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1 Introduction

In this paper, we consider the following semilinear strongly degenerate parabolic equation
⎧
⎨

⎩

ut − �λu + f (u) = g(x), x ∈ �, t > 0,
u(x, t) = 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), x ∈ �,

(1)

where � is a bounded domain in R
N (N ≥ 2) with smooth boundary ∂�, u0, g ∈ L2(�),

the nonlinear term f (u) satisfies certain conditions specified later, and �λ is a strongly
degenerate operator of the form

�λ :=
N∑

i=1

∂xi
(λ2i (x)∂xi

),

where λ = (λ1, . . . , λN) : R
N → R

N satisfies certain conditions specified below. This
operator was introduced by Franchi and Lanconelli in [9] (see also [8]) and recently recon-
sidered in [12] under an additional assumption that the operator is homogeneous of degree
two with respect to a group dilation in R

N . Here, the functions λi : R
N → R are con-

tinuous, strictly positive and of class C1 outside the coordinate hyperplanes, i.e., λi > 0,
i = 1, . . . , N in R

N \ ∏
,where

∏ = {(x1, . . . , xN) ∈ R
N : ∏N

i=1 xi = 0}. As in [12], we
assume that λi satisfy the following properties:

1. λ1(x) ≡ 1, λi(x) = λi(x1, . . . , xi−1), i = 2, . . . , N ;
2. For every x ∈ R

N , λi(x) = λi(x
∗), i = 1, . . . , N , where

x∗ = (|x1|, . . . , |xN |) if x = (x1, . . . , xN);
3. There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk
λi(x) ≤ ρλi(x) ∀k ∈ {1, . . . , i − 1}, i = 2, . . . , N,

and for every x ∈ R
N+ := {(x1, . . . , xN) ∈ R

N : xi ≥ 0 ∀i = 1, . . . , N};
4. There exists a group of dilations {δt }t>0

δt : RN → R
N, δt (x) = δt (x1, . . . , xN) = (tε1x1, . . . , t

εN xN),

where 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εN such that λi is δt -homogeneous of degree εi − 1,i.e.,

λi(δt (x)) = tεi−1λi(x) ∀x ∈ R
N, t > 0, i = 1, . . . , N.

This implies that the operator �λ is δt -homogeneous of degree two, i.e.,

�λ(u(δt (x))) = t2(�λu)(δt (x)) ∀u ∈ C∞(RN).

We denote by Q the homogeneous dimension of RN with respect to the group of dilations
{δt }t>0,i.e.,

Q := ε1 + · · · + εN .

The homogeneous dimensionQ plays a crucial role, both in the geometry and the functional
associated to the operator �λ.

The �λ-Laplace operator contains many degenerate elliptic operators such as the
Grushin type operator

Gα = �x + |x|2α�y, α > 0,

where (x, y) denotes the point of RN1 × R
N2 , and the strongly degenerate operator of the

form
Pα,β = �x + �y + |x|2α|y|2β�z,
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where (x, y, z) ∈ R
N1×R

N2×R
N3 (Ni ≥ 1, i = 1, 2, 3), α, β are real positive constants, see

[19]. We refer the interested reader to [13, Section 2.3] for other examples of�λ-Laplacians.
See also [4, 16] for recent results related to elliptic equations involving this operator.

In the last years, the existence and long-time behavior in terms of existence of global
attractors of solutions to semilinear parabolic equations involving the above degenerate
operators have been studied extensively by a number of authors. Up to now, there are
two main kinds of nonlinearities that have been considered. The first one is the class
of nonlinearities that is locally Lipschitzian continuous and satisfies a Sobolev growth
condition

|f (u) − f (v)| ≤ C(1 + |u|ρ + |v|ρ)|u − v|, 0 ≤ ρ <
4

Q − 2
,

and some suitable dissipative conditions; see [2, 13–15, 20]. The second one is the class of
nonlinearities that satisfies a polynomial growth

C1|u|p − C0 ≤ f (u)u ≤ C2|u|p + C0 for some p ≥ 2,

f ′(u) ≥ −�,

see [3, 6, 18, 20]. See also some related results in the case of unbounded domains [1, 5], the
more delicated case due to the lack of compactness of the Sobolev type embeddings.

