Taylor & Francis
- Taylor & Francis Group

Stochastic Analysis and Applications

J.(i.-*!’#i":'r.-:a'f.-'}'

ISSN: 0736-2994 (Print) 1532-9356 (Online) Journal homepage: http://www.tandfonline.com/loi/Isaa20

Explicit formulas for the top Lyapunov exponents
of planar linear stochastic differential equations

Pham The Anh & Doan Thai Son

To cite this article: Pham The Anh & Doan Thai Son (2017): Explicit formulas for the top Lyapunov
exponents of planar linear stochastic differential equations, Stochastic Analysis and Applications,
DOI: 10.1080/07362994.2017.1305908

To link to this article: http://dx.doi.org/10.1080/07362994.2017.1305908

ﬁ Published online: 12 Apr 2017.

N
[:J/ Submit your article to this journal &

A
& View related articles &'

Py

(&) View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=lsaa20

(Download by: [University of Newcastle, Australia] Date: 12 April 2017, At: 17:14 )



http://www.tandfonline.com/action/journalInformation?journalCode=lsaa20
http://www.tandfonline.com/loi/lsaa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/07362994.2017.1305908
http://dx.doi.org/10.1080/07362994.2017.1305908
http://www.tandfonline.com/action/authorSubmission?journalCode=lsaa20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lsaa20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/07362994.2017.1305908
http://www.tandfonline.com/doi/mlt/10.1080/07362994.2017.1305908
http://crossmark.crossref.org/dialog/?doi=10.1080/07362994.2017.1305908&domain=pdf&date_stamp=2017-04-12
http://crossmark.crossref.org/dialog/?doi=10.1080/07362994.2017.1305908&domain=pdf&date_stamp=2017-04-12

STOCHASTIC ANALYSIS AND APPLICATIONS Tavlor &F .
2017,VOL. 0, NO. 0, 1-15 e aylor rancis

http://dx.doi.org/10.1080/07362994.2017.1305908 Taylor & Francis Group

Explicit formulas for the top Lyapunov exponents of
planar linear stochastic differential equations

Pham The Anh? and Doan Thai Son®

aDepartment of Mathematics, Le Quy Don Technical University, Hanoi, Vietnam; °Institute of Mathematics,
Vietnam Academy of Science and Technology, Hanoi, Vietham

ABSTRACT ARTICLE HISTORY
Our aim in this article is to establish explicit formulas for the top Received 8 August 2016
Lyapunov exponents of planar linear stochastic differential equations. Accepted 9 March 2017

We use these formulas to examine the sample-path stability of a linear

Lo - . A - . KEYWORDS
stochastic differential equations arising in fluid dynamics and of a Multiplicative ergodic
model of stochastic Hopf bifurcation. theorem: Lyapunov

exponent; stochastic
differential equation;
stability, stochastic
bifurcation

MATHEMATICS SUBJECT
CLASSIFICATION
37H15; 37H10; 37H20

1. Introduction

The characteristic Lyapunov exponent of a non-zero solution of a linear stochastic differential
equation measures the asymptotic exponential growth rate of the norm of this solution. Thank
to the multiplicative ergodic theorem (see, [4, 12]), the set of all possible Lyapunov exponents,
called Lyapunov spectrum, of a linear stochastic differential equation consists of finite non-
random real numbers.

It is well known that the Lyapunov spectrum indicates not only the stability of the cor-
responding linear stochastic differential equations but also some other important dynamical
properties of the nonlinear perturbed stochastic systems such as the transience/recurrence,
see [5], the normal form theory, see [3] and the bifurcation theory, see [4, chapter 8]. There-
fore, computing the Lyapunov exponents of linear stochastic differential equations is an
extremely important task in the qualitative theory of stochastic differential equations. In this
article, our aim is to establish an explicit formula for the top Lyapunov exponent of planar
linear stochastic differential equations of the form

