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ABSTRACT
Our aim in this article is to establish explicit formulas for the top
Lyapunov exponents of planar linear stochastic differential equations.
We use these formulas to examine the sample-path stability of a linear
stochastic differential equations arising in fluid dynamics and of a
model of stochastic Hopf bifurcation.

1. Introduction

The characteristic Lyapunov exponent of a non-zero solution of a linear stochastic differential
equationmeasures the asymptotic exponential growth rate of the normof this solution. Thank
to themultiplicative ergodic theorem (see, [4, 12]), the set of all possible Lyapunov exponents,
called Lyapunov spectrum, of a linear stochastic differential equation consists of finite non-
random real numbers.

It is well known that the Lyapunov spectrum indicates not only the stability of the cor-
responding linear stochastic differential equations but also some other important dynamical
properties of the nonlinear perturbed stochastic systems such as the transience/recurrence,
see [5], the normal form theory, see [3] and the bifurcation theory, see [4, chapter 8]. There-
fore, computing the Lyapunov exponents of linear stochastic differential equations is an
extremely important task in the qualitative theory of stochastic differential equations. In this
article, our aim is to establish an explicit formula for the top Lyapunov exponent of planar
linear stochastic differential equations of the form

(
dxt
dyt

)
= A

(
xt
yt

)
dt + B

(
xt
yt

)
◦ dWt , (1)

where A,B ∈ R
2×2. For this purpose, we consider two separated cases: the coefficients A and

B of (1) do not (case (i)) or do (case (ii)) satisfy the Hörmander hypoellipticity condition.
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Concerning the case (i), we are able to write explicitly the solutions of (1) and to use the
Strong Law of Large Numbers for Martingales to compute explicitly the top Lyapunov expo-
nent of (1). Meanwhile, for the case (ii), we first use the Furstenberg–Khasminskii formula to
represent the top Lyapunov exponent as an integral of a function involving coefficients A and
B over the stationary distribution of the induced flow of (1) on the unit circle. Finally, we com-
pute explicitly the stationary distribution by solving the Fokker–Planck equation associated
with the induced flow on the unit circle. To do this, depending on the Jordan normal form of
the diffusion coefficient B, we can partition the unit circle on some open intervals such that
on each open interval the associated Fokker–Planck equation is a solvable ordinary differen-
tial equation. (Note that in general Fokker–Planck equations are implicit ordinary differential
equations.) Note that this procedure is also used in [9, 10] to establish explicit formulas for
the top Lyapunov exponent and the rotation number of (1) in the case that the Jordan normal
form of B is (

α 0
1 α ), where α ∈ R.

This article is organized as follows: In Section 2, we recall some fundamental aspects of
Lyapunov exponents of linear stochastic differential equations. Section 3 is devoted to present
our main results in this paper about explicit formulas for the top Lyapunov exponents of pla-
nar linear stochastic differential equations. These formulas are later used to detect the area
of parameters for which a linear stochastic differential equation arising from fluid dynam-
ics is sample-path asymptotically stable (section 4.1) and the bifurcation value of a model of
stochastic Hopf bifurcation (section 4.2).

To conclude this introductory section, we introduce notations which are used throughout
this paper. For a matrixM, let σ (M) denote the set of all complex eigenvalues ofM and let

ρ(M) := {maxReλ : λ ∈ σ (M)}.
Let 〈·〉 denote the standard Euclidean inner product inR

2 and S1 denote the unit circle inR
2,

that is, S1 := {x ∈ R
2 : ‖x‖ = 1}. Let R≥0 be the set of non-negative real numbers.

2. Preliminaries

Consider a planar linear stochastic differential equation of the form(
dxt
dyt

)
= A

(
xt
yt

)
dt + B

(
xt
yt

)
◦ dWt , (2)

where (
xt
yt ) ∈ R

2 and A,B ∈ R
2×2. Let �A,B(t, ξ ) denote the solution of (2) with (x0, y0)T =

ξ ∈ R
2 \ {0}. Then, the top sample path Lyapunov exponent λA,B of (2) is defined by

λA,B = lim
t→∞

1
t
log ‖�A,B(t, ·)‖ a.s.,

see, for example, [4]. To gain a formula to compute λA,B, we rewrite equation (2) in its polar
coordinates by defining rt :=

√
x2t + y2t and st := ( xtrt

,
yt
rt

)T. Using Ito’s formula, see, for exam-
ple, [11]. We obtain

drt = f̄A(st )rt dt + f B(st )rt ◦ dWt , dst = gA(st ) dt + gB(st ) ◦ dWt ,

where for a matrixM = (
m11 m12
m21 m22

) ∈ R
2×2, we define

f M(s) := 〈s,Ms〉 and gM(s) := Ms − f M(s)s for s ∈ S
1.
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By identifying ϕt and −ϕt , the angular motion is in fact a motion on one-dimensional pro-
jective space. Writing st = (

cosϕt
sinϕt

), where ϕt ∈ [−π

2 , π

2 ), leads to

drt = fA(ϕt )rt dt + fB(ϕt )rt ◦ dWt , dϕt = gA(ϕt ) dt + gB(ϕt ) ◦ dWt , (3)

where for a matrixM = (
m11 m12
m21 m22

) ∈ R
2×2

fM(ϕ) := m11 cos2 ϕ + m22 sin2 ϕ + (m12 + m21) cosϕ sinϕ,

gM(ϕ) := (m22 − m11) cosϕ sinϕ + m21 cos2 ϕ − m12 sin2 ϕ.

