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ABSTRACT
By a scalarizationmethod and properties of semi-algebraic sets, it is proved
that both the Pareto solution set and the weak Pareto solution set of a
vector variational inequality, where the constraint set is polyhedral convex
and the basic operators are given by polynomial functions, have finitely
many connected components. Consequences of the results for vector
optimization problems are discussed in details. The results of this paper
solve in the affirmative some open questions for the case of general
problems without requiring monotonicity of the operators involved.
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1. Introduction

The notion of vector variational inequality (VVI)was introduced byGiannessi in his seminal work.[1]
A large collection of related papers is available in [2]. It is well known (see e.g. [3]) that VVI plays
an important role in the study of various questions (structure of the solution sets, solution stability,
solution sensitivity, etc.) about vector optimization problems. Note also that VVI is one of the most
important models of vector equilibrium problems. As an example, we refer to the work by Raciti [4],
where the author has studied two different kinds of Wardrop-type vector equilibria related to the
vector traffic equilibrium problem and compared their VVI formulations.

Solution sensitivity and topological properties of the solution sets of strongly monotone VVIs
with applications to vector optimization problems have been studied in [3,5].

Based on a stability theorem of Robinson [6, Theorem 2] and a scalarization method,[3,7], Yen
and Yao [8] established sufficient conditions for the upper semicontinuity of the solution maps of
parametric monotone affine vector variational inequalities. As a by-product, the authors obtained
new topological properties of the solution sets of those problems and several facts on solution stability
and connectedness of the solution sets of convex quadratic vector optimization problems and of linear
fractional vector optimization problems (LFVOPs).

Recently, using a scalarization method, Huong et al. [9, Theorems 3.1 and 3.2] have shown that
both the Pareto solution set and the weak Pareto solution set of a bicriteria affine VVI, which is
not necessarily monotone, have finitely many connected components, provided that a regularity
condition is satisfied. An explicit upper bound for the numbers of connected components of the
Pareto solution set and the weak Pareto solution set has been given. Applying that result to vector
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2 N. T. T. HUONG ET AL.

optimization problems, the authors have obtained new topological properties of the solution sets of
bicriteria LFVOPs and of quadratic vector optimization problems (QVOPs).

The aim of this paper is to clarify the connectedness structure of the solution sets of vector
variational inequalities, where the number of criteria can exceed two and the basic operators may be
non-affine. We will prove that both the Pareto solution set and the weak Pareto solution set of the
problem have finitely many connected components. The results have interesting consequences for
vector optimization problems. In particular, it is shown that

(a) The Pareto solution set of any LFVOP has finitely many connected components;
(b) The weak Pareto solution set of any LFVOP has finitely many connected components;
(c) The weak Pareto solution set of any convex vector optimization problem with polynomial

criteria under linear constraints has finitely many connected components.

Note that two types of constraint set of a VVI can be considered: a polyhedral convex set (i.e. the
solution set of a finite system of linear inequalities), or the solution set of a finite system of convex
polynomial inequalities. Herein we will treat only the first case. The second case, which is muchmore
involved and requires using the Slater regularity condition or the Mangasarian-Fromovitz constraint
qualification, is left for subsequent investigations.

Our main technique is to reduce the problem under consideration to a question concerning
semi-algebraic sets and solve the later by some tools from real algebraic geometry.[10]

The results of this paper provide an affirmative answer to Question 1 in [8, p.66] and also give a
partial solution to Question 9.3 in [11, p.267] for the case of general problems without requiring the
monotonicity of the operators involved.

The remaining part of this paper consists of three sections. Some definitions, notations and auxil-
iary results are given in Section 2. Section 3 studies the connectedness structure of the solution sets
of vector variational inequalities. The last section applies the obtained results to several fundamental
classes of vector optimization problems.

2. Preliminaries

The scalar product of two elements x1, x2 and the norm of an element x in an Euclidean space are
denoted, respectively, by 〈x1, x2〉 and ‖x‖. The transpose of a matrixM is denoted byMT .

2.1. Vector variational inequalities

Let K ⊂ Rn be a nonempty closed convex subset. Given m vector-valued functions Fi : K → Rn,
i = 1, . . . ,m, we put F = (F1, . . . , Fm) and

F(x)(u) = (〈F1(x), u〉, . . . , 〈Fm(x), u〉)T , ∀x ∈ K , ∀u ∈ Rn.