Note that for both above classes of nonlinearities, some restriction on the upper growth
of the nonlinearity is imposed and an exponential nonlinearity, for example, f (u) = eu,
does not hold. In this paper, we try to remove this restriction and we were able to prove the
existence of weak solutions and existence of global attractors for a very large class of non-
linearities that particularly covers both above classes and even exponential nonlinearities.
This is the main novelty of our paper.

To study problem (1), we assume that the initial datum u0 ∈ L2(�) is given, the
nonlinearity f and the external force g satisfy the following conditions:

(F) f : R → R is a continuously differentiable function satisfying

f ′(u) ≥ −�, (2)

f (u)u ≥ −μu2 − C1, (3)

where C1, � are two positive constants, 0 < μ < γ1 with γ1 > 0 is the first eigenvalue
of the operator −�λ in � with the homogeneous Dirichlet boundary condition, and
F(u) = ∫ u

0 f (s)ds is a primitive of f ;
(G) g ∈ L2(�).

It follows from (2) that 0 ≤ ∫ u

0 (f ′(s)s + �s)ds, and therefore by integrating by parts, we
obtain

F(u) ≤ f (u)u + �
u2

2
for all u ∈ R. (4)

To study problem (1), we use the weighted Sobolev space
◦
W

1,2
λ (�) defined as the

completion of C1
0 (�) in the norm

‖u‖ ◦
W

1,2
λ (�)

:=
(∫

�

|∇λu|2dx

)1/2

.

This is a Hilbert space with respect to the following scalar product

((u, v)) ◦
W

1,2
λ (�)

=
∫

�

∇λu · ∇λvdx.
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We also use the Hilbert space D(�λ) defined as the domain of the operator −�λ with the
homogeneous Dirichlet boundary condition

D(�λ) =
{

u ∈ ◦
W

1,2
λ (�)|�λu ∈ L2(�)

}

,

with the graph norm

‖u‖D(�λ) :=
(∫

�

|�λu|2dx

)1/2

.

By the result in [12], we know that the embedding
◦
W

1,2
λ (�) ↪→ L2(�) is compact. Using

this embedding and the definition of D(�λ), we will show in Lemma 4 below that the

embedding D(�λ) ↪→ ◦
W

1,2
λ (�) is also compact. These compact embeddings will play an

important role for our investigation.
Let γ1 > 0 be the first eigenvalue of the operator −�λ in � with homogeneous Dirichlet

boundary conditions. Then

γ1 = inf

⎧
⎪⎨

⎪⎩

‖u‖2◦
W

1,2
λ (�)

‖u‖2
L2(�)

: u ∈ ◦
W

1,2
λ (�) \ {0}

⎫
⎪⎬

⎪⎭
.

Therefore,

‖u‖2◦
W

1,2
λ (�)

≥ γ1‖u‖2
L2(�)

for all u ∈ ◦
W

1,2
λ (�). (5)

The paper is organized as follows. In Section 2, we prove the existence and uniqueness
of weak solutions by utilizing the compactness method and weak convergence techniques
in Orlicz spaces [11]. In Section 3, we prove the existence of global attractors for the semi-
group generated by the problem in various spaces. The main novelty of the paper is that the
nonlinearity can grow exponentially.

2 Existence and Uniqueness of Weak Solutions

Definition 1 A function u is called a weak solution of problem (1) on (0, T ) if

u ∈ C([0, T ];L2(�)) ∩ L2(0, T ; ◦
W

1,2
λ (�)), f (u) ∈ L1(QT ), u(0) = u0, du

dt
∈

L2(0, T ; (
◦
W

1,2
λ (�))∗) + L1(QT ), and

du

dt
− �λu + f (u) = g in L2(0, T ; (

◦
W

1,2
λ (�))∗) + L1(QT )

or equivalently, 〈
du

dt
− �λu + f (u),w

〉

= 〈g, w〉

for all test functions w ∈ W := ◦
W

1,2
λ (�) ∩ L∞(�) and for a.e. t ∈ (0, T ). Here, 〈·, ·〉

denotes the dual bracket between W and its dual W ∗, and (
◦
W

1,2
λ (�))∗ is the dual space of

◦
W

1,2
λ (�).

Theorem 1 Assume (F)–(G) hold. Then for any u0 ∈ L2(�) and T > 0 given, problem (1)
has a unique weak solution u on the interval (0, T ). Moreover, the mapping u0 �→ u(t) is
continuous on L2(�), that is, the solutions depend continuously on the initial data.
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Proof i) Existence. We will prove the existence of a weak solution by using the compact-
ness method. The main difference compared with the proofs in [3, 20] is that the nonlinear
term f (u) only belongs to L1(QT ) due to no restriction imposed on its upper growth. This
introduces some essential difficulties when establishing a priori estimates and passing to the
limit for the nonlinear term.