Nowwe recall the well-known Furstenberg–Khasminskii formula for the top Lyapunov expo-
nent of (2).

Theorem 1 (Furstenberg–Khasminskii formula). Suppose that the following non-degeneracy
condition holds:
(H) There is no s ∈ S

1 such that

As = 〈As, s〉s and Bs = 〈Bs, s〉s.
Then, the top Lyapunov exponent λA,B of (2) is given by

λA,B =
∫ π

2

− π
2

(
fA(ϕ) + 1

2
f ′
B(ϕ)gB(ϕ)

)
p(ϕ) dϕ,

where p : [−π

2 , π

2 ] → R≥0 is a smooth density function satisfying that p(−π

2 ) = p( π

2 ),∫ π
2

− π
2
p(ϕ) dϕ = 1 and the following differential equation

1
2
gB(ϕ)2p′(ϕ) =

(
gA(ϕ) − 1

2
g′
B(ϕ)gB(ϕ)

)
p(ϕ) +C, (4)

where C is a constant.
Proof. See, for example, [10, pp. 34–37]. �

3. Explicit formulas for top Lyapunov exponents

Our aim in this section is to establish explicit formulas for the top Lyapunov exponents of
planar linear stochastic differential equations. For this purpose, we divide this section into two
subsections. In section 3.1, we consider degenerated linear stochastic differential equations,
that is, equations in which the drift and the diffusion coefficients do not fulfill condition (H)
of Theorem 1. For systems satisfying condition (H), we give explicit formulas for their top
Lyapunov exponents in section 3.2.

3.1. Degenerated linear stochastic differential equations

Suppose that A,B ∈ R
2×2 do not satisfy condition (H). Therefore, there exists s ∈ S

1 such
that

As = 〈As, s〉s and Bs = 〈Bs, s〉s,
which implies that s ∈ S

1 is a common real eigenvector of A and B. Thus, for the orthogonal
matrix T ∈ R

2×2 defined by Te1 = s and Te2 := s⊥, we have T−1AT and T−1BT are lower tri-
angular matrices. Hence, any degenerated linear stochastic differential equation can be trans-
formed to a lower triangular linear stochastic differential equation and our aim in this section



4 P. T. ANH AND D. T. SON

is to give an explicit formula for Lyapunov exponent of this class of linear stochastic differential
equations. Before going to the main result in this section, we need the following preparatory
lemma.

Lemma2. Letα, β ∈ R be arbitrary and (Wt )t∈R be a Brownianmotion defined in a probability
space (�,F,P). Then, the following statements hold almost surely:

(i) lim supt→∞
1
t log

∣∣∣∫ t
0 exp(αs)Ws(ω) ds

∣∣∣ ≤ α.

(ii) limt→∞ 1
t log

∫ t
0 exp(αs + βWs(ω)) ds = α.

Proof. Let ε be an arbitrary positive number. Using Strong Law of Large Numbers for Mar-
tingales, there exists a measurable set �̂ with P(�̂) = 1 and limt→∞

Wt (ω)

t = 0 for all ω ∈ �̂,
see, for example, [7, Appendix A]. Choose and fix an arbitrary ω ∈ �̂. Thus, for ω ∈ �̂ there
exists T (ε, ω) > 0 such that

−εs ≤ Ws(ω) ≤ εs for all s ≥ T (ε, ω).

Hence, for all t ≥ T (ε, ω) we have∫ t

T (ε,ω)

exp(αs)Ws(ω) ds ≤ ε

∫ t

0
exp(αs)s ds,

which implies that

lim sup
t→∞

1
t
log

∣∣∣∣∫ t

T (ε,ω)

exp(αs)Ws(ω) ds
∣∣∣∣ ≤ lim sup

t→∞

1
t
log

(
ε

∫ t

0
exp(αs)s ds

)
≤ α.

Hence, (i) is proved. For all t ≥ T (ε, ω) we also have∫ t

T (ε,ω)

exp (α − |β|ε)s ds ≤
∫ t

T (ε,ω)

exp(αs + βWs(ω)) ds

≤
∫ t

T (ε,ω)

exp (α + |β|ε)s ds,

which implies that

α − |β|ε ≤ lim inf
t→∞

1
t
log

∫ t

0
exp(αs + βWs(ω)) ds

and

α + |β|ε ≥ lim sup
t→∞

1
t
log

∫ t

0
exp(αs + βWs(ω)) ds.

