1, vi2..., vid}, d = |A|,332

i = 1, 2, ..., c is defined as follows:333

‖grk − vi‖ =

√√√√
d∑

j=1

(∥∥∥I(k)j − vij
∥∥∥
)2

(13)

where334

||I(k)j − vij||
def
=

{
0, if vij ∈ [aj, bj]

min (|aj − vij| , |bj − vij|) (14)

The distance (13) is used to compute the possibilistic membership function and membership335

function as follows:336
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tik is the possibilistic membership degree of the granule grk in the ith cluster and uik is the337

membership degree. They are determined in a similar way as in the FPCM algorithm:338

tik =
1

1 +
(
d2ik
γi

) 1
p−1

,∀i, k (15)

339

uik =
1

∑c
j=1

(
t
(p−1)/2
ik dik

t
(p−1)/2
jk djk

) 2
m−1

(16)

in which i = 1, 2, ..., c, k = 1, 2, ..., n.340

dik is calculated by using (13), if the distance between granule grk and vi equals 0 then the341

membership uik is assigned value 1.342

Cluster centroids are computed in the same way of FPCM as follows:343

vi =

∑n
k=1 t

p
iku

m
ik

|mk(ϕk)|∑
t=1

xt|xt ∈ mk (ϕk)

∑n
k=1 t

p
iku

m
ik

,∀i (17)

in which i = 1, 2, ..., c.344

The GrFPCM algorithm comes in form:345

Algorithm 4 Advanced FPCM based on Granular Computing346

1 Input:347

A clustering system S(X,A) where a dataset X = {x1, x2, ..., xn}, a set of features A = a1, a2, ..., ad,348

the number of cluster c, error ε and noisy parameter θ.349

2 Output:350

The possibilistic membership matrix T, membership matrix U and the centroid matrix V.351

3 Step 1: Apply Algorithm 3 on the clustering system S(X,A) to obtain the feature set C which is the352

minimum reduction of A and the granular space G.353

4 Step 2:354

Apply Algorithm 1 on the clustering system S = (G,C) as follows:355

4.1 The number of iterations is set to l = 0.356

4.2 repeat :357

4.2.1 l = l + 1.358

4.2.2 Update the possibilistic membership matrix T (l) by using (15).359

4.2.3 Remove the outlier or noisy granular360

grtik≥θ = {grk ∈ G : max(tik) ≥ θ,∀i = 1, 2, ..., c}.361

4.2.4 Update the membership matrix U (l) by using (16).362

4.2.5 Update the centroids V (l) =
[
v
(l)
1 , v

(l)
2 , ..., v

(l)
c

]
by using (17).363

4.2.6 Apply (3) to compute γ1, γ2, ..., γc based on the T (l), U (l) and V (l).364

until :365

Max
(
||U (l+1) − U (l)||

)
≤ ε

5 Assign data grk to the ith cluster if uik > ujk, j = 1, 2, ..., c and j 6= i.366

The diagram of algorithm 4 is described in Fig.1 below:367
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Figure 1: The diagram of algorithm 4
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4. Experimental studies368

4.1. Cluster analysis for Gene expression data369

A gene expression data set from a microarray experiment can be represented by a real valued370

expression matrix S = {sij|1 ≤ i ≤ n, 1 ≤ j ≤ m} where rows represent n genes, columns repre-371

sent m different samples, and numbers in each cell represent the expression level of the particular372

gene i in the particular sample j. We consider that the samples as the objects and the genes as the373

features. The distinction of the sample based on clustering is to cluster the gene expression data374

into c clusters (c subtypes) where c is prior known number.375

4.2. Results376

In this section, twenty public gene expression datasets (benchmark data sets) which are de-377

scribed in Tab. 1 with the pre-defined number of clusters (classes) were used in the experiments.378

We also offer a comparative analysis of the clustering results among various clustering methods379

involved: FCM [33], FPCM [30], K-Means (KM), Mixture of multivariate Gaussians (FMG),380

spectral clustering (SPC), Shared nearest neighbor-based clustering (SNN), Hierarchical cluster-381

ing with single linkage (SL), complete linkage (CL) and average linkage (AL) [13] and GrFPCM382

(the proposed method).383

Table 1: The public gene expression datasets with ordinary number (O.N.), dataset names, number of samples (N),
number of genes (M), number of classes (C), distribution of samples within the classes (Dist. Classes)

