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Linear and nonlinear photonic Jackiw-Rebbi states in interfaced binary waveguide arrays
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We study analytically and numerically the optical analog of the Jackiw-Rebbi states in quantum-field theory.
These solutions exist at the interface of two binary waveguide arrays, which are described by two Dirac equations
with masses of opposite sign. We show that these special states are topologically robust not only in the linear
regime, but also in the nonlinear one (with both focusing and defocusing nonlinearities). We also reveal that one
can effectively generate Jackiw-Rebbi states starting from Dirac solitons.
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I. INTRODUCTION

Waveguide arrays (WAs) present a unique discrete periodic
system to investigate many interesting photonic phenomena
such as discrete diffraction [1,2] and discrete solitons [1,3].
At the interface between two different semi-infinite one-
dimensional (1D) WAs, surface solitons can occur [4–6].
The surface solitons can also exist at the interface between
a uniform medium and a WA and have been investigated both
theoretically [7–9] and experimentally [10–12].

Waveguide arrays have also been used intensively to
simulate the evolution of a nonrelativistic quantum mechanical
particle in a periodic potential [13]. Many fundamental
phenomena in nonrelativistic classical and quantum mechanics
such as Bloch oscillations [14,15] and Zener tunneling [16,17]
have been investigated both theoretically and experimentally
by using WAs. It was shown in recent studies that most of
the nonlinear phenomena usually associated with fiber optics
(such as the emission of resonant radiation from solitons and
soliton self-frequency shift) can also take place in specially
excited WAs, but in the spatial domain rather than in the
temporal domain [18,19]. In addition, a supercontinuum in
both frequency and wave number domains can be generated
in nonlinear WAs [20]. Binary waveguide arrays (BWAs)
have been used to mimic relativistic phenomena typical of
quantum field theory (QFT), such as Klein tunneling [21,22],
Zitterbewegung (trembling motion of a free Dirac electron)
[23,24], and fermion pair production [25], which are all
based on the properties of the Dirac equation [26]. The
discrete gap solitons in BWAs in the classical context have
been investigated both numerically [27,28] and experimentally
[29]. Gap and out-gap solitons and breathers in BWAs have
been investigated as well [30,31]. These gap solitons were
already known in [32] for diatomic lattices and later derived
in their continuum-limit form for the BWA system in [30].
Recently, the explicit suggestion to use BWAs to simulate
a quantum nonlinear Dirac equation was put forward in
[33], where the gap solitons in BWAs were shown to be
connected to Dirac solitons (DSs) in a nonlinear extension
of the relativistic 1D Dirac equation describing the dynamics
of a freely moving relativistic particle. The 1D DS stability,
its dynamics, and different scenarios of soliton interaction
were systematically investigated in [34]. The formation and
dynamics of two-dimensional DSs in square binary waveguide
lattices also were considered in [35]. The higher-order Dirac

solitons in BWAs were studied in [36]. Although there is
currently no evidence for fundamental quantum nonlinearities,
nonlinear versions of the Dirac equation have been studied
for a long time, mainly because they allow the exploration
of extreme physical environments, such as Dirac particles
dynamics in astrophysical objects [37], or the influence of
fermion fields in general relativity singularities [38]. One of
the earlier extensions was investigated by Heisenberg himself
[39] in the context of field theory and was motivated by
the question of mass. In the quantum mechanical context,
nonlinear Dirac equations have been used as effective theories
in atomic, nuclear, and gravitational physics [40–43]. In this
regard, BWAs can offer a unique platform to simulate nonlinear
extensions of the Dirac equation when probed at high light
intensities.

Topological photonics is an important emerging field that
allows the control and manipulation of light propagation by
using regions of space with different topological numbers
(such as the Chern number or the winding number), where
light is forced to follow predetermined paths. For instance, this
concept has allowed the fabrication of gyromagnetic ferrite
photonic crystals, where an external magnetic field induced
states with nonvanishing Chern numbers [44]. Topological
photonics also promises to provide robust transport of optical
modes by suppressing backscattering [44,45]. Therefore,
conceptually, topological photonics can potentially play a
crucial role in the development of robust and practical optical
circuits for the unidirectional transport of light [44].