d.xt Xt xt)
—a(*)ar+B AW, 1
(dyr> (%) (yt s M

where A, B € R**%. For this purpose, we consider two separated cases: the coefficients A and
B of (1) do not (case (i)) or do (case (ii)) satisfy the Hormander hypoellipticity condition.
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Concerning the case (i), we are able to write explicitly the solutions of (1) and to use the
Strong Law of Large Numbers for Martingales to compute explicitly the top Lyapunov expo-
nent of (1). Meanwhile, for the case (ii), we first use the Furstenberg-Khasminskii formula to
represent the top Lyapunov exponent as an integral of a function involving coeflicients A and
B over the stationary distribution of the induced flow of (1) on the unit circle. Finally, we com-
pute explicitly the stationary distribution by solving the Fokker-Planck equation associated
with the induced flow on the unit circle. To do this, depending on the Jordan normal form of
the diffusion coeflicient B, we can partition the unit circle on some open intervals such that
on each open interval the associated Fokker-Planck equation is a solvable ordinary differen-
tial equation. (Note that in general Fokker-Planck equations are implicit ordinary differential
equations.) Note that this procedure is also used in [9, 10] to establish explicit formulas for
the top Lyapunov exponent and the rotation number of (1) in the case that the Jordan normal
form of Bis ({ ), where @ € R.

This article is organized as follows: In Section 2, we recall some fundamental aspects of
Lyapunov exponents of linear stochastic differential equations. Section 3 is devoted to present
our main results in this paper about explicit formulas for the top Lyapunov exponents of pla-
nar linear stochastic differential equations. These formulas are later used to detect the area
of parameters for which a linear stochastic differential equation arising from fluid dynam-
ics is sample-path asymptotically stable (section 4.1) and the bifurcation value of a model of
stochastic Hopf bifurcation (section 4.2).

To conclude this introductory section, we introduce notations which are used throughout
this paper. For a matrix M, let o (M) denote the set of all complex eigenvalues of M and let

p(M) := {maxReA : A € 0 (M)}.

Let (-) denote the standard Euclidean inner product in R? and S' denote the unit circle in R?,
thatis, S := {x € R? : ||x|| = 1}. Let R-, be the set of non-negative real numbers.

2. Preliminaries

Consider a planar linear stochastic differential equation of the form

(dx’>=A(x’>dt+B(x’>oth, )
dy: V4 Vi

where (;:) € R?and A, B € R¥2. Let ®,4 p(t, &) denote the solution of (2) with (xo, yo)T =
& € R?\ {0}. Then, the top sample path Lyapunov exponent A4 p of (2) is defined by

o1
Aap = lim —log||®4 p(t, )l a.s.,
t—oo t

see, for example, [4]. To gain a formula to compute A4 g, we rewrite equation (2) in its polar
i i e 22 — YNT Ui g

coordinates by defining r; := /x{ + y; and's, := (3}, 7-) . Using Ito’s formula, see, for exam-

ple, [11]. We obtain

dry = fa(s)r dt + fo(s)r 0 dW,,  ds, =g, (s,) dt 4+ g4(s,) o dW,,

where for a matrix M = () *) € R¥?, we define

7M(s) = (s, Ms) and g, (s):=Ms— TM(S)S fors e S'.
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By identifying ¢; and —¢;, the angular motion is in fact a motion on one-dimensional pro-

€OS ¢y

jective space. Writing s; = ( ), where ¢; € [—7, 7), leads to

sin @y
dr, = fA((Dt)rt dt"‘fB((Dt)ﬂ odW;, dg; :gA((Pt)dt+gB(§0t) odW, (3)
where for a matrix M = (;!' }*) € R**?

fu(p) == my, cos® © + my, sin® ¢ + (my 4+ myp) cos @ sin @,
(@) = (myy — my;) cos @ sin @ + my; cos> ¢ — my, sin’ .
Now we recall the well-known Furstenberg-Khasminskii formula for the top Lyapunov expo-

nent of (2).

Theorem 1 (Furstenberg-Khasminskii formula). Suppose that the following non-degeneracy
condition holds:
(H) Thereisnos e S such that

As = (As,s)s and Bs = (Bs, s)s.

Then, the top Lyapunov exponent A4 g of (2) is given by

T

2 1
Aap = / (fA(sv) + Efé(w)gB(so)) p(e) do,

%
] = Ry is a smooth density function satisfying that p(—7) = p(3),
and the following differential equation

1 1
EgB(fp)zp/(w = (gA(w) — Eég(w)gB(w)) p(p) +C, (4)

where C is a constant.