Let {un} be the Galerkin appropriate solutions. We will establish some a priori estimates
for un. We have

1

2

d

dt
‖un‖2L2(�)

+ ‖un‖2◦
W

1,2
λ (�)

+
∫

�

f (un)undx =
∫

�

gundx. (6)

Therefore,

1

2

d

dt
‖un(t)‖2L2(�)

+ ‖un(t)‖2◦
W

1,2
λ (�)

− μ‖un(t)‖2L2(�)
− C1|�|

≤ 1

2ε
‖g‖2

L2(�)
+ ε

2
‖un(t)‖2L2(�)

.

Using the inequality (5), we get

d

dt
‖un(t)‖2L2(�)

+ ε‖un(t)‖2◦
W

1,2
λ (�)

+ (2γ1 − 2μ − εγ1 − ε)‖un(t)‖2L2(�)

≤ 1

ε
‖g‖2

L2(�)
+ 2C1|�|,

where ε > 0 is small enough so that 2γ1 − 2μ − εγ1 − ε > 0. Integrating from 0 to t ,
0 ≤ t ≤ T , we get

‖un(t)‖2L2(�)
+ ε

∫ t

0
‖un(s)‖2◦

W
1,2
λ (�)

ds + (2γ1 − 2μ − εγ1 − ε)

∫ t

0
‖un(s)‖2L2(�)

ds

≤ 1

ε
‖g‖2

L2(�)
T + 2C1|�|T + ‖u(0)‖2

L2(�)
.

This inequality yields

{un} is bounded in L∞(0, T ; L2(�)),

{un} is bounded in L2(0, T ; ◦
W

1,2
λ (�)).

Due to the boundedness of {un} in L2(0, T ; ◦
W

1,2
λ (�)), it is easy to check that {�λun} is

bounded in L2(0, T ; (
◦
W

1,2
λ (�))∗). From the above results, we can assume that (up to a

subsequence)

un ⇀ u in L2(0, T ; ◦
W

1,2
λ (�)),

un ⇀∗ u in L∞(0, T ; L2(�)),

�λun ⇀ �λu in L2(0, T ; (
◦
W

1,2
λ (�))∗).

On the other hand, using the Cauchy inequality in (6), we have

1

2

d

dt
‖un‖2L2(�)

+ ‖un‖2◦
W

1,2
λ (�)

+
∫

�

f (un)undx ≤ 1

2γ1
‖g‖2

L2(�)
+ γ1

2
‖un‖2L2(�)

.
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Noting that ‖un‖2◦
W

1,2
λ (�)

≥ γ1‖un‖2L2(�)
, integrating this inequality from 0 to T , we have

∫ T

0
‖un‖2◦

W
1,2
λ (�)

ds + 2
∫

QT

f (un)undxdt ≤ ‖u0‖2L2(�)
+ 1

γ1
‖g‖2

L2(�)
T .

Hence,
∫

QT

f (un)undxdt ≤ C. (7)

We now prove that {f (un)} is bounded in L1(QT ). Putting h(s) = f (s)−f (0)+γ s, where
γ > � and noting that h(s)s = (f (s) − f (0))s + γ s2 = f ′(c)s2 + γ s2 ≥ (γ − �)s2 ≥ 0
for all s ∈ R, we have

∫

QT

|h(un)|dxdt ≤
∫

QT ∩{|un|>1}
|h(un)un|dxdt +

∫

QT ∩{|un|≤1}
|h(un)|dxdt

≤
∫

QT

h(un)undxdt + sup
|s|≤1

|h(s)||QT |

≤
∫

QT

f (un)undxdt + |f (0)|‖un‖L1(QT ) + γ ‖un‖2L2(QT )