O.N. Datatsets N M C Dist. Classes
1 Leukemia-V1 [18] 72 12582 2 24 ALL, 48 MLL
2 Leukemia-V2[18] 72 12582 3 24 ALL, 20 MLL, 28 AML
3 Leukemia-2c [28] 72 7129 2 47 ALL, 25 AML
4 Leukemia-3c [28] 72 7129 3 38 B-Cell, 9 T-Cell, 25 AML
5 Leukemia-4c[28] 72 7129 4 38 B-Cell, 9 T-Cell,21 BM, 4 PB
6 Lung Cancers-V1 [19] 203 12600 5 139 AD,17 NL,6 SCLC, 21 SD, 20 COID
7 Lung Cancers-V2 [20] 181 12533 2 31 MPM, 150 AD
8 Human Liver Cancers [22] 179 22699 2 104 HCC, 75 Liver
9 Breast, Colon Cancers [21] 104 22283 2 62 B, 42 C

10 Breast Cancers [29] 97 24482 2 46 Relapse, 51 Non-relapse
11 Colon Cancers [23] 37 22883 2 8 SCRC , 29 CCRC
12 Prostate Cancers -V1 [24] 110 42640 4 11 PT1, 39 PT2, 19 PT3, 41 Normal
13 Prostate Cancers -V2 [25] 104 20000 5 27 EPI, 20 MET, 32 PCA, 13 PIN, 12 STROMA
14 Bone marrow-V1 [27] 248 12625 2 43 T-ALL, 205 B-ALL
15 Bone marrow-v2 [27] 248 12625 6 15 T-ALL, 27 E2A-PBX1, 64 BCR-ABL,

20 TEL-AML1, 79 MLL, 43 Hyperdiploid >50
16 Ovarian [29] 253 15154 2 162 Cancers, 91 Normal
17 Lymmopha [29] 66 4026 3 46 DLBCL, 9 FL,11 CLL
18 CNS [29] 60 7129 2 21 Y, 39 N
19 SRBCT [29] 83 2308 4 29 EWS, 11 BL, 18 NB, 25 RMS
20 Bladder Cancers [26] 40 7129 3 9 T2+, 20 Ta, 11 T1
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Through the adjustments in the experiments, the clustering results are stable with parameters384

which are set as follows:385

Exponential parameters m and p are set to 2, the noise parameter θ = 0.1, error ε = 0.00001,386

the adjustment γ in FPCM and GrFPCM methods is calculated with K = 1. The clustering387

algorithms such as FCM, Kmeans and SPC were done 30 times for each configuration and the best388

IC and ARI were selected.389

Based on our proposed algorithm (GrFPCM ), we performed gene expression data clustering390

in two main stages:391

Stage 1: We have done the feature selection by step 1 of the GrFPCM on the experimental392

datasets to get the informative genes (subset of the relevant features). The comparing clustering393

algorithms such as K-Means, FCM, FPCM can be performed on the dataset after feature selection.394

Stage 2: After performing feature selection of the gene expression datasets, we also have built395

up granules for the GrFPCM clustering method.396

A given dataset S of n samples, and two groups (e.g. clusters) of these samples, namely397

X = {X1, X2, . . . , Xr} and Y = {Y1, Y2, . . . , Yr} , the overlap between X and Y can be summa-398

rized in a contingency table [nij] where each entry nij denotes the number of objects in common399

between Xi and Yj : nij = |Xi ∩ Yj|, shown in Tab. 2.400

Table 2: The contingency table

X /Y Y1 Y2 . . . Yr sums
X1 n11 n12 . . . n1r a1
X2 n21 n22 . . . n2r a2

..
.

..
.

..
.

. . .

..
.

..
.

Xr nr1 nr2 . . . nrr ar
sums b1 b2 . . . br

The performance of the clustering was evaluated with incorrectly clustered instances (IC) and401

adjust rand index (ARI) [13] which are defined by the following expression:402

IC =
n−∑nii

n
(18)

where n is the number of samples and nii is the value taken from Table 2403

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)

1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

) (19)

where nij ,ai, bj are values from the Tab.2 and the notation
(
a
b

)
is the binomial coefficient a!

b!(a−b)! .404

The ARI index [15] is a version of the Rand index [14]. Though the Rand Index may only405

take a value between 0 and +1, the ARI can take values from -1 to 1, with 1 indicating a perfect406

agreement between the partitions. That means that the higher ARI index is equivalent to the better407

clustering results and vice versa.408
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Firstly, we made the gene expression datasets clustering from 20 datasets by running K-Means,409

FCM, FPCM and GrFPCM. Then clustering results were compared with the defined classes in the410

datasets to calculate IC values followed the formula (18). The results are listed in Tab.3.