Proof. See, for example, [10, pp. 34-37]. O

3. Explicit formulas for top Lyapunov exponents

Our aim in this section is to establish explicit formulas for the top Lyapunov exponents of
planar linear stochastic differential equations. For this purpose, we divide this section into two
subsections. In section 3.1, we consider degenerated linear stochastic differential equations,
that is, equations in which the drift and the diffusion coeflicients do not fulfill condition (H)
of Theorem 1. For systems satisfying condition (H), we give explicit formulas for their top
Lyapunov exponents in section 3.2.

3.1. Degenerated linear stochastic differential equations

Suppose that A, B € R**? do not satisfy condition (H). Therefore, there exists s € S' such
that

As = (As,s)s and Bs = (Bs, s)s,

which implies that s € S is a common real eigenvector of A and B. Thus, for the orthogonal
matrix T € R>*? defined by Te; = sand Te, := s*, we have T"'AT and T~'BT are lower tri-
angular matrices. Hence, any degenerated linear stochastic differential equation can be trans-
formed to a lower triangular linear stochastic differential equation and our aim in this section
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is to give an explicit formula for Lyapunov exponent of this class of linear stochastic differential
equations. Before going to the main result in this section, we need the following preparatory
lemma.

Lemma?2. Leto, B € R be arbitrary and (W;);cr be a Brownian motion defined in a probability
space (2, F, P). Then, the following statements hold almost surely:

(i) limsup,_, _ 1 log ‘fot exp(as)W,(w) ds| < a.

(ii) limy_ o %logfot exp(as + W (w)) ds = a.
Proof. Let ¢ be an arbitrary positive number. Using Strong Law of Large Numbers for Mar-
tingales, there exists a measurable set 2 with P(2) = 1 and lim;_, » M =0forallw € 2,

see, for example, [7, Appendix A]. Choose and fix an arbitrary w € Q. Thus, for € Q there
exists T'(g, w) > 0 such that

—&s < Wi(w) < &s foralls > T'(¢g, w).

Hence, for allt > T'(e, w) we have

t t
/ exp(as)Wi(w) ds < 8/ exp(as)s ds,
T 0

(e,0)

which implies that

1
lim sup — log
t—00

/ exp(as)Wi(w) ds
T

(6.0)

1 t
< lim sup — log (s/ exp(as)s ds) <.
0

t—00 t
Hence, (i) is proved. For all t > T' (e, w) we also have

/ exp (@ — |Ble)sds < / exp(as+ W (w)) ds
T

(e,w) T(e,w)

t
< / exp (« + |Ble)s ds,
T

(e,@)

which implies that

1 t
o —|Ble < li;ninf?log[ exp(as + W (w)) ds
— 00 0
and

1 t
a + |Ble = lim sup " log/ exp(as + W (w)) ds.
t—>00 0

Letting ¢ — 0 yields (ii) and the proof is complete. O

Theorem 3 (Explicit formula for the top Lyapunov exponents of degenerated linear stochastic
differential equations). Consider system (2) where A, B are of the following form

a 0 b11 0
A= d B= .
<6121 ax ) o < by by )

Aap = p(A) = max{a, ax}.

Then,
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Proof. The stochastic differential equation for the first component x; is
dx;, = anx; dt + byx; o dW,,
which implies that
x; = exp (ant + b;1Wi) xo.

The equation for the second component y; is

b, b+ bxn
dy; = | an + > yedt + | axn + bZIT X dt + (byix + byy) dW,.

Using the variation of constants formula, see, for example, [11, pp. 120], we obtain that

bll - b22

t
5 )xO/ exp (as + BW;) ds
0

e = exp (ant + by W,) (}’o + <f121 + by

t
+ b / exp(as + BW) d‘/vs>7
0
where « := a;; — ay and B8 := b;; — by,. Since lim,_, % = 0 it follows that
1
tlim ?log |x;| = ay; forxy #0
and
1
thm ;log lyel = axn forx, =0,y #0.