Letting ε → 0 yields (ii) and the proof is complete. �
Theorem 3 (Explicit formula for the top Lyapunov exponents of degenerated linear stochastic
differential equations). Consider system (2) where A,B are of the following form

A =
(
a11 0
a21 a22

)
and B =

(
b11 0
b21 b22

)
.

Then,

λA,B = ρ(A) = max{a11, a22}.
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Proof. The stochastic differential equation for the first component xt is

dxt = a11xt dt + b11xt ◦ dWt ,

which implies that

xt = exp (a11t + b11Wt ) x0.

The equation for the second component yt is

dyt =
(
a22 + b222

2

)
yt dt +

(
a21 + b21

b11 + b22
2

)
xt dt + (b21xt + b22yt ) dWt .

Using the variation of constants formula, see, for example, [11, pp. 120], we obtain that

yt = exp (a22t + b22Wt )

(
y0 +

(
a21 + b21

b11 − b22
2

)
x0
∫ t

0
exp (αs + βWs) ds

+ b21x0
∫ t

0
exp(αs + βWs) dWs

)
,

where α := a11 − a22 and β := b11 − b22. Since limt→∞ Wt
t = 0 it follows that

lim
t→∞

1
t
log |xt | = a11 for x0 
= 0

and

lim
t→∞

1
t
log |yt | = a22 for x0 = 0, y0 
= 0.

Consequently, λA,B ≥ ρ(A). To conclude the proof, it is sufficient to show that λA,B ≤ ρ(A).
Equivalently, we prove that limt→∞ 1

t log |yt | ≤ ρ(A). To do this, we consider the following
separated cases:

Case 1: If β = 0, then by using Ito’s formula, we obtain that∫ t

0
exp(αs) dWs = exp(αt )Wt − α

∫ t

0
exp(αs)Ws ds.

Therefore,

yt = exp (a22t + b22Wt )

(
y0 +

(
a21 + b21

b11 − b22
2

)
x0
∫ t

0
exp (αs) ds

)
− αb21x0 exp (a22t + b22Wt )

∫ t

0
exp(αs)Ws ds

+ b21x0 exp (a11t + b11Wt )Wt ,

which together with Lemma 2(i) implies that lim supt→∞
1
t log |yt | ≤ ρ(A).

Case 2: If β 
= 0, then by using Ito’s formula, we obtain that∫ t

0
exp(αs + βWs) dWs = 1

β
(exp(αt + βWt ) − 1)

−
(

α

β
+ β

2

)∫ t

0
exp(αs + βWs) ds.
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Thus,

yt =
(
y0 − b21

β
x0
)
exp (a22t + b22Wt ) + b21

β
x0 exp(a11t + b11Wt )

+
(
a21 − b21

α

β

)
x0 exp (a22t + b22Wt )

∫ t

0
exp (αs + βWs) ds.

By virtue of Lemma 2(ii), limt→∞ 1
t log |yt | ≤ ρ(A) and the proof is complete. �

3.2. Non-degenerated linear stochastic differential equations

According to Theorem 1, the top Lyapunov exponent of a non-degenerated linear stochastic
differential equation is given explicitly in terms of the stationary distribution of the induced
flow on the unit circle. Hence, to obtain an explicit form of the top Lyapunov exponent, our
attempt in this subsection is to solve explicitly non-zero solutions of (4).Note that the equation
(4) can be singular in the sense that gB(ϕ) might be equal to zero for some values of ϕ. So, to
solve (4) we distinguish the following types of the form of matrix B (up to a transformation
generated by a non-singular matrix):

Type I B = α id, Type II B =
(

α 0
0 β

)
,

Type III B =
(

α 0
1 α

)
, Type IV B =

(
α −β

β α

)
,

where α, β ∈ R and additionally, in Type II we assume that α 
= β and in Type IV we assume
that β 
= 0.

Type I
Let B be of Type I. Then, any matrix A ∈ R

2×2 commutes with B. In the following lemma, we
compute the top Lyapunov exponent of (2) whenA and B commute. Consequently, we obtain
a formula for the top Lyapunov exponent of (2) when B is of Type I.