Another peculiar result emerging from the Dirac equation
is that one can observe the existence of a special topological
state, known in QFT as a Jackiw-Rebbi (JR) solution [46].
Originally, the JR model was introduced in order to couple a
fermion with a scalar field, the latter being a solution of the
φ4 model, i.e., a solitonic kink in 1+1 dimensions [46]. This
coupling allowed the smooth variation of the Dirac particle
mass from negative to positive, whereas a new topological
state could carry a half-integer fermion number [46].

The JR state is well known for predicting the charge
fractionalization phenomenon, which is fundamental to the
fractional quantum Hall effect [47]. The JR state is also well
known for the topological nature of its zero-energy solution
and can be interpreted as a precursor to topological insulators,
which have attracted much interest recently [48,49]. The
photonic topological defect states on the edge of a BWA
were experimentally observed in [50]. Quite recently, the
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topological defect mode at the interface between two periodic
dimer chains was also demonstrated [51]. So far, several
schemes have been proposed to realize the JR state and
observe charge fractionalization such as by using an atomic
Fermi-Dirac gas loaded in a periodic optical lattice [52] or
by using so-called heavy solitons in a fermionic superfluid
[53]. Recently, a photonic implementation of the JR model in
a slow-light polaritonic setup was also proposed [54].

In this work we explore another possibility of creating the
optical analog of the JR solution. This solution is a type
of topological edge state, which exists at the (continuous
or discontinuous) interface of two binary waveguide array
regions where the Dirac mass parameter changes sign. We
study the linear and nonlinear properties of the JR state, which
is possible by using the Kerr nonlinearity of the waveguides
forming the array. Finally, we explore the excitability of JR
states starting from two Dirac solitons with masses of opposite
sign, propagating individually in each waveguide array. This
new photonic state can have important applications in light
manipulation and circuitry or in the generation of robust,
topologically protected correlated photon sources.

II. GOVERNING EQUATIONS

Light propagation in a discrete, periodic binary array of Kerr
nonlinear waveguides can be described, in the monochromatic
regime, by the dimensionless coupled-mode equations [21]

i
dan(z)

dz
+ κ[an+1(z) + an−1(z)] − (−1)nσan

+ γ |an(z)|2an(z) = 0, (1)

where an is the electric-field amplitude in the nth waveguide,
z is the longitudinal spatial coordinate, 2σ and κ are the
propagation mismatch and the coupling coefficient between
two adjacent waveguides of the array, respectively, and γ

is the nonlinear coefficient of waveguides, which is positive
for self-focusing, but negative for self-defocusing media. For
n < 0 (for the left-hand-side BWA), σ = σ1, whereas for
n � 0 (the right-hand-side BWA), σ = σ2.

After setting �1(n) = (−1)na2n and �2(n) = i(−1)na2n−1

and following the standard approach developed in [23,24] we
can introduce the continuous transverse coordinate ξ ↔ n

and the two-component spinor �(ξ,z) = (�1,�2)T , which
satisfies the 1D nonlinear Dirac equation [33]

i∂z� = −iκσ̂x∂ξ� + σ σ̂z� − γG, (2)

where the nonlinear terms G ≡ (|�1|2�1,|�2|2�2)T and σ̂x

and σ̂z are the usual Pauli matrices. In QFT the parameter σ in
the Dirac equation is often called the mass of the Dirac field
(or Dirac mass) and this mass parameter can be both positive
and negative (see, for instance, Ref. [55] for more details).