Consequently, A4 5 > p(A). To conclude the proof, it is sufficient to show that A4, 5 < p(A).
Equivalently, we prove that lim;_, % log |y:| < p(A). To do this, we consider the following
separated cases:

Case 1: If B = 0, then by using Ito’s formula, we obtain that

t t
/ exp(as) dW; = exp(at)W; — oz/ exp(as) Wy ds.
0 0

Therefore,

by, —b t
¥ = exp (axnt + by, W;) (}’0 + <¢121 + bm%) xo/ exp (as) dS)

0
t
— abyxg exp (axnt + bpuWy) / exp(as)W, ds
0
+ byixg exp (ant + bWy Wy,

which together with Lemma 2(i) implies that lim sup, , % log |y:| < p(A).
Case 2: If B # 0, then by using Ito’s formula, we obtain that

/ exp(as + BW,) dW = %(eXp(m +BW,) — 1)
0

- <% + §> fotexpws + BW,) ds.



6 (£ PT.ANHANDD.T.SON

Thus,
by by
Ye=\yo— Fxo exp (ant + bnuW,) + Fxo exp(ant + buW,)
t
o
+ <6121 - 17215) Xo exp (axnt + by, W) / exp (as + BW,) ds.
0

By virtue of Lemma 2(ii), lim,_ o % log |y:| < p(A) and the proof is complete. O

3.2. Non-degenerated linear stochastic differential equations

According to Theorem 1, the top Lyapunov exponent of a non-degenerated linear stochastic
differential equation is given explicitly in terms of the stationary distribution of the induced
flow on the unit circle. Hence, to obtain an explicit form of the top Lyapunov exponent, our
attempt in this subsection is to solve explicitly non-zero solutions of (4). Note that the equation
(4) can be singular in the sense that gz(¢) might be equal to zero for some values of ¢. So, to
solve (4) we distinguish the following types of the form of matrix B (up to a transformation
generated by a non-singular matrix):

Typel B = wid, Typetn B= (¢ %),
0 B
_fa 0 _f(a =B
TypeIHB_<1 Ol),TypeIVB_<I3 ot)’

where &, 8 € R and additionally, in Type II we assume that @ # f and in Type IV we assume
that 8 # 0.

Typel

Let B be of Type 1. Then, any matrix A € R**? commutes with B. In the following lemma, we
compute the top Lyapunov exponent of (2) when A and B commute. Consequently, we obtain
a formula for the top Lyapunov exponent of (2) when B is of Type I.

Lemma 4. Suppose that A and B are commutative, that is, AB = BA. Then, for any non-
zero initial value (xo, yo)" € R? \ {0} the characteristic Lyapunov exponent of the solution

@, 5(t, (x0, ¥0)T) of (2) is
. 1 T .1 T
lim sup n log H D, p(t, (%0, Y0) )“ = thm ;log ||exp (tA) (xo, ¥o) || . (5)
t—00 —
In particular, Ay 5 = p(A)
Proof. Since the matrices A and B are commute it follows that the explicit solution of (2) is
D, p(t, (x0, ¥0)") = exp (tA + BW;) (xo, yo)" = exp (W;B) exp (tA) (xo, y0)",

which implies that

|| exp(tA) (x50, y0) "
| exp(=W;B)]||

< | Pan(t) (X0, y0) "Il < [exp(W,B) | [ exp(tA) (xo, y0)" || - (6)
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Since lim;_, o % = 0 it follows that
.1 o1
lim —log || exp(W;B)| = lim —log|l exp(—W;B)|| =0,
t—oo t t—o0 t
which together with (6) proves (5). Since

1
max lim - log Hexp (tA) (xo,yo)T” = p(A),
(x0.y0) TeR2\(0} t>00 £

it follows that A4 5 = p(A). The proof is complete. O

Theorem 5 (Explicit formula for the top Lyapunov exponents of linear SDE of Type I). Con-
sider system (2) with the drift part A = (a;j) € R*>? and with the diffusion part B= (§ ),
where o € R. Then, the top Lyapunov exponent of (2) is given by Ay 5 = p (A).