Denoting the nonnegative orthant of Rm by Rm+, we consider the set

� =
{

ξ = (ξ1, . . . , ξm)T ∈ Rm+ :
m∑
i=1

ξi = 1

}
,

whose relative interior is given by

ri� = {ξ ∈ � : ξi > 0 for all i = 1, . . . ,m} .

The VVI [1, p.167] defined by F, K and the cone C := Rm+ is the problem:

(VVI) Find x ∈ K such that F(x)(y − x) �C\{0} 0, ∀y ∈ K ,
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OPTIMIZATION 3

where the inequality v �C\{0} 0 for v ∈ Rm means that−v /∈ C \ {0}. Following [12], to this problem
we associate the next one:

(VVI)w Find x ∈ K such that F(x)(y − x) �intC 0, ∀y ∈ K ,

where intC denotes the interior of C and the inequality v �intC 0 indicates that −v /∈ intC. The
solution sets of (VVI) and (VVI)w are abbreviated, respectively, by Sol(VVI) and Solw(VVI). The
elements of the first set (resp., of the second set) are said to be the Pareto solutions (resp., the weak
Pareto solutions) of (VVI).

For m = 1, one has F = F1 : K → Rn, hence (VVI) and (VVI)w coincide with the classical
variational inequality problem [13, p.13]:

(VI) Find x ∈ K such that 〈F(x), y − x〉 ≥ 0, ∀y ∈ K .

Let us denote the solution set of the latter by Sol(VI). For each ξ ∈ �, consider the variational
inequality

(VI)ξ Find x ∈ K such that

〈 m∑
i=1

ξiFi(x), y − x

〉
≥ 0, ∀y ∈ K ,

and denote its solution set by Sol(VI)ξ . Taking the union of Sol(VI)ξ on ξ ∈ ri� (resp., on ξ ∈ �)
we can find a part of Sol(VVI) (resp., the whole set Solw(VVI)). Namely, we have the following result.
Theorem 2.1: (See [3] and [7]) It holds that⋃

ξ∈ri�
Sol(VI)ξ ⊂ Sol(VVI) ⊂ Solw(VVI) =

⋃
ξ∈�

Sol(VI)ξ . (2.1)

If K is a polyhedral convex set, i.e. K is the intersection of finitely many closed half-spaces of Rn (the
intersection of an empty family of closed half-spaces is set to be Rn), then⋃

ξ∈ri�
Sol(VI)ξ = Sol(VVI). (2.2)

If 〈F(y) − F(x), y − x〉 ≥ 0 for all x, y ∈ K , then we say that F is monotone on K and (VI) is a
monotone variational inequality. If VI(Fi,K) (i = 1, . . . ,m) are monotone VIs, then (VVI) is said
to be a monotone VVI. If F(x) = Mx + q, where M ∈ Rn×n, q ∈ R and K is a polyhedral convex
set, then (VI) is said to be an affine variational inequality (or briefly AVI). One says that (VVI) is an
affine VVI (or AVVI) if K is a polyhedral convex set and there exist matricesMi ∈ Rn×n and vectors
qi ∈ Rn (i = 1, . . . ,m) such that Fi(x) = Mix + qi for i = 1, . . . ,m and for all x ∈ K .

2.2. Sets having finitelymany connected components

To study the connectedness structure of the sets Sol(VVI) and Solw(VVI), we now recall some
definitions from general topology and prove an auxiliary result.
Definition 2.2: (See [14]) A topological space X is said to be connected if one cannot represent
X = U ∪ V where U , V are nonempty open sets of X with U ∩ V = ∅. A nonempty subset A ⊂ X
of a topological space X is said to be a connected component of X if A (equipped with the induced
topology) is connected and it is not a proper subset of any connected subset of X.

The next lemma will be useful for our subsequent considerations.
Lemma 2.3: Let � be a subset of a topological space X with the closure denoted by �. If � has k
connected components, then any subset A ⊂ X with the property � ⊂ A ⊂ � can have at most k
connected components.
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4 N. T. T. HUONG ET AL.

