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Abstract Matchedfield processing (MFP) has been amethodwidely applied for shallowunderwater target localization,which
is a critical issue in underwater acoustic. To enhance the efficiency of conventional MFP methods, different adaptive MFP
algorithms have been developed; the white noise constraints (WNC)MFP or diagonal loading (DL) algorithm is such a typical
one. The WNC or DL one has been considered to be the most desirable method because it is more robust to environment
mismatch in practical in comparison with the minimum-variance distortionless response MFP algorithm, a popular high-
resolution method. Although having exceptional ability to localize underwater sources in mismatch scenarios, the DLmethod
has still been not reach high resolution in certain cases. In the paper, we proposed an adaptive method known as improved
diagonal loading algorithm to make an increase in the resolution and the peak background rate in the ambiguity surface of
source localization results in comparison with DL one. The proposed algorithm works by adding one more parameter that
is adjusted in the steering vector of the DL algorithm. The simulation results show that the new algorithm attains better
beamforming performance in terms of high resolution than the existing adaptive MFP algorithms in the case of environmental
mismatch caused by noise effects and the limitation of the snapshots.

Keywords Matched field processing (MFP) · Mismatch · Source localization · Acoustic underwater

1 Introduction

MFP algorithms have commonly used in shallow underwa-
ter for source detection and localization [1–6]. Conventional
approaches constructing MFP algorithms commonly apply
a vertical or horizontal array of hydrophones. The match
between the received signals from the hydrophones and the
replica signal in a full-wave acoustic propagation model
provides an estimate of the source’s position. Scanning the
source position produces the ambiguity surface. The ambigu-
ity surface obtained from the conventional MFP algorithms
contains high sidelobes beside a main lobe, causing a diffi-
culty to localize the source target. A way to overcome this
problem in conventional MFP algorithms is to apply numer-
ous adaptive MFP algorithms. The standard adaptive MFP
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(AMFP) processor, so-called minimum-variance distortion-
less response (MVDR) is effective in noise rejection as well
as sidelobe cancellation, yielding an increase in resolution
for the localization results in the absence of mismatch in
comparison with CMFP [6,7]. Although having good res-
olution performance, MVDR has a shortcoming of great
sensitive tomismatch problems that commonly occur in prac-
tical situations. The consequence of thismismatch sensitivity
makes the source hardly be localized in a number of prac-
tical cases. Hence, another adaptive MFP algorithm known
as white noise constraints (WNC) or diagonal loading (DL)
is employed in an attempt to counteract mismatch issues.
The DL algorithm uses diagonal loading technique to the
weight vector of the MVDR method by choosing the load
level parameter that satisfies the white noise constraint [6–
8]. In the process of adjustment of the load level parameter,
DL algorithm has ability to resolve the mismatch prob-
lem, however loses its high-resolution characteristic in some
cases.
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In this paper, we propose an adaptive algorithm known as
improved diagonal loading technique (IDL) as an improve-
ment of DL algorithm, which shows a better resolution in
the ambiguity surface in a number of scenarios in a shallow
water area. The proposed algorithm works by adding one
more adjusted parameter to the DL weight vector; therefore,
the performance of the method has a relation to the choice of
the two parameters which are the load level factor previously
existing in the DL algorithm and the adding adjusted param-
eter put in IDL. For comparison and evaluation purpose, the
localization performance of CMFP, MVDR, DL and IDL
algorithms is simulated in both match and mismatch cases.
Though the mismatch comes from many causes, the paper
only focuses mismatch scenarios as a result of the effects of
noises and the limitation of the number of snapshots.

The body of the paper is organized as follows. In Sect. 2, a
number of MFP algorithms are investigated. Next, in Sect. 3,
the paper presents environment model used for evaluating
the proposed algorithm. Next, the simulation results is given
in Sect. 4. The Sect. 5 is the conclusion of the paper.