III. LOCALIZED JACKIW-REBBI STATES
IN THE LINEAR CASE

If σ1 < 0 and σ2 > 0 we get the following exact localized
solution of Eq. (2) in the linear case:

�(ξ ) =
√

|σ1σ2|
κ(|σ1| + |σ2|)

(
1
i

)
e−|σ (ξ )ξ |/κ . (3)

Specifically, when the Dirac mass term σ (ξ ) has the form
of the hyperbolic tangent function one can find localized JR
states for the Dirac equations, which are often called the zero-
mode zero-energy states [see Eqs. (2.4)–(2.6) in [46], Eq. (1)
and Fig. 1(a) in [53], and also Eqs. (1)–(4) and Fig. 1 in
[54]]. Note that, in our case, the Dirac mass term σ (ξ ) has
the form of a steplike function, which leads to the localized
solution in the form of Eq. (3), and it thus corresponds to
the limit when the scale kink of the JR model has an infinite
steepness. What is important here is the difference in sign of
the Dirac mass in adjacent BWAs and not the smoothness of
the transition. The solution (3) is the exact one to Eq. (2),
but it is an approximate solution to the discrete equation (1).
Obviously, this approximation will become better if the beam
width gets larger. If |σ1| = |σ2| = σ0, one can easily get the
following exact localized solutions for the discrete equation (1)
without nonlinearity (γ = 0) for the following two cases. (i)
If −σ1 = σ2 = σ0 > 0, one gets the following JR state of the
1st type

an = bne
i[κ−

√
σ 2

0 +κ2]z, (4)

where bn is real and independent of the variable z, b2n−1 = b2n.
For n � 0 (the right-hand side BWA) one has the relationship
b2n/b2n+1 = α ≡ −[σ0/κ +

√
1 + σ 2

0 /κ2], whereas for n < 0
(the left-hand side BWA) one has b2n+1/b2n = α. (ii) However,
if σ1 = −σ2 = σ0 > 0, one has the following JR state of the
2nd type

an = bne
i[κ+

√
σ 2

0 +κ2]z, (5)

where bn is again real and independent of the variable z,
b2n−1 = b2n. For n � 0 one has b2n/b2n+1 = −α, whereas for
n < 0 one has b2n+1/b2n = −α.
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FIG. 1. (a) Illustrative sketch of two BWAs with opposite propa-
gation mismatches located adjacent to each other. (b) Propagation of a
beam in the linear regime where Eq. (3) is used as the input condition.
(c) Curves showing the amplitudes of the beam at the input (solid blue
with round markers) and output (solid black), which are hidden behind
the dotted red curve representing the solution in the form of Eq. (4).
(d) Phase pattern of the beam in (a) at different propagation distances
z = 0 (dotted red), 100 (dash-dotted blue), 150 (solid green), and
200 (dashed black). The parameters are −σ1 = σ2 = 1, κ = 1, and
γ = 0. Two BWAs consist of 841 waveguides in total.
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In Fig. 1(a) we show the illustrative sketch of two BWAs
with opposite propagation mismatches located adjacent to each
other. In Fig. 1(b) we show the propagation of a beam in the
linear regime where Eq. (3) is used as input condition for
numerically solving Eq. (1). Amplitudes of the beam at input
(solid blue with round markers) and output (solid black) are
plotted in Fig. 1(c). In Fig. 1(c) we also plot the dotted red
curve representing the exact solution in the form of Eq. (4)
for the discrete model represented by Eq. (1). The dotted red
curve and the output solid black curve in Fig. 1(c) coincide
perfectly with each other, therefore the output solid black
curve is hidden behind the dotted red curve. Figure 1(d)
shows the phase pattern of the beam at four propagation
distances z = 0 (dotted red), 100 (dash-dotted blue), 150
(solid green), and 200 (dashed black). From Eqs. (3) and (4)
one can easily see that as the waveguide position variable
n runs, the phase pattern of the JR states must be periodic
as follows: δn = . . . (ρ,ρ),(ρ + π,ρ + π ),(ρ,ρ), . . . , where
ρ also changes with z (fields at two central waveguides
n = −1 and 0 are in phase). These phase patterns are perfectly
illustrated in Fig. 1(d). The parameters used for simulations
in Fig. 1 are −σ1 = σ2 = 1, κ = 1, and γ = 0. Two BWAs
consist of 841 waveguides in total.