Proof: Suppose that � ⊂ A ⊂ � and � has k connected components, denoted by �i, i = 1, . . . , k.
It is easy to show that � =

⋃k

i=1
�i, where �i stands for the closure of �i in the topology of X. On

one hand, by the inclusion A ⊂
⋃k

i=1
�i we have

A =
k⋃

i=1

(�i ∩ A). (2.3)

On the other hand, since
⋃k

i=1
�i ⊂ A, we have

�i = �i ∩ A ⊂ �i ∩ A ⊂ �i (2.4)

for i = 1, . . . , k. Applying a remark after [14, Theorem 20] (see also [15, p.188]), which says that if
B ⊂ C ⊂ B and B is connected then C is also connected, from (2.4) and the connectedness of �i we
can assert that �i ∩ A is connected for all i = 1, . . . , k. Thus, (2.3) shows that A can have at most k
connected components, and completes the proof. �

2.3. Semi-algebraic sets

The proofs of the main results of this paper rely on several results on the connectedness structure of
semi-algebraic sets.

We now present some knowledge about semi-algebraic sets, which can be found in [10, Chapter
1]. An ordering of a field F is a total order relation, denoted by ≤, satisfying two properties:

(i) For any x, y, z ∈ F , if x ≤ y then x + z ≤ y + z;
(ii) For any x, y ∈ F , if 0 ≤ x and 0 ≤ y then 0 ≤ xy.

An ordered field (F ,≤ ) is a field F equipped with an ordering ≤.
A field which can be ordered is called a real field. Typical examples of a real field are, for example,

F = R with the natural ordering of real numbers, F = Q, and

F = Q[√2] :=
{
γ = α + β

√
2 : α ∈ Q, β ∈ Q

}
with the ordering induced from that of R.

A real closed fieldF is a real field that has no nontrivial real algebraic extensionF1 ⊃ F , F1 �= F .

Typical examples of a real closed field are F = R and F = Ralg (with the ordering induced from the
natural ordering of R), where Ralg is the set of the real numbers algebraic over Q. Hence, γ ∈ Ralg if
and only if there exists a nonzero polynomial p(x) with coefficients from Q such that p(γ ) = 0.

From now on, although the major part of the theory in [10, Chapter 2] works for semi-algebraic
subsets of Rn with R being any real closed field, we will consider only the case R = R.

The ring of polynomials in the variables x1, x2, . . . , xn with coefficients in R is denoted by
R[x1, x2, . . . , xn].
Definition 2.4: (See [10, Definition 2.1.4]) A semi-algebraic subset of Rn is a subset of the form

s⋃
i=1

ri⋂
j=1

{
x ∈ Rn : fi,j(x) ∗i,j 0

}
,

where fi,j ∈ R[x1, x2, . . . , xn] and ∗i,j is either < or =, for i = 1, 2, . . . , s and j = 1, 2, . . . , ri, with s
and ri being arbitrary natural numbers.
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OPTIMIZATION 5

By this definition, every semi-algebraic subset of Rn can be represented as a finite union of sets of
the form: {

x ∈ Rn : f1(x) = · · · = f�(x) = 0, g1(x) < 0, . . . , gm(x) < 0
}
,

where � and m are natural numbers, f1, f2, . . . , f�, g1, g2, . . . , gm are in R[x1, x2, . . . , xn]. Open balls,
closed balls, spheres and unions of finitely many of those sets are some typical examples of semi-
algebraic subsets in Rn. Semi-algebraic subsets of R are exactly the finite unions of points and open
intervals (bounded or unbounded).

As concerning the problem (VVI), we will be able to prove that: If F1, . . . , Fm are polynomial
functions and K is a polyhedral convex set, then Sol(VVI) and Solw(VVI) are semi-algebraic subsets of
Rn.

In what follows, Rn will be considered with its Euclidean topology. It is well known that polyno-
mials are continuous with respect to the Euclidean topology.

By induction, the following useful result can be derived from [10, Theorem 2.2.1].
Theorem 2.5: Let S be a semi-algebraic subset of Rn × Rm, and let 	 : Rn × Rm → Rn be the
natural projection on the space of the first n coordinates, i.e.

	
(
x1, x2, . . . , xn, xn+1, . . . , xn+m

) = (
x1, x2, . . . , xn

)T
for every x = (

x1, x2, . . . , xn, xn+1, . . . , xn+m
)T ∈ Rn × Rm. Then 	(S) is a semi-algebraic subset of

Rn.
We proceed furthermore with the concept of semi-algebraically connected subset.

Definition 2.6: (See [10, Definition 2.4.2]) A semi-algebraic subset S of Rn is semi-algebraically
connected if for every pair of disjoint semi-algebraic sets F1 and F2, which are closed in S and satisfy
F1 ∪ F2 = S, one has F1 = S or F2 = S.