Lemma 4. Suppose that A and B are commutative, that is, AB = BA. Then, for any non-
zero initial value (x0, y0)T ∈ R

2 \ {0} the characteristic Lyapunov exponent of the solution
�A,B(t, (x0, y0)T) of (2) is

lim sup
t→∞

1
t
log

∥∥�A,B(t, (x0, y0)T)
∥∥ = lim

t→∞
1
t
log

∥∥exp (tA)(x0, y0)T
∥∥ . (5)

In particular, λA,B = ρ(A)

Proof. Since the matrices A and B are commute it follows that the explicit solution of (2) is

�A,B(t, (x0, y0)T) = exp (tA + BWt ) (x0, y0)T = exp (WtB) exp (tA) (x0, y0)T,

which implies that

‖ exp(tA)(x0, y0)T‖
‖ exp(−WtB)‖ ≤ ‖�A,B(t )(x0, y0)T‖ ≤ ∥∥exp(WtB)

∥∥ ∥∥exp(tA)(x0, y0)T
∥∥ . (6)
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Since limt→∞ Wt
t = 0 it follows that

lim
t→∞

1
t
log ‖ exp(WtB)‖ = lim

t→∞
1
t
log ‖ exp(−WtB)‖ = 0,

which together with (6) proves (5). Since

max
(x0,y0 )T∈R2\{0}

lim
t→∞

1
t
log

∥∥exp (tA) (x0, y0)T
∥∥ = ρ(A),

it follows that λA,B = ρ(A). The proof is complete. �

Theorem 5 (Explicit formula for the top Lyapunov exponents of linear SDE of Type I). Con-
sider system (2) with the drift part A = (ai j) ∈ R

2×2 and with the diffusion part B = (
α 0
0 α ),

where α ∈ R. Then, the top Lyapunov exponent of (2) is given by λA,B = ρ (A).

Type II
In this part, we consider the case thatB is of Type II.Note that for all diagonal singularmatrices
F = (

f1 0
0 f2 ) ∈ R

2×2 we have FBF−1 = B. In the following remark, a suitable diagonal matrix
F which enables to simplify the form of the drift term A is found:

Remark 6. Let A = (ai j) ∈ R
2×2. Then, the pair (A,B) satisfy condition (H) of Theorem 1 iff

a12a21 
= 0. Depending on the sign of a12a21, we can simplify A as follows:
(a) If a12a21 > 0, then for F = (

sign(a12)
√

a21
a12

0
0 1

) we have

Â := FAF−1 =
(

a11
√
a12a21√

a12a21 a22

)
. (7)

(b) If a12a21 < 0, then for F = (
sign(a12)

√
− a21

a12
0

0 1
) we have

Â := FAF−1 =
(

a11
√−a12a21

−√−a12a21 a22

)
. (8)

Theorem 7 (Explicit formula for the top Lyapunov exponents of linear SDE of Type II). Con-
sider system (2) with the drift part A = (ai j) ∈ R

2×2 and with the diffusion part B = (
α 0
0 β ),

where α, β ∈ R with α 
= β. Then, the following statements hold:
(a) If a12a21 > 0, then

λA,B = a11 + a22
2

+
∫∞
0 PA,B(u) exp

(
− 2

√
a12a21

(α−β)2
1+u2
u

)
du

2
∫∞
0 QA,B(u) exp

(
− 2

√
a12a21

(α−β)2
1+u2
u

)
du

,

where

PA,B(u) := u
2(a22−a11 )

(α−β)2
−2
(

(a11 − a22)(1 − u2) + 4
√
a12a21u + +2(α − β)2

u2

1 + u2

)
,

QA,B(u) := u
2(a22−a11 )

(α−β)2
−2

(1 + u2).
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(b) If a12a21 < 0, then

λA,B = a11 + a22
2

+ 1
C

∫ ∞

0
RA,B(u)e

2
√−a12a21
(α−β)2

1−u2
u

∫ u

0

v
− 2(a22−a11 )

(α−β)2

1 + v2 e−
2
√−a12a21
(α−β)2

1−v2
v dv du

+ 1
C

∫ 0

−∞
RA,B(u)e

2
√−a12a21
(α−β)2

1−u2
u

∫ u

−∞

|v|−
2(a22−a11 )

(α−β)2

1 + v2 e−
2
√−a12a21
(α−β)2

1−v2
v dv du,

where

RA,B(u) := |u|
2(a22−a11 )

(α−β)2
−2
(
a11 − a22

2
(1 − u2) + (α − β)2

u2

1 + u2

)
and

C :=
∫ ∞

0
SA,B(u)e

2
√−a12a21
(α−β)2

1−u2
u

∫ u

0

v
− 2(a22−a11 )

(α−β)2

1 + v2 e−
2
√−a12a21
(α−β)2

1−v2
v dv du

+
∫ 0

−∞
SA,B(u)e

2
√−a12a21
(α−β)2

1−u2
u

∫ u

−∞

|v|−
2(a22−a11 )

(α−β)2

1 + v2 e−
2
√−a12a21
(α−β)2

1−v2
v dv du,

here SA,B(u) := (1 + u2)|u|
2(a22−a11 )

(α−β)2
−2.