+ sup
|s|≤1

|h(s)||QT |
≤ C,

where we have used (7) and the boundedness of {un} in L∞(0, T ; L2(�)). Hence, it implies
that {h(un)}, and therefore, {f (un)} is bounded in L1(QT ). Since

dun

dt
= �λun − f (un) + g,

we deduce that { dun

dt
} is bounded in L2(0, T ; (

◦
W

1,2
λ (�))∗) + L1(QT ), and therefore in

L1(0, T ; (
◦
W

1,2
λ (�))∗ + L1(�)). Because

◦
W

1,2
λ (�) ⊂⊂ L2(�) ⊂ (

◦
W

1,2
λ (�))∗ + L1(�),

by the Aubin–Lions–Simon compactness lemma (see [7]), we have that {un} is compact
in L2(0, T ; L2(�)). Hence, we may assume, up to a subsequence, that un → u a.e. in
QT . Applying Lemma 6.1 in [10], we obtain that h(u) ∈ L1(QT ) and for all test function

ξ ∈ C∞
0 ([0, T ]; ◦

W
1,2
λ (�) ∩ L∞(�)),

∫

QT

h(un)ξdxdt →
∫

QT

h(u)ξdxdt.

Hence, f (u) ∈ L1(QT ) and
∫

QT

f (un)ξdxdt →
∫

QT

f (u)ξdxdt for all ξ ∈ C∞
0 ([0, T ]; ◦

W
1,2
λ (�) ∩ L∞(�)).

Thus, u satisfies (6). Repeating the arguments in [3], we get u(0) = u0 and this implies that
u is a weak solution to problem (1).

ii) Uniqueness and continuous dependence on the initial data. Let u and v be two weak
solutions of (1) with initial data u0, v0 ∈ L2(�). Putting w = u − v, we have

{
wt − �λw + f̃ (u) − f̃ (v) − �w = 0,
w(0) = u0 − v0,

(8)
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where f̃ (s) = f (s) + �s. Here, because w(t) does not belong to W := ◦
W

1,2
λ (�) ∩ L∞(�),

we cannot choose w(t) as a test function as in [3]. Consequently, the proof will be more
involved.

We use some ideas in [11]. Let Bk : R → R be the truncated function

Bk(s) =
⎧
⎨

⎩

k if s > k,

s if |s| ≤ k,

−k if s < −k.

Consider the corresponding Nemytskii mapping B̂k : W → W defined as follows

B̂k(w)(x) = Bk(w(x)) for all x ∈ �.

By Lemma 2.3 in [11], we have that ‖B̂k(w) − w‖W → 0 as k → ∞. Now multiplying the
first equation in (8) by B̂k(w), then integrating over � × (ε, t), where t ∈ (0, T ), we get

∫ t

ε

∫

�

d

ds

(
w(s)B̂k(w)(s)

)
dxds −

∫ t

ε

∫

�

w
d

ds

(
B̂k(w)(s)

)
dxds

+1

2

∫ t

ε

∫

{x∈�:|w(x,s)|≤k}
|∇λw|2dxds

+
∫ t

ε

∫

�

(f̃ (u) − f̃ (v))B̂k(w)dxds − �

∫ t

ε

∫

�

wB̂k(w)dxds = 0.

Noting that w d
dt

(B̂k(w)) = 1
2

d
dt

((B̂k(w))2), we have
∫

�

w(t)B̂k(w)(t)dx − 1

2

∥
∥B̂k(w)(t)

∥
∥2

L2(�)
+ 1

2

∫ t

ε

∫

{x∈�:|w(x,s)|≤k}
|∇λw|2dxds

+
∫ t

ε

∫

�

f̃ ′(ξ)wB̂k(w)dxds

=
∫

�

w(ε)B̂k(w)(ε)dx − 1

2

∥
∥B̂k(w)(ε)

∥
∥2

L2(�)
+ �

∫ t

ε

∫

�

wB̂k(w)dxds.

Note that f̃ ′(s) ≥ 0 and sBk(s) ≥ 0 for all s ∈ R, by letting ε → 0 and k → ∞ in the
above equality, we obtain

‖w(t)‖2
L2(�)

≤ ‖w(0)‖2
L2(�)

+ 2�
∫ t

0
‖w(s)‖2

L2(�)
ds.

Hence, by the Gronwall inequality of integral form, we get

‖w(t)‖2
L2(�)

≤ ‖w(0)‖2
L2(�)

e2�t ≤ ‖w(0)‖2
L2(�)

e2�T for all t ∈ [0, T ].
Note that w ∈ C([0, T ];L2(�)), in particular, we get the uniqueness if w(0) = 0.