From definitions, any connected semi-algebraic subset is semi-algebraically connected. By [10,
Theorem 2.4.5], which is recalled in Theorem 2.9 below, the converse is also true. In other words,
for semi-algebraic subsets of Rn, the concepts of semi-algebraical connectedness and (topological)
connectedness are equivalent.
Example 2.7: The set A := {(x1, x2)T ∈ R2 : x21 + x22 ≤ 1, x1 − x2 < 0} is semi-algebraically
connected. The set B := {(x1, x2)T ∈ R2 : x1 �= 0} is not semi-algebraically connected.

The next theorem clearly describes the connectedness structure of semi-algebraic subsets of Rn.
The major fact is that sets of this type have finitely many connected components.
Theorem 2.8: (See [10, Theorem 2.4.4]) Every semi-algebraic subset S of Rn is the disjoint union
of a finite number of nonempty semi-algebraically connected semi-algebraic sets C1,C2, . . . ,Ck which
are both closed and open in S. The sets C1,C2, . . . ,Ck are called the semi-algebraically connected
components of S.

We finish this section with a result about the relationship between semi-algebraically connected
sets and connected sets in Rn.
Theorem 2.9: (See [10, Theorem 2.4.5]) A semi-algebraic subset S of Rn is semi-algebraically
connected if and only if it is connected. Every semi-algebraic set has a finite number of connected
components, which are semi-algebraic.

3. Connectedness structure of the solution sets

Wewill study the connectedness structure of the solution sets of vector variational inequalities of the
form (VVI) under the following blanket assumptions:
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6 N. T. T. HUONG ET AL.

(a1) All the components of Fi, i = 1, . . . ,m, are polynomial functions in the variables x1, . . . , xn,
i.e. for every i ∈ {1, . . . ,m} one has Fi = (Fi1, . . . , Fin) with Fij ∈ R[x1, . . . , xn] for all
j = 1, . . . , n;

(a2) K is a polyhedral convex set, i.e. there exist a natural number p ≥ 1, A = (aij) ∈ Rp×n, and
b = (bi) ∈ Rp such that K = {

x ∈ Rn : Ax ≤ b
}
.

Our main result can be formulated as follows.
Theorem 3.1: If the assumptions (a1) and (a2) are satisfied, then

(i) the weak Pareto solution set Solw(VVI) is a semi-algebraic subset of Rn (so it has finitely many
connected components and each of them is a semi-algebraic subset of Rn), and

(ii) the Pareto solution set Sol(VVI) is a semi-algebraic subset ofRn (so it has finitelymany connected
components and each of them is a semi-algebraic subset of Rn).

Proof:
(i) To every index set α ⊂ I with I := {1, . . . , p}, we associate the pseudo-face

Fα :=
⎧⎨⎩x ∈ Rn :

n∑
j=1

aijxj = bi ∀i ∈ α,
n∑

j=1

aijxj < bi ∀i /∈ α

⎫⎬⎭
ofK , where aij is the element in the ith row and the jth column ofA, and bi denotes the ith component
of b. By Theorem 2.1, we have

Solw(VVI) =
⋃
ξ∈�

Sol(VI)ξ (3.1)

with (VI)ξ denoting the variational inequality

Find x ∈ K such that
〈
F(x, ξ), y − x

〉 ≥ 0, ∀y ∈ K ,

where F(x, ξ) := ∑m
i=1 ξiFi(x) for every ξ = (ξ1, . . . , ξm)T ∈ �. Denote the normal cone to the

convex set K at x ∈ Rn by NK (x) and recall that

NK (x) = {x∗ ∈ Rn : 〈x∗, y − x〉 ≤ 0 ∀y ∈ K}

if x ∈ K , and NK (x) = ∅ if x /∈ K . Using the notations F(x, ξ) and NK (x), we can rewrite the
inclusion x ∈ Sol(VI)ξ equivalently as

F(x, ξ) ∈ −NK (x). (3.2)

We have K =
⋃
α⊂I

Fα , Fα ∩ Fα̃ = ∅ if α �= α̃ and, therefore,

Solw(VVI) =
⋃
α⊂I

[
Solw(VVI) ∩ Fα

]
. (3.3)

Since a finite union of semi-algebraic subsets of Rn is again a semi-algebraic subset of Rn, by (3.3)
and by Theorem 2.9 we see that the proof of our assertion will be completed if we can establish the
following result.