We would like to stress that the linear JR state found above is
fundamentally different from conventional defect states found
in the literature [56]. The JR state, being the zero mode
of the linear Dirac Hamiltonian, is much more robust than
ordinary defect modes with respect to perturbations, due to
its topological nature, which protects it from disorder or from
distortions of the lattice. This is the whole point in using a Dirac
equation rather than the conventional Schrödinger equation
and therefore the use of BWAs rather than simple nonbinary
WAs. We will show in the next section that the topological
protection works very well also in the nonlinear state and the
JR state is preserved when nonlinearity is present, making this
mode of great interest for applications.

IV. LOCALIZED JACKIW-REBBI STATES
IN THE NONLINEAR CASE

In Figs. 2(a) and 2(b) we show the propagation of a beam
with focusing (γ = 1) and defocusing nonlinearity (γ = −1),
respectively. As input condition for Figs. 2(a) and 2(b) Eq. (3)
is used, but multiplied by a factor of 0.5 and 1.0 in Figs. 2(a)
and 2(b), respectively. Note that the beam widths (FWHM)
in Fig. 2 are larger than in Fig. 1, because in Fig. 2 we use
−σ1 = σ2 = 0.6, whereas −σ1 = σ2 = 1.0 in Fig. 1 [see also
Eq. (3)]. In Fig. 2(c) we plot the beam profile |an| taken from
Fig. 2(a) at four propagation distances z = 0 (red), 100 (blue),
200 (green), and 300 (dashed black with round markers).
From Figs. 2(a) and 2(c) one can see that the input profile
is slightly adjusted to a stable soliton profile, which is well
conserved during propagation. As a result, the three latter
curves in Fig. 2(c) are almost identical and one can clearly
see only the dashed black curve with round markers, whereas
two other curves (blue and green) are hidden behind this
black curve. Note that for the localized state in the linear
regime illustrated in Fig. 1 one has |a2n−1| = |a2n|, whereas
for the established localized state in the regime with focusing
nonlinearity illustrated in Figs. 2(a) and 2(c), except for the
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FIG. 2. Propagation of a beam with (a) focusing and (b) defo-
cusing nonlinearity. (c) and (d) Plot of |an| of the corresponding
beam in (a) and (b), respectively, at different propagation distances
z = 0 (red), 100 (blue), 200 (green), and 300 (dashed black with
round markers). Note that the blue and green curves are hidden
behind the dashed black with round markers. The parameters are
−σ1 = σ2 = 0.6, κ = 1, and (a) γ = 1 and (b) γ = −1. Two BWAs
consist of 841 waveguides in total. As input condition for (a) and (b)
Eq. (3) is used, but multiplied by a factor of 0.5 and 1.0 in (a) and
(b), respectively.

two central sites where |a−1| = |a0|, one has |a2n−1| < |a2n| if
n < 0 and |a2n−1| > |a2n| if n > 0. Analogously, in Fig. 2(d)
we plot the beam profile |an| taken from Fig. 2(b) at four
propagation distances z = 0 (red), 100 (blue), 200 (green),
and 300 (dashed black with round markers). Note that in
Fig. 2(d), just like in Fig. 2(c), one can also clearly see only
the dashed black curve with round markers, whereas two other
curves (blue and green) are hidden behind this black curve.
From Figs. 2(b) and 2(d) one can see that the input profile is
slightly adjusted to a stable soliton profile, which is also well
conserved during propagation. Note that for the established
localized state in the regime with defocusing nonlinearity
illustrated in Figs. 2(b) and 2(d), except for the two central
sites where |a−1| = |a0|, one has |a2n−1| > |a2n| if n < 0 and
|a2n−1| < |a2n| if n > 0. It is worth mentioning that the phase
patterns of two beams in Fig. 2 are also identical to the ones
illustrated in Fig. 1(d). We would like to note the much greater
stability of the JR state under the effect of nonlinearity with
respect to conventional defect modes in WAs, which are subject
to the so-called nonlinear escape (see e.g., Ref. [56]).