Table 3: Clustering results with IC values of the experimental datasets without feature selection (N.o is the number of
incorrectly clustered instances)

O.N. Datatsets

Incorrectly clustered instances (%)
K-Means FCM FPCM GrFPCM

N.o % N.o % N.o % N.o %
1 Leukemia-V1 [18] 22 30.5556 20 27.7777 18 25 2 2.7778
2 Leukemia-V2[18] 21 29.1667 21 29.1667 15 20.8333 0 0
3 Leukemia-2c [28] 21 29.1667 20 27.7777 17 23.6111 2 2.7778
4 Leukemia-3c [28] 34 47.2222 18 25 13 18.0555 1 1.3889
5 Leukemia-4c[28] 42 58.3333 22 30.5556 22 30.5556 15 20.8333
6 Lung Cancers-V1 [19] 96 47.2906 95 46.798 61 30.0493 35 17.2413
7 Lung Cancers-V2 [20] 30 16.5746 2 1.105 2 1.105 0 0
8 Human Liver Cancers [22] 80 44.6927 89 49.7207 80 44.6927 22 12.2905
9 Breast, Colon Cancers [21] 44 42.3077 15 14.423 8 7.6923 3 2.8846
10 Breast Cancers [29] 45 46.3918 37 38.1443 29 29.8969 18 18.5567
11 Colon Cancers [23] 14 37.8378 13 35.1351 13 35.1351 11 29.7297
12 Prostate Cancers -V1 [24] 51 46.3636 63 57.2727 56 50.909 31 28.1818
13 Prostate Cancers -V2 [25] 55 52.8846 40 38.4615 65 62.5 29 27.8846
14 Bone marrow-V1 [27] 88 35.4839 87 35.0806 50 20.1613 6 2.4194
15 Bone marrow-v2 [27] 169 68.1452 107 43.1452 170 68.5484 73 29.4354
16 Ovarian [29] 112 44.2688 86 33.992 75 29.6442 2 0.7905
17 Lymmopha [29] 22 33.3333 20 30.303 20 30.303 10 15.1515
18 CNS [29] 29 48.3333 26 43.3333 19 31.6666 15 25
19 SRBCT [29] 52 62.6506 27 32.5301 22 26.506 5 6.0241
20 Bladder Cancers [26] 18 45 18 45 8 20 5 12.5

411

Lower IC index values point at the better clustering results. Thus, in Tab.3, the clustering412

results show that the GrFPCM algorithm shows its superiority over all 20 datasets, particularly,413

the IC values equal 0 with two datasets (2nd and 7th) which mean that GrFPCM reaches the ab-414

solute accuracy with these datasets. Next, Fig.2 visualizes the clustering results (IC index values)415

computed on the basis of the K-Means, FCM, FPCM and GrFPCM in Tab.3. Obviously, the pro-416

posed algorithm (GrFPCM) obtained the best results (exhibiting the smallest IC index values) in417

all experimental datasets.418

Secondly, the K-Means, FCM and FPCM methods were done on the datasets with feature419

selection by the GrFPCM method. It means that the compared clustering algorithms were done420

with the datasets which their features were reduced by step 1 of the GrFPCM algorithm. Then, IC421

index values were also calculated to assess the clustering results, which are shown in Tab.4.422

Note that: N.o is the number of incorrectly clustered instances; GrFS is the number of features423

after performing feature selection by step 1 of the GrFPCM algorithm.424

In Tab.4, the clustering results reveal that GrFPCM also exhibited the best performance with425
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Table 4: Clustering results with IC values of the datasets after performing feature selection (the K-Means, FCM and
FPCM methods were done on the datasets with feature selection by GrFPCM method)

O.N. Datatsets GrFS

Incorrectly clustered instances (%)
K-Means FCM FPCM GrFPCM

N.o % N.o % N.o % N.o %
1 Leukemia-V1 [18] 34 7 9.7222 7 9.7222 7 9.7222 2 2.7778
2 Leukemia-V2[18] 150 10 13.889 10 13.889 5 6.9444 0 0
3 Leukemia-2c [28] 81 8 11.1111 7 9.7222 5 6.9444 2 2.7778
4 Leukemia-3c [28] 104 6 8.3333 6 8.3333 5 6.9444 1 1.3889
5 Leukemia-4c[28] 126 21 29.1667 21 29.1667 16 22.2222 15 20.8333
6 Lung Cancers-V1 [19] 512 42 20.6896 40 19.7044 40 19.7044 35 17.2413
7 Lung Cancers-V2 [20] 93 5 2.7624 2 1.105 0 0 0 0
8 Human Liver Cancers [22] 80 76 42.4581 80 44.6927 72 40.2235 22 12.2905
9 Breast, Colon Cancers [21] 22 8 7.6923 5 4.8077 5 4.8077 3 2.8846