Claim 1 For every index set α ⊂ I , the intersection Solw(VVI) ∩ Fα is a semi-algebraic subset
of Rn.

By the Farkas lemma [16, Corollary 22.3.1], we have

NK (x) = pos
{
aTi. : i ∈ α

}
(3.4)
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OPTIMIZATION 7

for every x ∈ Fα , where ai. := (ai1, . . . , ain) denotes the ith row of A and

pos
{
z1, . . . , zk

} := {
λ1z1 + · · · + λkzk : λi ≥ 0, i = 1, . . . , k

}
is the convex cone generated by vectors zi ∈ Rn, i = 1, . . . , k. Due to formulas (3.1), (3.2) and (3.4),

Solw(VVI) ∩ Fα =
⋃
ξ∈�

{
x ∈ Fα : F(x, ξ) ∈ −pos

{
aTi. : i ∈ α

}}
. (3.5)

Since pos
{
aTi. : i ∈ α

}
is a convex polyhedral cone, there exists a matrix Cα = (

cij
) ∈ Rnα×n, where

nα ∈ N, such that
pos

{
aTi. : i ∈ α

}
= {

y ∈ Rn : Cαy ≥ 0
}
. (3.6)

By (3.5) and (3.6),
Solw(VVI) ∩ Fα =

⋃
ξ∈�

{x ∈ Fα : CαF(x, ξ) ≤ 0} . (3.7)

The inequality on the right-hand-side of (3.7) can be rewritten as

Cα

( m∑
i=1

ξiFi(x)

)
≤ 0,

which is the following system of nα polynomial inequalities

n∑
j=1

m∑
i=1

ckjξiFij(x) ≤ 0, k = 1, . . . , nα. (3.8)

Note that expression
n∑

j=1

m∑
i=1

ckjξiFij(x) on the right-hand-side of (3.8) is a polynomial in the variables

x1, . . . , xn, ξ1, . . . , ξm. Consider the set

�α := {(x, ξ) ∈ Fα × � : CαF(x, ξ) ≤ 0} . (3.9)

By (3.8), we have

�α =
{
(x, ξ) ∈ Rn × Rm :

n∑
j=1

aijxj = bi, i ∈ α,

n∑
j=1

aijxj < bi, i /∈ α,

n∑
j=1

m∑
i=1

ckjξiFij(x) ≤ 0, k = 1, . . . , nα ,

m∑
i=1

ξi = 1, ξi ≥ 0, i = 1, . . . ,m
}
.

Denote by |α| the number of elements of α and observe that�α is determined by |α| + 1 polynomial
equations, nα +m polynomial inequalities, and p− |α| strict polynomial inequalities of the variables
(x, ξ) = (x1, . . . xn, ξ1, . . . , ξm) ∈ Rn+m. Hence �α is a semi-algebraic set.
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8 N. T. T. HUONG ET AL.

From (3.7), it follows that Solw(VVI) ∩ Fα = 	(�α), where 	 : Rn × Rm → Rn is the natural
projection on the space of the first n coordinates. According to Theorem 2.5, Solw(VVI) ∩ Fα is a
semi-algebraic set. This proves Claim 1.

We have thus shown that the weak Pareto solution set Solw(VVI) is a semi-algebraic subset of Rn.
Then, thanks to Theorem 2.9, Solw(VVI) has finitely many connected components and each of them
is a semi-algebraic subset of Rn.

(ii) Since K is a polyhedral convex set, the representation (2.2) for Sol(VVI) is valid. Combining
this with the formula K =

⋃
α⊂I

Fα we get

Sol(VVI) =
⋃
α⊂I

[
Sol(VVI) ∩ Fα

]
. (3.10)

Due to (3.10), our assertion will be proved if we can establish the following
Claim 2 For every index set α ⊂ I , the intersection Sol(VVI) ∩ Fα is a semi-algebraic subset of

Rn.
Let Cα , nα , �α and 	 be defined as above. Instead of (3.7), now we have

Sol(VVI) ∩ Fα =
⋃

ξ∈ri�
{x ∈ Fα : CαF(x, ξ) ≤ 0} . (3.11)

Let

�̃α := {(x, ξ) ∈ Fα × ri� : CαF(x, ξ) ≤ 0} . (3.12)