Proof. Let λÂ,B denote the top Lyapunov exponent of the following linear stochastic differen-
tial equation

dXt = ÂXt + BXt ◦ dWt , (9)

where Â is defined as in Remark 6. Obviously, λA,B = λÂ,B and our aim is to compute λÂ,B.
For this purpose, by definition of B, we have gB(ϕ) = β−α

2 sin 2ϕ. Then, the equation for the
stationary distribution of the induced flow on S

1 is

sin2 2ϕ p′(ϕ) =
(

8gÂ(ϕ)

(β − α)2
− 2 sin 4ϕ

)
p(ϕ) +C, (10)

where C is a constant. Using the explicit formula of gÂ(ϕ), the differential equation corre-
sponding to the linear part of (10) is given by

p′(ϕ)

p(ϕ)
= 4

(α − β)2

(
â22 − â11
sin 2ϕ

+ (â12 + â21) cos 2ϕ
sin2 2ϕ

+ â21 − â12
sin2 2ϕ

)
− 4 cot 2ϕ,

where ϕ ∈ [−π

2 , π

2 ] \ {±π

2 , 0}. A solution of the preceding equation on [−π

2 , π

2 ] \
{±π

2 , 0} is

�(ϕ) := | tanϕ|
2(â22−â11 )

(α−β)2

sin2 2ϕ exp
(

2(â12+â21)
(α−β)2 sin 2ϕ + 2(â21−â12 ) cot 2ϕ

(α−β)2

) . (11)

By variation of constants formula, we have

p(ϕ) =
⎧⎨⎩�(ϕ)

(
p( π

4 )

�( π
4 )

+C
∫ ϕ

π
4

1
sin2 2s�(s) ds

)
for ϕ ∈ (0, π

2

)
,

�(ϕ)
(

p(− π
4 )

�(− π
4 )

+C
∫ ϕ

− π
4

1
sin2 2s�(s) ds

)
for ϕ ∈ (−π

2 , 0
)
.

(12)
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Now, we consider two separated cases:
(a) Let Â be of the form (7). Then, by (11) the function �(ϕ) is given by

�(ϕ) = | tanϕ|
2(a22−a11 )

(α−β)2

sin2 2ϕ exp
(
4
√
a12a21

(α−β)2
1

sin 2ϕ

) ,

which implies that limϕ→0− �(ϕ) = limϕ→− π
2

+ �(ϕ) = ∞. Therefore, by boundedness of p
and (12), we have

p
(−π

4

)
�
(−π

4

) +C
∫ 0

− π
4

1
�(s) sin2 2s

ds = p
(−π

4

)
�
(−π

4

) +C
∫ − π

2

− π
4

1
�(s) sin2 2s

ds = 0.

Consequently, p(−π

4 ) = C = 0 and using the fact that
∫ π

2
− π

2
p(ϕ) dϕ = 1, we obtain that

p(ϕ) =
{ �(ϕ)∫ π

2
0 �(s) ds

, if ϕ ∈ [0, π

2 ],

0, if ϕ ∈ [−π

2 , 0).

In light of Theorem 1 and from the fact that

fÂ(ϕ) + 1
2
f

′
B(ϕ)gB(ϕ) = a11 + a22

2
+ a11 − a22

2
cos 2ϕ + √

a12a21 sin 2ϕ

+ (α − β)2

4
sin2 2ϕ,

we have

λA,B = a11 + a22
2

+
∫ π

2
0

(
a11−a22

2 cos 2ϕ + √
a12a21 sin 2ϕ + (α−β)2

4 sin2 2ϕ
)

�(ϕ) dϕ∫ π
2

0 �(ϕ) dϕ
.

Changing variable ϕ = arctan u in the preceding integral completes the proof of this part.
(b) Let Â be of the form (8). Then, by (11) the function �(ϕ) is of the following form

�(ϕ) = | tanϕ|
2(a22−a11 )

(α−β)2

sin2 2ϕ exp
(
− 4

√−a12a21
(α−β)2

cot 2ϕ
) ,

which implies that limϕ→0+ �(ϕ) = limϕ→− π
2

+ �(ϕ) = ∞. Consequently, from bounded-
ness of p(ϕ) and (12) we have

p( π

4 )

�(π

4 )
+C

∫ 0

π
4

1
sin2 2s �(s)

ds = p(−π

4 )

�(−π

4 )
+C

∫ − π
2

− π
4

1
sin2 2s �(s)

ds = 0.

Thus,

p(ϕ) =
{
C
∫ ϕ

0
�(ϕ)

sin2 2s �(s) ds for ϕ ∈ (0, π

2 ),

C
∫ ϕ

− π
2

�(ϕ)

sin2 2s �(s) ds for ϕ ∈ (−π

2 , 0).
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Since
∫ π

2
− π

2
p(ϕ) dϕ = 1 it follows that

C = 1∫ π
2

0

∫ ϕ

0
�(ϕ)

sin2 2s �(s) ds dϕ + ∫ 0
− π

2

∫ ϕ

− π
2

�(ϕ)

sin2 2s �(s) ds dϕ
.