2 MFP Algorithms

2.1 Conventional MFP Algorithm

Conventional beamforming is created by delaying the sig-
nals from individual channels so that the waves coming
primary beam direction are aligned in the same phase and
then summed to make the coherent gain in the main beam
direction [7]:

b = wH p (1)

where w is the weight vector, p is the received spectral value
and H shows the Hermitian transpose operation.

Power output of the beamforming is calculated by:

B =
∣
∣
∣w

H p
∣
∣
∣
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= wH
(

ppH
)

w

= wHRw (2)

The matrix R refers to sample-average cross-spectral den-
sity matrix (CSDM) that is calculated based on spectral of
received signal at the hydrophones. A better estimate of the
signal can be obtained by averaging several snapshots in the
condition of the received time series are long enough. There-
fore, the CSDM is given by:

R = 1

M

M
∑

m=1

pm pHm (3)

where pm is the mth snapshot.

Weight vector w is conventional MFP processor, which is
calculated by acoustic model as:

w = ν = G (r, z)

|G (r, z)| (4)

where G is Green function, which is calculated by acoustic
models.

When using the Normal mode method, Green function is
calculated by [9]:

G(r, z) = i

ρ(zs)
√
8πr

e− j π
4

∞
∑

m=1

Ψm(zs)Ψm(z)
e jkmr√
km

(5)

where r is the range, z is the depth, ρ is density, zs is
the depth of the source, ψm is the mode amplitude and km is
eigenvalue.

Therefore, the power output is:

B = νHRν (6)

The maximum value of the power output will determine
the source location.

2.2 The DL Algorithm

In conventionalMFPalgorithm, the sidelobes exist next to the
main lobe; therefore, tominimize the number of the sidelobes
and the influence of the noises, adaptive adjustment ofweight
vectors is exploited automatically. MVDR is an algorithm
that is applied to reduce noise effects and sidelobes. The
output power of MVDR processor is expressed by [7]:

B = wHRw, (7)

Weight vector is calculated by resolve the constraint:

min(wHRw) subject to wHν = 1 (8)

Theweight vector of theMVDR algorithm is given by [7]:

wMVDR = R−1ν

νHR−1ν
(9)

Replacing the weight vectorwMVDR in Eq. (7), the power
output of MVDR processor is [7]:

BMVDR = wH
MVDRRwMVDR (10)

Therefore:

BMVDR = 1

νHR−1ν
(11)
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To robust the MVDR algorithm, white noise constraint
which is based on adding a constant value to diagonal ele-
ments of CSD matrix is used for the weight computation:

wDL = (R + ε I )−1ν

νH(R + ε I )−1ν
(12)

The value of ε is chosen to satisfy some white noise
gain constraint [7]. Finally, replacing weight vector wDL in
Eq. (7), the power output of DL processor is:

BDL = wH
DLRwDL (13)

The value of ε equal to zero implies pure MVDR algo-
rithm. The value of ε equal to infinitive implies conventional
MFP algorithm.

2.3 The Proposed IDL Algorithm

The IDL algorithm is a developed version of the diagonal
loading algorithm. It is based on adjusting the diagonal load-
ing factor of DL technique along with the parameter which
is added to the weight vector in DL algorithm. The diagram
of IDL is described in Fig. 1.

The weight vector of IDL algorithm is calculated as
follows:

wIDL =
[

(R + ε I )−1 + β I
]

ν

νH
[

(R + ε I )−1 + β I
]

ν
(14)

The power output of IDL (BIDL) is presented as:

BIDL = wH
IDLRwIDL (15)

The adaptive level is based on making adjustments to
choose two parameters ε and β in the weight vector. Partic-
ularly, controlling the parameter ε is to deal with the degree
of the mismatch, while controlling the parameter β is to
increase resolution level of the ambiguity. When the param-
eter β c is equal to zero, the proposed algorithm becomes the
DL method. When both two parameters ε and β are equal
to zero, the IDL algorithm becomes the MVDR one.

3 Environmental Model

The configuration of the environment is demonstrated in
Fig. 2 in which the parameters are described in detail.

The ocean environment contains three layers: upper water
layer, sand layer and bottom layer; each of them is charac-
terized by its own parameters.