10 Breast Cancers [29] 1054 22 22.6804 20 20.619 20 20.619 18 18.5567
11 Colon Cancers [23] 51 11 29.7297 11 29.7297 11 29.7297 11 29.7297
12 Prostate Cancers -V1 [24] 68 35 31.8182 34 30.9091 34 30.9091 31 28.1818
13 Prostate Cancers -V2 [25] 138 40 38.4615 40 38.4615 63 60.5769 29 27.8846
14 Bone marrow-V1 [27] 216 44 17.7419 35 14.1129 6 2.4194 6 2.4194
15 Bone marrow-v2 [27] 186 99 39.9194 81 32.6613 107 43.1452 73 29.4355
16 Ovarian [29] 35 12 4.7431 7 2.7668 7 2.7668 2 0.7905
17 Lymmopha [29] 272 18 27.2727 18 27.2727 11 16.6667 10 15.1515
18 CNS [29] 32 23 38.3333 23 38.3333 19 31.6667 15 25
19 SRBCT [29] 162 27 32.5301 27 32.5301 14 16.8675 5 6.0241
20 Bladder Cancers [26] 79 12 30 12 30 8 20 5 12.5
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Figure 2: IC index values for K-Means, FCM, FPCM, GrFPCM

the smallest IC values over all twenty datasets. However, K-Means, FCM and FPCM have426

achieved much better results than theirs when performing on the datasets without feature selection427

which shown in Tab.3. Meanwhile, Fig.3 shows the clustering results (IC index values) computed428

from the K-Means, FCM, FPCM and GrFPCM in Tab.4. Clearly, GrFPCM leads to the best results429

(smallest IC index values) in all experimental datasets.430

Figure 3: IC index values with feature selection for K-Means, FCM, FPCM, GrFPCM

Fig. 4 shows us a comparison of the clustering results (IC index values) produced from the431

K-Means, K-Means (GrFS), FCM, FCM (GrFS), FPCM, FPCM (GrFS) and GrFPCM methods,432

where K-Means (GrFS), FCM (GrFS), FPCM (GrFS) methods are completed on the datasets with433

feature selection by GrFPCM methods. Clearly, the clustering results with feature selection are434

much more outstanding than those without feature selection.435

Finally, methods of the K-Means, FMG, SNN, SL, CL, AL, SPC, FCM [33], and FPCM436

[30] were done on the datasets with the different feature selection algorithms which were ref-437

erenced from [13] such as Removing features with low variance (Lung Cancers [20], Prostage438

Cancers [24, 27]), Univariate feature selection (Bone marrow [27]), Recursive feature elimination439

(Leukemia [18], Breast, Colon Cancers [21], Colon Cancers [23]), Feature selection using a back-440
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Figure 4: IC index values with and without feature selection for K-Means, FCM, FPCM, GrFPCM

ward removal process (Human Liver Cancers [22]), Tree-based feature selection (Lung Cancers441

[19]), Signal-to-noise ratio (SNR) ranking (Bladder Cancers [26]).442

It means that the datasets with different feature selection algorithms are compared with the443

datasets which their features were selected by the proposed algorithm. Next, the ARI (also called444

Cr in reference [13]) values of K-Means, FMG, SNN, SL, CL, AL and SPC methods are referenced445

from [13] and ARI values are also calculated followed the formula (19) from 12 datasets with446

FCM, FPCM and GrFPCM which were listed in Tab.5 and Tab.8.447

Note that: FS is the number of features on a dataset with the different feature selection algo-448

rithms which were referenced from [13].449

Table 5: Clustering results with ARI values of the datasets after performing feature selection [13]