The formula

�̃α =
{
(x, ξ) ∈ Rn × Rm :

n∑
j=1

aijxj = bi, i ∈ α,

n∑
j=1

aijxj < bi, i /∈ α,

n∑
j=1

m∑
i=1

ckjξiFij(x) ≤ 0, k = 1, . . . , nα ,

m∑
i=1

ξi = 1, ξi > 0, i = 1, . . . ,m
}

shows that �̃α is the solution set of a system of |α|+1 polynomial equations, nα polynomial inequal-
ities, and p− |α| +m strict polynomial inequalities in the variables (x, ξ) = (x1, . . . xn, ξ1, . . . , ξm) ∈
Rn+m. Hence �̃α is a semi-algebraic set.

By (3.11), Sol(VVI) ∩ Fα = 	(�̃α). Thus, according to Theorem 2.5, Sol(VVI) ∩ Fα is a semi-
algebraic set. This proves Claim 2.

We have shown that Sol(VVI) is a semi-algebraic subset. So, by Theorem 2.9, Sol(VVI) has finitely
many connected components and each of them is a semi-algebraic subset of Rn. �
Remark 3.2: It is clear that if Fi(x) = Mi(x) + qi, where Mi is an n × n matrix and qi ∈ Rn,
for i = 1, . . . ,m, then each component Fij(x) of the functions Fi, i = 1, . . . ,m, is a polynomial
function in the variables x1, . . . , xn. Therefore, Theorem 3.1 solves in the affirmative Question 1 of [8,
p.66] about the connectedness structure of the solution sets of affine vector variational inequalities,
without requiring the positive semidefiniteness of the matrices Mi. Moreover, it assures that each
connected component of the solution set under consideration is a semi-algebraic subset. Note that,
by [8, Theorems 4.1 and 4.2], if the AVVI under consideration is monotone and if the solution set
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OPTIMIZATION 9

in question is disconnected, then each of its connected components is unbounded. The later result
cannot be obtained by tools of algebraic geometry.
Remark 3.3: In [9], by a different approach using fractional functions and some properties of
determinant, it has been proved that both the Pareto solution set and the weak Pareto solution set of
an AVVI have finitely many connected components, provided thatm = 2 and a regularity condition
is satisfied. So, Theorem 3.1 encompasses the results of [9].

The problem of finding an upper bound for the numbers of connected components of Solw(VVI)
and Sol(VVI) requires further investigations. In the case m = 2, an explicit upper bound for the
numbers of connected components of Solw(VVI) and Sol(VVI) is given in [9] under a regularity
condition. This result gives a partial solution to Question 2 of [8].

4. Applications to vector optimization problems under linear constraints

LFVOPs and QVOPs are two fundamental classes of vector optimization problems. Both classes
contain linear vector optimization problems as an important subclass. We will apply Theorem 3.1 to
establish some facts about the connectedness structure of the solution sets in LFVOPs. Moreover, a
property of the stationary point set of polynomial vector optimization problems is obtained in this
section and applied to convex QVOPs.

First, we consider a general vector optimization problem and recall some solution concepts which
will be addressed later on.

4.1. Some solution concepts in vector optimization

Let K ⊂ Rn be a nonempty closed convex subset, f = (f1, . . . , fm) : � → Rm a continuously
differentiable function defined on an open set � ⊂ Rn containing K . The vector minimization
problem with the constraint set K and the vector objective function f is written formally as follows:

(VP) Minimize f (x) subject to x ∈ K .

Definition 4.1: A point x ∈ K is said to be an efficient solution (or a Pareto solution) of (VP) if(
f (K) − f (x)

) ∩ (−Rm+ \ {0}) = ∅.
Definition 4.2: One says that x ∈ K is aweakly efficient solution (or aweak Pareto solution) of (VP)

if
(
f (K) − f (x)

) ∩ (−intRm+
) = ∅.

Put Fi(x) = ∇fi(x), with ∇fi(x) denoting the gradient of fi at x. For any ξ ∈ �, where � is as in
Section 2, we consider the parametric variational inequality (VI)ξ , which now becomes

Find x ∈ K such that

〈 m∑
i=1

ξi∇fi(x), y − x

〉
≥ 0 ∀y ∈ K . (4.1)

According to [3, Theorem 3.1(i)], if x is a weakly efficient solution of (VP), then there exists ξ ∈ �

such that x ∈ Sol(VI)ξ . The converse is true if all the functions fi are convex; see [3, Theorem 3.1(ii)].
Definition 4.3: If x ∈ K and there is ξ ∈ � such that x ∈ Sol(VI)ξ , then we call x a stationary point
of (VP).