A direct computation yields that

fÂ(ϕ) + 1
2
f

′
B(ϕ)gB(ϕ) = a11 + a22

2
+ a11 − a22

2
cos 2ϕ + (α − β)2

4
sin2 2ϕ,

which together with Theorem 1 implies that

λA,B = a11 + a22
2

+
∫ π

2
0

(
a11−a22

2 cos 2ϕ + (α−β)2

4 sin2 2ϕ
) ∫ ϕ

0
�(ϕ)

sin2 2s�(s) ds dϕ∫ π
2

0

∫ ϕ

0
�(ϕ)

sin2 2s �(s) ds dϕ + ∫ 0
− π

2

∫ ϕ

− π
2

�(ϕ)

sin2 2s �(s) ds dϕ

+
∫ 0

− π
2

(
a11−a22

2 cos 2ϕ + (α−β)2

4 sin2 2ϕ
) ∫ ϕ

− π
2

�(ϕ)

sin2 2s�(s) ds dϕ∫ π
2

0

∫ ϕ

0
�(ϕ)

sin2 2s �(s) ds dϕ + ∫ 0
− π

2

∫ ϕ

− π
2

�(ϕ)

sin2 2s �(s) ds dϕ
.

Changing variables s = arctan v and ϕ = arctan u in the preceding integral completes the
proof. �

Type III
In this section, we recall the result in [9, 10] about explicit formula of Lyapunov exponent of
linear stochastic differential equations whose diffusion parts are of Type III. Note that in this
case a pair (A,B) do not satisfy the degeneracy condition (H) iff the matrix A is not of lower
triangular form, that is, a12 
= 0.

Theorem 8 (Explicit formula for the Lyapunov exponents of linear SDE of Type III). Consider

system (2) with the drift part A = (ai j) ∈ R
2×2 and with the diffusion part B = (

α 0
1 α

), where

α ∈ R. Then,

λA,B = a11 + a22
2

+ 1
2

|a12|
∫∞
0

√
v exp

(
− 1

6 |a12| v3 + v
2|a12| (μ1 − μ2)

2
)
dv∫∞

0
1√
v
exp

(
− 1

6 |a12| v3 + v
2|a12| (μ1 − μ2)

2
)
dv

.

Type IV
In this section, we consider the case that the matrix B has a pair of conjugated complex eigen-
values, that is,

B =
(

α −β

β α

)
where α, β ∈ R. (13)

Theorem 9 (Explicit formula for the top Lyapunov exponents of linear SDE of Type IV). Con-
sider system (2) with the drift part A = (ai j) ∈ R

2×2 and with the diffusion part B = (
α −β

β α ) ,
where α, β ∈ R with β 
= 0. Define a function �A,B : [−π

2 , π

2 ] → R by

�A,B(ϕ) := exp
(
a11 − a22

2β2 cos 2ϕ + a12 + a21
2β2 sin 2ϕ − a12 − a21

β2 ϕ

)
.
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Then, the top Lyapunov exponents of (2) is given by:
If a12 = a21, then

λA,B = a11 + a22
2

+
∫ π

2
− π

2

( a11−a22
2 cos 2ϕ + a12+a21

2 sin 2ϕ
)

�A,B(ϕ) dϕ∫ π
2

− π
2
�A,B(ϕ) dϕ

.

If a12 
= a21 then

λA,B = 1

�A,B

(
exp

(
π(a12−a21)

β2

)
− 1

) ∫ π
2

− π
2

1
�A,B(ϕ)

dϕ

∫ π
2

− π
2

fA(ϕ)�A,B(ϕ) dϕ

+ 1
�A,B

∫ π
2

− π
2

∫ ϕ

− π
2

fA(ϕ)
�A,B(ϕ)

�A,B(u)
du dϕ.

where

�A,B :=
∫ π

2

− π
2

∫ ϕ

− π
2

�A,B(ϕ)

�A,B(u)
du dϕ +

∫ π
2

− π
2
�A,B(ϕ) dϕ

∫ π
2

− π
2

1
�A,B(ϕ)

dϕ

exp( π(a12−a21)
β2 ) − 1

. (14)

Proof. By definition of gB(ϕ), we have gB(ϕ) = β for all ϕ ∈ [−π

2 , π

2 ]. Then, the condition
(H) holds for all A ∈ R

2×2 and the differential equation of p(ϕ) is given by

p′(ϕ) = 2gA(ϕ)

β2 p(ϕ) +C, (15)

whereC is a constant. From the definition of �A,B, we get that

�A,B(ϕ) = exp

(∫ ϕ

− π
2

2gA(u)

β2 du

)
exp

(
(a12 − a21)π − (a11 − a22)

2β2

)
.