N.O. Datatsets
FS [13] SL AL CL FMG SPC SNN K-Means

ARI ARI ARI ARI ARI ARI ARI
1 Leukemia-V1 [18] 1081 -0.01 0.21 0.18 0.27 0.78 0.29 0.27
2 Leukemia-V2[18] 2194 -0.01 0.54 0.49 0.88 0.88 0.77 0.37
3 Lung Cancers-V1 [19] 1543 -0.01 0.33 0.33 0.26 0.27 0.35 0.42
4 Lung Cancers-V2 [20] 1626 -0.01 -0.04 0.92 -0.05 0.05 0.72 0.85
5 Human Liver Cancers [22] 85 0.00 0.00 -0.01 0.73 0.04 0.47 0.42
6 Breast, Colon Cancers [21] 182 0.02 0.78 0.92 0.07 0.92 0.78 0.42
7 Colon Cancers [23] 2202 -0.04 0.08 -0.02 0.46 0.02 0.10 0.24
8 Prostate Cancers -V1 [24] 1288 0.01 0.04 0.23 0.26 0.18 0.09 0.4
9 Prostate Cancers -V2 [25] 2315 0.01 0.01 0.32 0.36 0.07 0.26 0.48

10 Bone marrow-V1 [27] 2526 -0.01 -0.01 -0.08 0.96 0.21 0.35 0.52
11 Bone marrow-v2 [27] 2526 0.00 0.19 0.27 0.36 0.23 0.20 0.37
12 Bladder Cancers [26] 1203 -0.06 0.11 0.11 0.65 0.40 0.25 0.15

Mean -0.01 0.19 0.30 0.43 0.34 0.39 0.41
STD 0.02 0.25 0.33 0.31 0.34 0.25 0.17

We performed an ANOVA analysis for Tab.5 as follows:450
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Table 6: Summary of Anova: Singer Factor for Tab.5

Groups Count Sum Average Variance
SL 12 -0.11 -0.00917 0.00048
AL 12 2.24 0.18667 0.06299
CL 12 3.66 0.305 0.10955
FMG 12 5.21 0.43417 0.09779
SPC 12 4.05 0.3375 0.11218
SNN 12 4.63 0.38583 0.06104
K-Means 12 4.91 0.40917 0.03003

Table 7: Anova Analysis for Tab.5

Source of Variation SS df MS F P-value F crit
Between Groups 1.76131 6 0.29355 4.33453 0.00081 2.21882
Within Groups 5.21476 77 0.06772
Total 6.97607 83

Conclusion: In Tab.7, if F > Fcrit, we reject the null hypothesis. This is the case 4.335 >451

2.219. Therefore, we reject the null hypothesis. The means of the seven populations are not all452

equal. At least one of the means is different.453

Table 8: Clustering results with ARI values of the CL, FMG, SPC, K-Means, FCM and FPCM performed on the
datasets with feature selection in [13] and GrFPCM performed on the original datasets

N.O. Datatsets
FS [13] CL FMG SPC K-Means FCM FPCM GrFPCM

ARI ARI ARI ARI ARI ARI GrFS ARI
1 Leukemia-V1 [18] 1081 0.18 0.27 0.78 0.27 0.32 0.38 34 0.89
2 Leukemia-V2[18] 2194 0.49 0.88 0.88 0.37 0.37 0.54 150 1
3 Lung Cancers-V1 [19] 1543 0.33 0.26 0.27 0.42 0.25 0.34 512 0.45
4 Lung Cancers-V2 [20] 1626 0.92 -0.05 0.05 0.85 0.95 0.95 93 1
5 Human Liver Cancers [22] 85 -0.01 0.73 0.04 0.42 0.4 0.42 80 0.59
6 Breast, Colon Cancers [21] 182 0.92 0.07 0.92 0.42 0.53 0.71 22 0.89
7 Colon Cancers [23] 2202 -0.02 0.46 0.02 0.24 0.17 0.25 11 0.37
8 Prostate Cancers -V1 [24] 1288 0.23 0.26 0.18 0.4 0.32 0.38 60 0.52
9 Prostate Cancers -V2 [25] 2315 0.32 0.36 0.07 0.48 0.51 0.31 216 0.62

10 Bone marrow-V1 [27] 2526 -0.08 0.96 0.21 0.52 0.53 0.61 216 0.88
11 Bone marrow-v2 [27] 2526 0.27 0.36 0.23 0.37 0.41 0.36 186 0.63
12 Bladder Cancers [26] 1203 0.11 0.65 0.40 0.15 0.36 0.45 79 0.63

Mean 0.30 0.43 0.34 0.41 0.43 0.48 0.71
STD 0.33 0.31 0.34 0.17 0.20 0.20 0.22

We performed an ANOVA analysis for Tab.8 as follows:454

Conclusion: In Tab.10, if F > Fcrit, we reject the null hypothesis. This is the case 2.99 >455