3 Existence of a Global Attractor

By Theorem 1, we can define a continuous (nonlinear) semigroup S(t) : L2(�) → L2(�)

associated to problem (1) as follows

S(t)u0 := u(t),

where u(·) is the unique weak solution of (1) with the initial datum u0. We will prove that

the semigroup S(t) has a global attractor A in the space
◦
W

1,2
λ (�).
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For brevity, in the following lemmas, we give some formal calculation, the rigorous proof
is done by use of Galerkin approximations and Lemma 11.2 in [17].

Lemma 1 The semigroup {S(t)}t≥0 has a bounded absorbing set in L2(�).

Proof Multiplying the first equation in (1) by u, we have

1

2

d

dt
‖u‖2

L2(�)
+ ‖u‖2◦

W
1,2
λ (�)

+
∫

�

f (u)udx =
∫

�

gudx. (9)

Using inequalities (3), (5), and the Cauchy inequality, we arrive at

d

dt
‖u‖2

L2(�)
+ (γ1 − μ)‖u‖2

L2(�)
≤ 2C1|�| + 1

γ1 − μ
‖g‖2

L2(�)
.

Hence, thanks to the Gronwall inequality, we obtain

‖u‖2
L2(�)

≤ ‖u0‖2L2(�)
e−(γ1−μ)t + R1,

where R1 = R1(γ1, μ, |�|, ‖g‖L2(�)). Hence, choosing ρ1 = 2R1, we have

‖u‖2
L2(�)

≤ ρ1 for all t ≥ T1 = T1(‖u0‖L2(�)). (10)

This completes the proof.

Lemma 2 The semigroup {S(t)}t≥0 has a bounded absorbing set in
◦
W

1,2
λ (�).

Proof Multiplying the first equation in (1) by −�λu and integrating by parts, we obtain

1

2

d

dt
‖u‖2◦

W
1,2
λ (�)

+ ‖�λu‖2
L2(�)

= −
∫

�

f ′(u)|∇λu|2dx −
∫

�

g�λudx

≤ �‖u‖2◦
W

1,2
λ (�)

+ 1

2
‖g‖2

L2(�)
+ 1

2
‖�λu‖2

L2(�)
.

In particular,
d

dt
‖u‖2◦

W
1,2
λ (�)

≤ 2�‖u‖2◦
W

1,2
λ (�)

+ ‖g‖2
L2(�)

. (11)

On the other hand, integrating (9) from t to t + 1 and using (3), we have
∫ t+1

t

‖u(s)‖2◦
W

1,2
λ (�)

ds + 1

2
‖u(t + 1)‖2

L2(�)

≤ (μ + 1)
∫ t+1

t

‖u(s)‖2
L2(�)

ds + 1

2
‖u(t)‖2

L2(�)
+ C1|�| + 1

4
‖g‖2

L2(�)

≤ ρ2 = ρ2(γ1, μ, |�|, ‖g‖L2(�)) (12)

for all t ≥ T1 = T1(‖u0‖L2(�)), where we have used the Cauchy inequality and estimate
(10). By the uniform Gronwall inequality, from (11) and (12), we deduce that

‖u(t)‖2◦
W

1,2
λ (�)

≤ ρ2 for all t ≥ T2 = T1 + 1. (13)

This completes the proof.
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Lemma 3 The semigroup {S(t)}t≥0 has a bounded absorbing set in D(�λ).

Proof By differentiating (1) in time, we get

utt − �λut + f ′(u)ut = 0.

Taking the inner product of this equality with ut in L2(�) and using (2), in particular, we
obtain

1

2

d

dt
‖ut‖2L2(�)

≤ �‖ut‖2L2(�)
. (14)

Multiplying the first equation in (1) by ut , we obtain

d

dt

(
1

2
‖u‖2◦

W
1,2
λ (�)

+
∫

�

F(u)dx −
∫

�

gudx

)

= −‖ut‖2L2(�)
≤ 0. (15)

On the other hand, integrating (9) from t to t + 1 and using (10), we have
∫ t+1

t

[

‖u‖2◦
W

1,2
λ (�)

+
∫

�

f (u)udx −
∫

�

gudx

]

ds ≤ ‖u(t)‖2
L2(�)

≤ ρ1 ∀t ≥ T1.