Typell

In this part, we consider the case that B is of Type II. Note that for all diagonal singular matrices
F=(} ]92 ) € R**? we have FBF~! = B. In the following remark, a suitable diagonal matrix
F which enables to simplify the form of the drift term A is found:

Remark 6. Let A = (a;j) € R**2, Then, the pair (A, B) satisfy condition (H) of Theorem 1 iff
apay # 0. Depending on the sign of a;,a,,, we can simplify A as follows:

(a) Ifaja, > 0,thenfor F = (Sign(“lé)\/% (1)) we have

A.— FAF! — an «/ﬂ1zaz1> )
' A/ 312421 az ’

(b) If ajpas < 0, then for F = (Sign(““gv —a (1)) we have

A:=FAF' = ( u v _“12“21) . (8)

—a/ 0412421 az

Theorem 7 (Explicit formula for the top Lyapunov exponents of linear SDE of Type II). Con-
sider system (2) with the drift part A = (a;;) € R**?* and with the diffusion part B = (| g),
where o, B € R with o # B. Then, the following statements hold:

(a) If apay > 0, then

Sy Pap(u) exp (_@M> du

ap + an @—p)?F u
hap = 2 o0 2,/a12021 1442 ’
2/0 QA,B(”) exp <_WT> du
where
2(a227u51)72 5 5 uZ
Pyp(u) :==u ©@» (an —axn) —u’) +4ananu+ +2(a — B) T+ )
2(ap—ayy)

Qup(u) :=u @p* _2(1 + u?).
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(b) Ifa12a21 <0, then

ap + ax
)“A,B =
2
_ 2(ap—a11)
1 [ 2/manmr 1 Yy @—pF  _2J/7a1ap) 1-0?
+= Ryp(u)e @p* * ————e @/ " dodu
0 0 1 + 1]
_ 2(a—a11)
1 r° 2«/—“12gz1 =2 Y |p|  @p)? 72«/—ﬂ1z§21 1-0?
+ = Ryp(u)e ©@-p* —————e @/ ' dodu,
CJ_ oo 140
where
2@p-a11) 5 (g, —a u?
V] 11 22 2 2
Ry p(u) == |u| ©@h — A =uw)+(@¢—B) >
2 14+u
and
_ 2(agp—a11)
o0 2/=apar 1-u* (% @2 _2J/7apda) 1-0?
C:= Sap(u)e @p> ¢ — e @=p* v dodu
0 0 140
_ 2(ap—ayy)
0 2/maphr 1 (U |p| @ _2/Zaner 12
+ Sap(u)e @p? ¢ — ¢ @-p2 " dodu,
S R

2ap—a1)) _,

here Sy g(u) == (1 + u?)|u| @5*

Proof. Let A} ; denote the top Lyapunov exponent of the following linear stochastic differen-
tial equation

dX, = AX, + BX, o dW,, 9)

where A is defined as in Remark 6. Obviously, A4 3 = Az 3 and our aim is to compute A ;.
For this purpose, by definition of B, we have gs(¢) = £5% sin 2¢. Then, the equation for the
stationary distribution of the induced flow on S! is

8gi(¢)

where C is a constant. Using the explicit formula of g;(¢), the differential equation corre-
sponding to the linear part of (10) is given by

P (@) 4 ay —an | (@4 an)cos2¢  ay —ap
= - — — — 4 cot2¢p,
p(p) (a — B)? sin 2¢ sin” 2¢ sin” 2¢

where ¢ € [-7, 7]\ {£7,0}. A solution of the preceding equation on [-7, 7]\
{£7.0}is

tan | @5
H((p) = .2 2(ap+ar) 2@o1—712) cot 20 . (11)
sin“ 2¢ exp ((O,,,s)z sin 2¢ + @b )
By variation of constants formula, we have
p(E) ® 1
H(¢)(n(4%)+cf%md5> forgoe((), %),
ply) = )

%) ¢
H((p) (l'l(f4%) + Cff% sin22151'l(5) dS) fOI'(p € (_%’ 0) :
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Now, we cgnsider two separated cases:
(a) Let A be of the form (7). Then, by (11) the function IT(g) is given by

2(agp—aj1)
| tan | @57

02 44012021 1 ’
sin” 2¢ exp( (a—p)? sin2(p>

[M(p) =

which implies that lim,,_,,- [1(¢) = liqu_%+ [1(¢) = oc. Therefore, by boundedness of p
and (12), we have