2.22. Therefore, we reject the null hypothesis. The means of the seven populations are not all456

equal. At least one of the means is different.457
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Table 9: Summary of Anova: Singer Factor for Tab.8

Groups Count Sum Average Variance
CL 12 3.66 0.305 0.10955
FMG 12 5.21 0.43417 0.09779
SPC 12 4.05 0.3375 0.11218
K-Means 12 4.91 0.40917 0.03003
FCM 12 5.12 0.42667 0.03915
FPCM 12 5.7 0.475 0.03948
GrFPCM 12 8.47 0.70583 0.04694

Table 10: Anova Analysis for Tab.8

Source of Variation SS df MS F P-value F crit
Between Groups 1.22113 6 0.20352 2.99848 0.01097 2.21882
Within Groups 5.22637 77 0.06787
Total 6.44750 83

Figure 5: ARI values with feature selection for FMG, CL, K-Means, SPC, GrFPCM
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Figure 6: ARI values for the best comparison algorithms and GrFPCM

Fig.5 visually shows the ARI values in Tab.5 and Tab.8 among algorithms (with the largest458

ARI indexes) including FMG, K-Means, SPC, CL and GrFPCM. In Fig.5, GrFPCM still shows459

superior to the rest algorithms with the highest ARI values in 6 over 12 datasets. Fig.6 clearly460

shows the dominance of GrFPCM when compared to the best values of the remaining algorithms.461

In Tab.5 and Tab.8, we noticed that the proposed algorithm (GrFPCM) outperformed the other462

algorithms with the highest ARI values. It even has the absolute ARI values which reach to 1463

in some cases. Namely, Tab. 5 shows ARI values of seven algorithms for all twelve datasets.464

Although the results are different among datasets, the FMG, K-Means, SPC and CL produce the465

highest ARI values when running on 5, 3, 3 and 2 datasets respectively. Also, these best algorithms466

are selected for comparison presented in Tab.8.467

In Tab.8, the GrFPCM obtains the best ARI values when running on 7 datasets, followed FMG468

with the largest ARI values when running on 4 datasets, among five considered algorithms. In469

addition, the mean of ARI values produced by the GrFPCM is 0.71 while by the FMG is only470

0.43. Fig.7 visually represents the results coming from FMG and GrFPCM algorithms over 12471

datasets.472

Figure 7: ARI values for FMG and GrFPCM algorithms
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Figure 8: ARI index values for K-Means, FCM, FPCM and GrFPCM

Fig.5, Fig.6, Fig.7 and Fig.8 plotted the clustering results (ARI index values) obtained from473

the K-Means, FMG, CL, SPC, FCM, FPCM and GrFPCM in Tab.5 and Tab.8. The ARI values474

were calculated based on the clustering results coming from the K-Means, FMG, SPC, CL, SNN,475

FCM, FPCM and GrFPCM, where GrFPCM was done on the original datasets and others were476

done on the datasets with feature selection [13]. The proposed algorithm (GrFPCM) attained the477

best results (highest ARI index values) in almost experimental datasets.478

5. Conclusions479

In this study, we have presented an advanced Fuzzy Possibilistic C-Means clustering method480

based on concepts of Granular Computing, which can reduce feature space to produce a set of481

essential features, while eliminating those of marginal relevance. The proposed method takes482

advantage of the fuzzy possibilistic memberships in which a possibilistic membership is used483

to quantify a degree of typicality of a point belonging to a certain cluster and a membership is484

used to deal with the vague values. In addition, GrPFCM also endowed with ideas of GrC to485

becomes beneficial when coping with the uncertainty factors and to utilize feature selection for486

clustering to alleviate the negative impact of high dimensionality of the problems. The experiments487

completed for a number of well-known datasets demonstrate that the proposed method shows the488

better clustering results than other compared methods such as FMG, FCM, FPCM, K-Means, CL489

and SPC through two indexes IC and ARI.490

In terms of future developments, it would be advantageous to involve more advanced methods491

(say, evolutionary optimization) to optimize the parameters of the clustering method. Besides, one492

may focus on using the concepts of Granular Computing to develop an advanced type-2 Fuzzy493

Possibilistic C-Means clustering method. The complexity of type-2 membership functions can be494

handled by information granules. Thus, this method can be used to increase performance of the495

traditional type-2 clustering algorithms by reducing the computational complexity to solve the real496

applications with high level of uncertainty.497
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