Therefore,�A,B(ϕ) is a nontrivial solution of the corresponding linear equation of (15) given
by p′(ϕ) = 2gA(ϕ)

β2 p(ϕ). By variation of constants formula, we arrive at

p(ϕ) = �A,B(ϕ)

(
κ +C

∫ ϕ

− π
2

1
�A,B(u)

du

)
, (16)

where κ is a constant. In the remaining part, we solve κ and C by using the properties that
p(−π

2 ) = p( π

2 ) and
∫ π

2
− π

2
p(u) du = 1. From definition of �A,B, we have

�A,B
(−π

2

)
�A,B

(
π

2

) = exp
(

π(a12 − a21)
β2

)
.

So, from (16) the equality p(−π

2 ) = p( π

2 ) leads to

exp
(

π(a12 − a21)
β2

)
κ = κ +C

∫ π
2

− π
2

1
�A,B(u)

du.
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To solve the preceding equality, we consider the following separated cases:
Case 1: If a12 = a21, then C = 0. Hence, from

∫ π
2

− π
2
p(ϕ) dϕ = 1 we derive that κ =

1∫ π
2

− π
2

�A,B(ϕ) dϕ

. According to Theorem 1, we obtain

λ(A,B) =
∫ π

2
− π

2
fA(ϕ) �A,B(ϕ) dϕ∫ π
2

− π
2
�A,B(ϕ) dϕ

= a11 + a22
2

+
∫ π

2
− π

2

( a11−a22
2 cos 2ϕ + a12+a21

2 sin 2ϕ
)

�A,B(ϕ) dϕ∫ π
2

− π
2
�A,B(ϕ) dϕ

.

Case 2: If a21 
= a12, then from p(−π

2 ) = p( π

2 ) we derive that

κ = C

∫ π
2

− π
2

1
�A,B(u)

du

exp( π(a12−a21)
β2 ) − 1

.

Since
∫ π

2
− π

2
p(ϕ) dϕ = 1 it follows that

C

⎛⎝∫ π
2

− π
2

∫ ϕ

− π
2

�A,B(ϕ)

�A,B(u)
du dϕ +

∫ π
2

− π
2
�A,B(ϕ) dϕ

∫ π
2

− π
2

1
�A,B(ϕ)

dϕ

exp( π(a12−a21)
β2 ) − 1

⎞⎠ = 1.

Hence, C = 1
�A,B

, where �A,B is defined as in (14) and using Theorem 1, the proof is
complete. �

4. Applications

4.1. Sample-path stability of a linear stochastic differential equation arsing fromfluid
dynamics

In this section, we consider the following linear stochastic differential equation(
dut
dvt

)
=
(−R−1 1

0 −R−1

)(
ut
vt

)
dt + σ

(
0 −1
1 0

)(
ut
vt

)
◦ dWt , (17)

where σ 
= 0. This system was discussed in [8] and arises from a model in fluid dynamics.
In [8], the authors compute explicitly the area of parameters for which system (17) is mean-
square asymptotically stable. Instead of studying mean-square asymptotic stability, our aim is
to find the area of parameters for which system (17) is sample-path asymptotically stable.

Theorem 10. System (17) is asymptotically stable if and only if two parameters R, σ satisfy

�A,B

R
>

1
exp( π

σ 2 ) − 1

∫ π
2

− π
2

∫ π
2

− π
2

sin 2ϕ
2

exp
( sin 2ϕ

2σ 2 − ϕ

σ 2

)
exp

( sin 2u
2σ 2 − u

σ 2

) du dϕ

+
∫ π

2

− π
2

∫ ϕ

− π
2

sin 2ϕ
2

exp
( sin 2ϕ

2σ 2 − ϕ

σ 2

)
exp

( sin 2u
2σ 2 − u

σ 2

) du dϕ,
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where

�A,B :=
∫ π

2

− π
2

∫ ϕ

− π
2

exp
( sin 2ϕ

2σ 2 − ϕ

σ 2

)
exp

( sin 2u
2σ 2 − u

σ 2

) du dϕ +
(∫ π

2
− π

2
exp

( sin 2ϕ
2σ 2 − ϕ

σ 2

)
dϕ
)2

exp( π

σ 2 ) − 1
> 0. (18)

Proof. The diffusion coefficient of this linear stochastic differential equation if of Type IV.
Hence, we can use Theorem 9 to compute and to determine the sign of the top Lyapunov
exponent of (17). A direct computation yields that

�A,B(ϕ) = exp
(
sin 2ϕ
2σ 2 − ϕ

σ 2

)
and fA(ϕ) = − 1

R
+ sin 2ϕ

2
.