V. FORMATION OF JACKIW-REBBI STATES
BY DIRAC SOLITONS

In Fig. 3(a) we show the formation of a JR state from
two out-of-phase Dirac solitons. These Dirac solitons with
analytical solutions are taken from Ref. [33] and are initially
motionless in the transverse direction with centers at waveg-
uides n = ± 10. These two Dirac solitons repel each other
during propagation and at the same time a JR state is formed
at the center of the array. In Fig. 3(c) we plot the beam profiles
at four propagation distances z = 0 (red), 100 (blue), 200
(green), and 300 (black) of the JR state shown in Fig. 3(a). In
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FIG. 3. (a) Formation of a JR state from two out-of-phase Dirac
solitons. (b) Formation of a JR state from one Dirac soliton. (c) and (d)
Plot of |an| of the corresponding beam in (a) and (b), respectively, at
different propagation distances z = 0 (red), 100 (blue), 200 (green),
and 300 (black). (e) and (f) Phase patterns of the beams in (c) and (d),
respectively at corresponding propagation distances z = 0 (dotted
red), 100 (dash-dotted blue), 200 (solid green), and 300 (dashed
black). The parameters are γ = 1, −σ1 = σ2 = 1.0, and κ = 1.

Fig. 3(e) we plot the phase patterns of the corresponding beam
profiles in Fig. 3(c) at these four propagation distances z = 0
(dotted red), 100 (dash-dotted blue), 200 (solid green), and
300 (dashed black). It is worth emphasizing that at the input
the overlapping of the two Dirac solitons is weak and we have
the profile that is totally different from the one of a JR state.
However, the phase pattern of the field at the center of the array
at the input [see the dotted red curve in Fig. 3(e)] is identical to
the one of the JR state as illustrated in Fig. 1(d) (note the trivial

fact that the phase difference equal to 2π means fields are just
in phase). This requirement for phase pattern at the input is
crucial for formation of the JR states later during propagation.
For two symmetric Dirac solitons located at two BWAs as
shown in Fig. 3(a) this phase pattern is only obtained if these
two Dirac solitons are initially out of phase. If this condition
is satisfied, then a JR state with the right beam profile and
phase pattern will be formed as clearly shown in Figs. 3(a),
3(c), and 3(e). Of course, the closer the initial Dirac solitons,
the larger the amplitude of the established JR state.

We have shown in Figs. 3(a), 3(c), and 3(e) that a JR
state can be formed from two out-of-phase Dirac solitons.
In the same way, we show in Figs. 3(b), 3(d), and 3(f) that a
quasi-JR-state can also be formed from just one Dirac soliton
that is initially located close to the border of the two BWAs.
However, in this case, the peak amplitude of the established
quasi-JR-state as shown in Fig. 3(d) is about three times
weaker than the JR state shown in Fig. 3(c). The phase pattern
of this beam as illustrated in Fig. 3(f) is also not perfectly
identical to the one of a true JR state.

VI. CONCLUSION

We have analytically and numerically demonstrated the
existence of the optical analog of edge states, known in
quantum field theory as the Jackiw-Rebbi states, formed at
the interface of two BWAs having propagation mismatches
with opposite signs. Remarkably, the localized JR states can be
formed in both linear and nonlinear regimes and can be divided
into two types with different amplitude profiles depending
on the signs of propagation mismatches at the interface.
We have also shown the excitation of JR states from Dirac
solitons. Due to the robustness of the topological JR states,
we envision important future applications in the generation
of topologically protected correlated photons, using a similar
scheme as proposed recently in Ref. [51].
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