In water layer, the acoustic velocity varies from 1522 to
1543ms, the density ρ is 1.024g/cm3, and the depth of the
layer is 112m.

Fig. 1 The diagram of the IDL
algorithm
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Fig. 2 The environmental model

In sand layer, the acoustic velocity varies from 1520 to
1590ms, the absorption parameter α is 0.2dB/λ, the den-
sity ρ is 1.75g/cm3 and the depth of the layer is 12m. In
bottom layer, the acoustic velocity is 1650ms, the density
ρ is 1.9g/cm3, the absorption parameter α is 0.5dB/λ. The
sound speed is the most important parameter because it
depends on other factors such as the temperature, the salinity
and the depth of the layer. The density parameter describes
the refection ability of acoustic waves, while the absorption
characterizes the acoustic absorption.

4 Simulation Results

4.1 Input Parameter

Environmental parameter is described in Sect. 3. The source
is assumed to be located at range 2 km and 59m depth and
sent at 110Hz in the case of fixed target observation. The
hydrophone array includes 50 elements that are put at the
range from 6 to 104m depth, in which the distance between
each hydrophone is 2m. In this simulation, the signals at
the hydrophones which contain signal-to-noise ratio (SNR)
equal to −5dB are simulated under the effects of Gaussian
noise.

4.2 Simulation Results

To evaluate the efficiency of the IDL algorithm, the simula-
tion is carried out in both match and mismatch cases.

4.2.1 Simulation in the Match Case

The simulation results in the match case are demonstrated in
Figs. 3 and 4. The simulation results in Fig. 3 show that the
source can be localized when applyingMFP algorithm; how-

Fig. 3 The ambiguity surface
of conventional MFP algorithm
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Fig. 4 The ambiguity surface
of MVDR algorithm in the
match case
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Fig. 5 The ambiguity surface
of MVDR algorithm in the
mismatch case
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Fig. 6 The ambiguity surface
of the DL algorithm with ε = 1
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Fig. 7 The ambiguity surface
of IDL algorithm with ε = 1
and β = 0.2
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ever, the ambiguity surface contains some sidelobes beside
the main lobe. The results in Fig. 4 show that MVDR ambi-
guity surface displays a sidelobe suppression as well as an
increase in resolution, presenting an improvement of the per-
formance compared to MFP algorithm.

4.2.2 Simulation in the Mismatch Case

The simulation results in the mismatch case in which the
number of the snapshot is limited to N = 40 and Gaussian
Noise level is −5dB are presented in Figs. 5, 6 and 7.

Based on the results in Fig. 5, it is shown thatMVDRalgo-
rithm under environmental mismatch provides inaccurate
localization result. The simulation results in Fig. 6 indicate
that DL algorithm has better tolerance to mismatch than the
MVDR has, yet the DL still has not given a high resolution
of the ambiguity surface (PBR = 8.2). This disadvantage of
ambiguity surface is improved by using IDL algorithm. It is
seen fromFig. 7 that when applying IDL algorithm, the local-
ization performance significantly increases in both ability to
resist mismatch and the resolution level in comparison with
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MVDR andDLwhile retaining the localization error value to
an acceptable value and the high PBR level (PBR = 480.8).

5 Conclusion

The paper studies a number of underwater source localization
algorithms by using a hydrophone array in shallowwater and
applying the proposal of IDL algorithm, which is derived by
adjusting two loading parameters, to improve the resolution
and the degree of robustness to the environmental mismatch.
The simulation results show that the localizationperformance
of the Passive Sonar System not only obtains higher level of
accuracy and robustness to the mismatch but also gives a bet-
ter resolution for the ambiguity surface in the case of applying
IDL than applying the MVDR and the DL algorithms.

For the future work, the IDL algorithm can be investigated
in the case of mismatch problems caused by other potential
factors along with the noise effects and the limitation of the
number of the snapshots. The effectiveness of the proposed
algorithm on these mismatches will be compared with that
of the existing adaptive MFP algorithms.
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