_z 0 _ -
P( i) +C/ 1'2 d5=p( ;‘r) +C/ 2%%:0.
n(-%) _z TI(s)sin® 25 n(-%) _x TI(s)sin?2s

bi4
4

Consequently, p(—7) = C = 0 and using the fact that f_%l p(p) dp = 1, we obtain that
2

ln(‘p) ’ 1f§0 € [O» %]»
plp) = If nes

0, ifp € [-7,0).
In light of Theorem 1 and from the fact that

an +axp  ap—axn .
CoS2¢ + /aiay; sin 2¢

1
falp) + Eﬁg(w)gg(cp) =

2
2
o —
+—( A) sin? 20,
we have
a1 + an IS (@ €08 2¢ + ./a2az; sin 2¢ + % sin? 2g0) M(p)dy
)"A.B = + .

2 [ M(p) d

Changing variable ¢ = arctan u in the preceding integral completes the proof of this part.
(b) Let A be of the form (8). Then, by (11) the function IT(¢) is of the following form

2(app—ayy)
|tan | @-7°

sin® 2¢ exp (—4—m cot 2(0)

[(p) =

which implies that lim,_,o+ [T(¢) = lim(p_)_%Ar I1(¢) = oo. Consequently, from bounded-
ness of p(¢) and (12) we have

z 0 _z -3
M+C/ .;ds=p( 0 +C/ 2.;ds=0
) x sin? 2s T1(s) -3 _x sin?2s T1(s)

A
4

Thus,

cfy @) _ g5 forg € (0, 2,

sin2 2s TI(s)

Cff% @) g forp € (=%, 0).

sin2 2s TI(s)

pp) = {
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Since ff%% p(@) dp = 1 it follows that

_ 1

3 M(p) 0 M(p) ’
foz fo(p sin? 2s(pl'l(s) dsdg + f,% ff% sin? zfn(s) dsdg

A direct computation yields that

C

1 an+a an —a a—p)> .
fz(¢)+§f3(<p)gs(w)= 112 2+ ”2 2 6082<p+%sm22<p,

which together with Theorem 1 implies that

fo% (—”“;“22 cos2¢ + —(“_4'3)2 sin? Z(p) fo‘p 1@ __ dsdy

) ap + ax sinZ 25 T1(s)
AB = 3
' 2 P KA () 0 ro M(p)

fo fo sin? 25 TI(s) dsdg + f—% f—% sin? 25 T1(s) dsdy

> sin2 25 T1(s)
pg
2 (¢ _Te) 0 e M(p)
I I s dsde + f—% f—% T2 i) 4549

Changing variables s = arctano and ¢ = arctan u in the preceding integral completes the
proof. O

0 - @=B)* ¢ ()
.\ [ (% cos 2¢ + === sin’ 2(p) f_% 2 dsde

Typelll

In this section, we recall the result in [9, 10] about explicit formula of Lyapunov exponent of
linear stochastic differential equations whose diffusion parts are of Type III. Note that in this
case a pair (A, B) do not satisfy the degeneracy condition (H) iff the matrix A is not of lower
triangular form, that is, a;, # 0.

Theorem 8 (Explicit formula for the Lyapunov exponents of linear SDE of Type III). Consider
system (2) with the drift part A = (a;;) € R*** and with the diffusion part B = (T 0), where

o € R. Then,
an + an 1 fOOO ﬁexp <_é |ax| 0’ + ﬁ(ﬂl B M2)2> dv
)»A,B=T+§|a12| ~ ; " .
fo 7 €XP (‘g lai2| 03 + 2‘:12| (1 — w2) ) do
Type IV

In this section, we consider the case that the matrix B has a pair of conjugated complex eigen-
values, that is,

B= <Z _a’B) where o, 8 € R. (13)

Theorem 9 (Explicit formula for the top Lyapunov exponents of linear SDE of Type IV). Con-
sider system (2) with the drift part A = (a;;) € R>? and with the diffusion part B = (§ -y,
where o, B € R with § # 0. Define a function 1,5 : [-5, 2] = R by

22

T4 (@) := exp <a112;}82€lzz cos 2¢ + % sin2¢ — —alzﬂ—za21 (p) )
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Then, the top Lyapunov exponents of (2) is given by:

Ifﬂlz = a1 then

f% (au 2 cos2¢ + “12”21 sin 2(/)) IT48(9) d§0

[ an +axn n -z
A,B —
2 f M 5(p) do

Ifalz 75 day) then

A =
AP ITa () -z

1 7 1 7
1 —

w(aip—az1)
ﬂZ

FA,B (exp(
AB(‘/’)

do.