Therefore, the constant �A,B defined in (14) is computed explicitly as in (18). Hence, by
Theorem 9, we have

�A,BλA,B = − 1
R

�A,B + 1
exp( π

σ 2 ) − 1

∫ π
2

− π
2

∫ π
2

− π
2

sin 2ϕ
2

exp
( sin 2ϕ

2σ 2 − ϕ

σ 2

)
exp

( sin 2u
2σ 2 − u

σ 2

) du dϕ

+
∫ π

2

− π
2

∫ ϕ

− π
2

sin 2ϕ
2

exp
( sin 2ϕ

2σ 2 − ϕ

σ 2

)
exp

( sin 2u
2σ 2 − u

σ 2

) du dϕ,

which completes the proof. �

As is proved in [8, Theorem 4.2], system (17) is mean-square asymptotically stable iff R
and σ satisfy

6
R

> −σ 2 + 3
√
8σ 6 + 27σ 2 + 3

√
3σ 4(16σ 4 + 27)

+ 4σ 4

3
√
8σ 6 + 27σ 2 + 3

√
3σ 4(16σ 4 + 27)

.

The following lemma is devoted to show that mean-square asymptotic stability implies
sample-path asymptotic stability for an arbitrary planar linear stochastic differential
equation (

dxt
dyt

)
= A

(
xt
yt

)
dt + B

(
xt
yt

)
◦ dWt . (19)

Recall that themean-square Lyapunov exponent of (19) denoted by λms
A,B is defined by

λms
A,B := lim

t→∞
1
t
logE‖�A,B(t, ·)‖2,

see, for example, [2].

Lemma 11. Consider (19) and suppose that λms
A,B < 0. Then, λA,B < 0.

Proof. Note that in the case that the coefficients A and B of (17) satisfy condition (H) of
Theorem 1, then the assertion of this lemma was proved in [1, Corollary 1]. Hence, we only
need to deal with the case that the pair {A,B} does not satisfy (H). Based on the arguments
at the beginning of Subsection 3.1, we can assume w.l.o.g. that A and B are upper triangular
matrices, that is,

A =
(
a11 0
a12 a22

)
and B =

(
b11 0
b12 b22

)
.
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Using Ito’s formula, we obtain that

d Ex2t
dt

= 2(a11 + b211) dEx
2
t ,

d Extyt
dt

=
(
a11 + a22 + (b11 + b22)2

2

)
Extyt ,

+
(
a21 + b21(b11 + b22)

2
+ b11b21

)
Ex2t

d Ey2t
dt

= 2
(
a22 + b222

)
Ey2t + b221Ex

2
t + 2

(
a21 + b21(b11 + 3b22)

2

)
Extyt .

Therefore, λms
A,B < 0 is equivalent to the fact that

a11 + b211 < 0 and a22 + b222 < 0,

which implies together with Theorem 3 that λA,B < 0. The proof is complete. �

4.2. Amodel of stochastic Hopf bifurcation

Consider a model of stochastic Hopf bifurcation of the following form(
dxt
dyt

)
=
(−yt + (

a − b
(
x2t + y2t

))
xt

xt + (a − b(x2t + y2t ))yt

)
dt +

(
σ1 0
0 σ2

)(
xt
yt

)
◦ dWt , (20)

where a ∈ R and b, σ1, σ2 > 0 are parameters. Note that the preceding model with an addi-
tional assumption that σ1 = σ2 is studied in [6]. Our aim in this section is to find the bifurca-
tion value of (20) in the remaining case that σ1 
= σ2. For this purpose, the linearized equation
along the trivial solution of (20) is(

dxt
dyt

)
=
(
a −1
1 a

)(
xt
yt

)
dt +

(
σ1 0
0 σ2

)(
xt
yt

)
◦ dWt . (21)

Let δ := σ1 − σ2 and denote by abif (δ) the bifurcation value satisfying that when a changes
increasingly and crosses abif (δ), the system (21) changes from stability to instability. For the
case that δ > 0, in light of Theorem 7 the bifurcation value abif (δ) is

abif (δ) = −δ2

C

∫ ∞

0

exp
(
2(1−u2 )

δ2u

)
1 + u2

∫ u

0

exp
(
− 2(1−v2 )

δ2v

)
1 + v2 dv du

− δ2

C

∫ 0

−∞

exp
(
2(1−u2)

δ2u

)
1 + u2

∫ u

−∞

exp
(
− 2(1−v2 )

δ2v

)
1 + v2 dv du,

where

C : =
∫ ∞

0

1 + u2

u2
exp

(
2(1 − u2)

δ2u

)∫ u

0

exp
(
2(1−v2)

δ2v

)
1 + v2 dv du

+
∫ 0

−∞

1 + u2

u2
exp

(
2(1 − u2)

δ2u

)∫ u

−∞

exp
(
2(1−v2 )

δ2v

)
1 + v2 dv du.

By virtue of Theorem 5, abif (0) = 0, that is, when δ = 0 the bifurcation value of the stochastic
Hopf bifurcation model (20) coincides with the Hopf bifurcation value of the deterministic
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part. Meanwhile, when δ > 0, the bifurcation value of the stochastic Hopf bifurcation model
(20) is strictly smaller than the Hopf bifurcation value of the deterministic part.
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