It is well known [3, Theorem 3.1(iii)] that if all the functions fi are convex and if there is ξ ∈ ri�
such that x ∈ Sol(VI)ξ , then x is an efficient solution of (VP). This sufficient optimality condition is
a motivation to consider the following concept.
Definition 4.4: If x ∈ K and there is ξ ∈ ri� such that x ∈ Sol(VI)ξ , then we call x a proper
stationary point of (VP).

The efficient solution set, the weakly efficient solution set, the stationary point set and the proper
stationary point set of (VP) are, respectively, abbreviated by Sol(VP), Solw(VP), Stat(VP), andPr(VP).
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10 N. T. T. HUONG ET AL.

From the above discussion and definitions, we have⋃
ξ∈ri�

Sol(VI)ξ = Pr(VP) ⊂ Sol(VP) ⊂ Solw(VP) ⊂ Stat(VP) =
⋃
ξ∈�

Sol(VI)ξ , (4.2)

where the first inclusion is valid if all the functions fi are convex. In addition, under fulfillment of the
latter, the third inclusion in (4.2) becomes equality.

4.2. Linear fractional vector optimization

We now present some basic information about LFVOPs. More details can be found in [17,18] and
[19, Chapter 8]. Let fi : Rn → R, i = 1, · · · ,m, be linear fractional functions of the form

fi(x) = aTi x + αi

bTi x + βi
,

where ai ∈ Rn, bi ∈ Rn,αi ∈ R, and βi ∈ R. Let K ⊂ Rn be satisfying assumption (a2). Suppose that
bTi x + βi > 0 for all i ∈ {1, · · · ,m} and x ∈ K . Put f (x) = (f1(x), . . . , fm(x)),

� := {
x ∈ Rn : bTi x + βi > 0, ∀i = 1, · · · ,m},

and observe that � is open and convex, K ⊂ �, and f is continuously differentiable on �. Consider
the LFVOP

(VP1) Minimize f (x) subject to x ∈ K .

LFVOPs have been studied intensively during the last four decades, see [8,11,17,18,20–26] and the
references therein.

The efficient solution set and theweakly efficient solution set of (VP1) are denoted by Sol(VP1) and
Solw(VP1), respectively. According to [26], x ∈ Sol(VP1) if and only if there exists ξ = (ξ1, . . . , ξm) ∈
ri� such that 〈 m∑

i=1

ξi

[(
bTi x + βi

)
ai −

(
aTi x + αi)bi

]
, y − x

〉
≥ 0, ∀y ∈ K . (4.3)

Similarly, x ∈ Solw(VP1) if and only if there exists ξ = (ξ1, . . . , ξm) ∈ � such that (4.3) holds.
Condition (4.3) can be rewritten in the form of a parametric affine variational inequality as follows:

(VI)′ξ 〈M(ξ)x + q(ξ), y − x〉 ≥ 0, ∀y ∈ K ,

with

M(ξ) :=
n∑

i=1

ξiMi, q(ξ) :=
n∑

i=1

ξiqi,

where
Mi = aibTi − biaTi , qi = βiai − αibi (i = 1, . . . ,m). (4.4)

It is well known [18] that (VI)′ξ is a monotone AVI for every ξ ∈ �. Denote by �(ξ) the solution
set of (VI)′ξ and consider the multifunction � : � ⇒ Rn, ξ �→ �(ξ). According to the recalled
necessary and sufficient optimality conditions recalled above for (VP1), we have

Sol(VP1) =
⋃

ξ∈ri�
�(ξ) = �(ri�), (4.5)
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OPTIMIZATION 11

and
Solw(VP1) =

⋃
ξ∈�

�(ξ) = �(�). (4.6)

By formulas (4.5), (4.6), and Theorem 2.1, Sol(VP1) (resp., Solw(VP1)) coincides with the Pareto
solution set (resp., the weak Pareto solution set) of the monotone AVVI defined by K and the affine
functions Fi(x) = Mix + qi, i = 1, . . . ,m. Therefore, from Theorem 3.1 we can obtain the following
result.
Theorem 4.5: It holds that

(i) the Pareto solution set Sol(VP1) is a semi-algebraic subset ofRn (so it has finitelymany connected
components and each of them is a semi-algebraic subset of Rn), and

(ii) the weak Pareto solution set Solw(VP1) is a semi-algebraic subset of Rn (so it has finitely many
connected components and each of them is a semi-algebraic subset of Rn).