FAB./?; 7%fA( )HAB() Hae

where
f HAB(@) dgﬂf 2 HAB(W) d@ (14)

T n
Fpap:= / / 45(¢) dudgp + T
z J oz Iup(u) exp (L) —

2

[N

Then, the condition

Proof. By definition of gz(¢), we have gz(¢) = B for all ¢ € [-7, T].
(H) holds for all A € R**? and the differential equation of p(¢) is given by

(15)

2
ple) = g’};(f)p(w) +C

where C is a constant. From the definition of I1, 5, we get that

T4 p(¢) = exp (/w Zg;;gu) u) exp ((aIZ — a21)7;3—2 (ann — a22)> '

Therefore, I, 5(¢) is a nontrivial solution of the corresponding linear equation of (15) given
ZgA ) =42 p(¢). By variation of constants formula, we arrive at

[SE}

by p'(¢) =

(4
(@) = My 5(0) (K e / : HA; o du) , (16)

where « is a constant. In the remaining part, we solve « and C by using the properties that
(=3)=p(3)and f?% p(u) du = 1. From definition of I, 5, we have

HA,B (_%) — exp (7'[(012 — a21))
Mas(5) p? '

So, from (16) the equality p(—%) = p(5) leads to

T

P (n(anﬁ; a21)> _”C/n HAiw) du
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To solve the preceding equality, we consider the following separated cases:

Case 1: If a;, = ay;, then C = 0. Hence, from f,%% p(p) dp =1 we derive that k¥ =
1

. . According to Theorem 1, we obtain
f_z% Iy () de

f_j% fale) Iy (@) do
f_f% A p(p)de
a1y + an ‘/‘77% (a11 922 o5 2§0 4 a12+a21 San(p) HAB((P) d(p
2 f [y 5(p) do

A(A, B) =

Case 2: If ay; # ay,, then from p(—%) = p(%) we derive that

pis

f7 1
-7 Mapw)

2
exp(

k=C
ﬁ(ﬂlz a21))

Since ff%% p(@) de = 1it follows that

/ f Mas(@) g0 [ Mas(e)de [ —HA;(W dr)
/)1 l_[AB(u) exp(”(alz @)y -
Hence, C = IB, where I'y 5 is defined as in (14) and using Theorem 1, the proof is
complete. ‘ O

4, Applications

4.1. Sample-path stability of a linear stochastic differential equation arsing from fluid
dynamics

In this section, we consider the following linear stochastic differential equation

du, \ —R7! 1 0 -1 Uy
(#)-(5 )R e @) o

where o # 0. This system was discussed in [8] and arises from a model in fluid dynamics.
In [8], the authors compute explicitly the area of parameters for which system (17) is mean-
square asymptotically stable. Instead of studying mean-square asymptotic stability, our aim is
to find the area of parameters for which system (17) is sample-path asymptotically stable.

Theorem 10. System (17) is asymptotically stable if and only if two parameters R, o satisfy

Cas - / /2 sin 2¢ exp Sg;zf _ U%) dudep
R exp( ) exp(sm u i)

202 o2

1) sin 2(/) exp sm2<p _ U%)
/n/ nz” n dudy,
2

z exp
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where

b4 2
¢ (B2 _ o [ exp (2% — £) do
F“‘B_/ / e sfé’zzu %) gy +< ;o (5% — ) do) >0 (18)
4 exp (3 — &) exp(5z) —1

Proof. The diffusion coefficient of this linear stochastic differential equation if of Type IV.
Hence, we can use Theorem 9 to compute and to determine the sign of the top Lyapunov
exponent of (17). A direct computation yields that

sin 2¢ @ 1 sin2¢

HAB(§0)—CXP< _;) and fA(<.0)=—E+ 5

Therefore, the constant I'y 5 defined in (14) is computed explicitly as in (18). Hence, by
Theorem 9, we have

sm2(p %
% sin2¢p eXp 2 T2

FAB)»AB——— AB T / / 312n22u uz) dude
exp(az) -1 exp ( - 4)