Using the inequality (4), we deduce that
∫ t+1

t

[

‖u‖2◦
W

1,2
λ (�)

+
∫

�

f (u)udx −
∫

�

gudx

]

ds

≥
∫ t+1

t

[

‖u‖2◦
W

1,2
λ (�)

+
∫

�

F(u)dx − �

2
‖u‖2

L2(�)
−

∫

�

gudx

]

ds

≥
∫ t+1

t

[
1

2
‖u‖2◦

W
1,2
λ (�)

+
∫

�

F(u)dx −
∫

�

gudx

]

ds − �

2
ρ1 for all t ≥ T1,

where we have used the inequality (10). Hence,
∫ t+1

t

[
1

2
‖u‖2◦

W
1,2
λ (�)

+
∫

�

F(u)dx −
∫

�

gudx

]

ds ≤
(

1 + �

2

)

ρ1 ∀t ≥ T1. (16)

By the uniform Gronwall inequality, from (15) and (16), we deduce that

1

2
‖u‖2◦

W
1,2
λ (�)

+
∫

�

F(u)dx −
∫

�

gudx ≤ ρ3 for all t ≥ T2 = T1 + 1. (17)

Integrating (15) from t to t + 1 and using (17), we obtain
∫ t+1

t

‖ut‖2L2(�)
ds ≤ ρ3 for all t ≥ T2. (18)

Combining (14) with (18) and using the uniform Gronwall inequality, we have

‖ut‖2L2(�)
≤ ρ3 for all t ≥ T3 = T2 + 1. (19)

On the other hand, multiplying the first equation in (1) by −�λu, using (2) and the Cauchy
inequality, we obtain

‖�λu‖2
L2(�)

=
∫

�

ut�λudx −
∫

�

f ′(u)|∇λu|2dx −
∫

�

g�λudx

≤ �‖u‖2◦
W

1,2
λ (�)

+ ‖ut‖2L2(�)
+ 1

2
‖�λu‖2

L2(�)
+ ‖g‖2

L2(�)
.

Using estimates (13) and (19), we arrive at

‖�λu(t)‖2
L2(�)

≤ ρ4 for all t ≥ T3.
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This completes the proof.

We now prove the following important lemma.

Lemma 4 The embedding D(�λ) ↪→ ◦
W

1,2
λ (�) is compact.

Proof First, for any u ∈ D(�λ), we have

‖u‖2◦
W

1,2
λ (�)

=
∫

�

|∇λu|2dx = −
∫

�

u · �λudx ≤ ‖u‖L2(�)‖�λu‖L2(�). (20)

Next, we will prove that for any ε > 0, there exists C(ε) such that

‖u‖2◦
W

1,2
λ (�)

≤ ε‖�λu‖2
L2(�)

+ C(ε)‖u‖2
L1(�)

(21)

for all u ∈ D(�λ). Indeed, since
◦
W

1,2
λ (�) ⊂⊂ L2(�) ⊂ L1(�), by the Ehrling lemma, we

have for any η > 0,

‖u‖L2(�) ≤ η‖u‖ ◦
W

1,2
λ (�)

+ C1(η)‖u‖L1(�).

Substituting this inequality into (20), we obtain

‖u‖2◦
W

1,2
λ (�)

≤ ‖�λu‖L2(�)

(

η‖u‖ ◦
W

1,2
λ (�)

+ C1(η)‖u‖L1(�)

)

≤ η‖u‖2◦
W

1,2
λ (�)

+ η‖�λu‖2
L2(�)

+ C2(η)‖u‖2
L1(�)

,

where we have used the Cauchy inequality. Hence, we obtain (21) for suitable choosing of
η.

We now prove the compactness of the embedding D(�λ) ↪→ ◦
W

1,2
λ (�). Let {un} be a

bounded sequence in D(�λ). Then there exists a subsequence {unk
} such that unk

⇀ u in
D(�λ). Using (21), we have

‖unk
− u‖2◦

W
1,2
λ (�)

≤ ε‖�λunk
− �λu‖2

L2(�)
+ C(ε)‖unk

− u‖2
L1(�)

.

Since D(�λ) ⊂ ◦
W

1,2
λ (�) ⊂⊂ L1(�) and the boundedness of the sequence {unk

− u} in
D(�λ), we conclude that unk

→ u in
◦
W

1,2
λ (�), up to a subsequence if necessary. This

completes the proof.

As a direct consequence of Lemma 3 and the compactness of the embedding D(�λ) ↪→
◦
W

1,2
λ (�), we get the main result of this section.

Theorem 2 Suppose (F)–(G) hold. Then the semigroup S(t) generated by problem (1) has

a compact global attractor A in the space
◦
W

1,2
λ (�).
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