We have just shown that both the Pareto solution set and the weak Pareto solution set of (VP1) are
semi-algebraic subsets and have finitely many connected components. By the first-order necessary
and sufficient conditions for the efficiency and weak efficiency in LFVOPs recalled above, Hoa et al.
[22] proved that, for any natural number m ≥ 1, there exists a LFVOP with m objective criteria,
where the sets Sol(VP1) and Solw(VP1) coincide and have exactly m connected components. The
problem of finding an upper estimate for the number of connected components of Sol(VP1) has been
solved in [22] for the casem = 2.

4.3. Polynomial vector optimization

If fi : Rn → R, i = 1, . . . ,m, are polynomial functions and K ⊂ Rn is a polyhedral convex set then
(VP), now denoted by (VP2), is called a polynomial vector optimization problem.

We denote the efficient solution set, the weakly efficient solution set, the stationary point set,
and the proper stationary point set of (VP2), respectively, by Sol(VP2), Solw(VP2), Stat(VP2), and
Pr(VP2).
Theorem 4.6: The following assertions hold:

(i) The set Stat(VP2) (resp., the set Pr(VP2)) is a semi-algebraic subset ofRn (so it has finitely many
connected components and each of them is a semi-algebraic subset of Rn);

(ii) If all the functions fi are convex, then Solw(VP2) is a semi-algebraic subset ofRn (so it has finitely
many connected components and each of them is a semi-algebraic subset of Rn);

(iii) If all the functions fi are convex and the set Pr(VP2) is dense in Sol(VP2), then Sol(VP2) has a
finite number of connected components.

Proof:

(i) Since fi, i = 1, . . . ,m, are polynomial functions, f is continuously differentiable on Rn. By
(4.2) we have

Stat(VP2) =
⋃
ξ∈�

Sol(VI)ξ , Pr(VP2) =
⋃

ξ∈ri�
Sol(VI)ξ . (4.7)

Combining (4.7) with Theorem 2.1 and taking into account Theorem 3.1, we get the desired
properties.

(ii) Since all the components of f are convex polynomial functions, we have

Solw(VP2) = Stat(VP2) =
⋃
ξ∈�

Sol(VI)ξ .

Hence the assertion follows from (i).
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12 N. T. T. HUONG ET AL.

(iii) Since all the functions fi are convex and the set Pr(VP2) is dense in Sol(VP2), we have

Pr(VP2) ⊂ Sol(VP2) ⊂ Pr(VP2), (4.8)

where the first inclusion is a special case of the first inclusion in (4.2), and Pr(VP2) is the
closure of Pr(VP2) in the Euclidean topology of Rn. By (i), we see that Pr(VP2) has finitely
many connected components. Now, from (4.8) and Lemma 2.3 it follows that Sol(VP2) has a
finite number of connected components.

The proof is complete. �
If K is a polyhedral convex set and fi(x) = 1

2x
TMix + qTi x, i = 1, . . . ,m, whereMi ∈ Rn×n, i =

1, . . . ,m, are symmetric matrices, and qi for i = 1, . . . ,m are vectors in Rn, then (VP) is called a
QVOP and denoted by (VP3).

Clearly, a QVOP is a polynomial vector optimization problem. Hence, Theorem 4.6 implies the
next result on the connectedness structure of the stationary point set Stat(VP3) and that of the weakly
efficient solution set Solw(VP3).
Corollary 4.7: The following properties hold:

(i) The set Stat(VP3) is a semi-algebraic subset ofRn (so it has finitely many connected components
and each of them is a semi-algebraic subset of Rn);

(ii) If all the matrices Mi ∈ Rn×n, i = 1, . . . ,m, are positive semidefinite, then Solw(VP3) is a
semi-algebraic subset of Rn (so it has finitely many connected components and each of them is
a semi-algebraic subset of Rn).

We have shown that the stationary point set of a QVOP and the weakly efficient solution set of a
convexQVOPhavefinitelymany connected components.Note that, by [8, Theorem4.1], if theweakly
efficient solution set of a convex QVOP is disconnected, then each of its connected components is
unbounded.
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