T
2
@ 51n2g0 _ %
sin Zgo exp 02 a2) dud
sm2u _u ) ®s
-2 eXp 202 o2

which completes the proof. O

As is proved in [8, Theorem 4.2], system (17) is mean-square asymptotically stable iff R
and o satisfy

6
2 —o?+ \3/806 + 2702 + 3\/304(1604 + 27)

404
+ < :
V806 + 2702 + 3/30*(160°* + 27)

The following lemma is devoted to show that mean-square asymptotic stability implies
sample-path asymptotic stability for an arbitrary planar linear stochastic differential

equation
(dxf>=A<xf> dt+3<x‘>odw;. (19)
dy; Yt e

Recall that the mean-square Lyapunov exponent of (19) denoted by A}, is defined by

ms H 1
Aap = lim 7 logE[|®4 5(t, )|,
see, for example, [2].
Lemma 11. Consider (19) and suppose that 1} < 0. Then, 4 5 < 0.

Proof. Note that in the case that the coefficients A and B of (17) satisfy condition (H) of
Theorem 1, then the assertion of this lemma was proved in [1, Corollary 1]. Hence, we only
need to deal with the case that the pair {A, B} does not satisfy (H). Based on the arguments
at the beginning of Subsection 3.1, we can assume w.l.o.g. that A and B are upper triangular

matrices, that is,
A= an 0 and B= bu 0 .
app  dxp b, by
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Using Ito’s formula, we obtain that

d Ex?
dt L = 2(ayn + bi) d]Extz’
dEx (b11 + by)?
dttyt — (all + a + HTZZ Extyt’
by (b +0b
+ <a21 n 21 ( 112 22) n b11b21) Extz
dEy? by (b + 3b
= 2o ) B By 2 (4 2O gy,
Therefore, Ay < 0is equivalent to the fact that
an + bi <0 and ay, + biz <0,
which implies together with Theorem 3 that A4 5 < 0. The proof is complete. O

4.2. A model of stochastic Hopf bifurcation

Consider a model of stochastic Hopf bifurcation of the following form

dx; —y,—l—(a—b(xtz—{—y%))xt) (UI 0 ) <xt>
= dt + aw;, 20
(dyr> <Xr+(a—b(x?+y?))yz 0 o)\p)o 20
where a € R and b, 01, 0, > 0 are parameters. Note that the preceding model with an addi-
tional assumption that o; = o, is studied in [6]. Our aim in this section is to find the bifurca-

tion value of (20) in the remaining case that o, # o,. For this purpose, the linearized equation
along the trivial solution of (20) is

dx\ _(a -1 X op 0 X
(@,)‘(1 a )(yr>dt+<0 Uz><yt>0dw" 2D

Let 6 := 0; — 0, and denote by ais(8) the bifurcation value satisfying that when a changes
increasingly and crosses ay(8), the system (21) changes from stability to instability. For the
case that § > 0, in light of Theorem 7 the bifurcation value a;(8) is

2(1—u?) 2(1—0?)

o [ pe )
0 0

C 1+ u? 1+ 02

2(1—u?) 2(1—02)
52 0 €xp ( o ) u exp <_T>
- — / ’ / i dv du,

CJl o 14+u2 oo 1+ 0?2

where

2(1—02)
% 1 2 2(1 — 2 u €Xp 7,
C:=/ +u exp<( u))/' (8 >dl)du
0 0

u? 8%u 1+ 0?2
0 1442 2(1 — uz) u exp (2(;1,),2))
+ / exp / do du.
oo U 8%u N

By virtue of Theorem 5, api¢(0) = 0, that is, when § = 0 the bifurcation value of the stochastic
Hopf bifurcation model (20) coincides with the Hopf bifurcation value of the deterministic
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part. Meanwhile, when § > 0, the bifurcation value of the stochastic Hopf bifurcation model
(20) is strictly smaller than the Hopf bifurcation value of the deterministic part.
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