
1 o Stationary Solutions of the
Navier-Stokes Equations

Assuming that the forces are independent of time, we are looking for time
independent solutions of the Navier-Stokes equations, i.e., a function u = u(x)
(and a function p = p (x )) ,which satisfies (1.4), (1.5), and either (1.9) with 4) =0,
or (1.10):

(10.1)	 --vi u+(u • V)u +Vp= f in0 (=flor Q),

(10.2)	 divu=0 inC,

(10.3)	 u=0 on r=al if C=fl,

or

(10.4)	 u(x+Le;)=u(x), i=1,...,n, xEQ ifu=Q.

In the functional setting of § 2, the problem is

(10.5)	 Given f in  H (or V'), to find u E V which satisfies

(10.6)	 v((u, v)) + b(u, u, v) = (f, v) V v E V,

or

(10.7)	 vAu+Bu=f inH(orV').

10.1. Behavior for t --> x. The trivial case. We start by recalling briefly the
results of existence and uniqueness of solutions for (10.5)-(10.7).

THEOREM 10.1. We consider the flow  in a bounded domain with periodic or
zero boundary conditions (0 = fZ or Q), and n =2 or 3. Then:

i) For every f given in V' and v >0, there exists at least one solution of
(10.5)-(10.7).

ii) If f belongs to H, all the solutions belong to D(A).
iii) Finally, if

(10.8)	 v2>c^ lifilv , 9

where c l is a constant depending only on C 1 , then the solution of (10.5)--(10.7) is
unique.

Proof. We give only the principle of the prooi and refer the reader to the
literature for further details.

For existence we implement a Galerkin method (cf. (3.41)-(3.45)) and look,

'c 1 is the constant in (2.30) when m 1 = m3 = 1, m 2 = 0. Since 1f 1 ?'VT 11f lk if f E H, a sufficient
condition for (10.8) is i2>  c 1 	1f 1, which can be compared to (9.1).
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68	 PART II. QUESTIONS RELATED TO STATIONARY SOLUTIONS

for every m E (Ni, for an approximate solution um ,

m
(10.9)	 um = 	 jm E R ,

j-1

such that

(10.10)	 v((um, v))+b(um, um, v) _ (f, v)

for every v in Wm = the space spanned by w,, ... , w, n . Equation (10.10) is also
equivalent to

(10.11)	 vAum + PmBum = Pm f

The existence of a solution um of (10.10)—(10.11) follows from the Brouwer
fixed point theorem (cf. [RT, Chap. II, § 1] for the details'. Taking v = u, in
(10.10) and taking into account (2.34), we get

(10.12)	 vÍIumX12=(f, u,,,) < f1v umI,

and therefore

<(10.13)	 Ik'ml1 -= 
v

We extract from um a sequence um -, which converges weakly in V to some
limit u, and since the injection of V in H is compact, this convergence holds
also in the norm of H:

(10.14)	 um' --> u weakly in V, strongly in H.

Passing to the limit in (10.10) with the sequence m'. we find that u is a
solution of (10.6).

To prove ii), we note that if u E V, then Bu e V 112  (instead of V') because of

(2.36) (applied with m, = 1, m 2 = 0, m 3 = 2). Hence u = v -' A -' (f — Bu) is in
V3,2 . Applying again Lemma 2.1 (with m 1 = 2, m 2 = 2, m 3 = 0), we conclude
now that Bu E H, and thus u is in D(A).

We can provide useful a priori estimates for the norm of u in V and in
D(A). Setting v=u  in (10.6) we obtain (compare to (10.12)—(10.13))

(10.15)	 v IIUJ12 = (f u)	 llf IKV- IIUJI,

1	1
(10.16)^lulÍ <-- v 11r11vo 	 f1 if ƒEH).

For the norm in D(A) we infer from (10.7) that

v Auj (f + Bul 1fl + c2 IJUII I12 l 12 	(by the first inequality (2.32))
i

	l fl± v (Aul + c 2 f 	 (by the Schwarz inequality)
2	 2v

C	2

ifi +  (Au j +
2v 4A

2 3^2 1ƒ13 	 (with (10.6)).
2	 ,
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STATIONARY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS	 69

Finally
2

10.171Auj? 	 c2(	 ) 	 5312 1f1 3.v	 vAl

For the uniqueness result iii), let us assume that u, and u 2 are two solutions
of (10.6) :

v((ul, v))+ b(u,, u,, v)=(ƒ, v),

v((u 2, v)) + b(u2 , u2 , v) (f, v).

Setting v = u, — u2 , we obtain by subtracting the second relation from the first
one:

vliul — u2112=-- b(ui , u1, ui — u2)+b(u2, u2, u1 — u2)

= —b(u, — u 2 , u 2 , u, — u 2)	 (with (2.34))

	c, II u, — u2112 11u211	 (using (2.30) with m, = m 3 =1, rn 2 = 0)

	liflill'ii-U. — U211
2 	(with (10.16) applied to u z ).

v

Therefore

( -	 11f 11v) lui — U2 11 2 0

and u 1 — u 2 =0 if (10.8) holds.	 ❑
Concerning the behavior for t --* oc of the solutions of the time-dependent

Navier—Stokes equations, the easy case (which corresponds to point a) in § 9) is
the following:

THEOREM 10.2. We consider the flow in a bounded dornain with periodic or
Zero boundary conditions (C = fl or Q) and n =2 or 3. We are given f E H, v >0
and we assume that

1Â 1 \314 	 2 	c2 If I 3
(10.18)	 v> — (f l+^ 5 3,2

c2	 v	 v Á l

where c2, c, depend only on 0.
Then the solution of (10.7) (denoted u.) is unique. If u(•) is any weak

solution 2 of Problem 2.1 with u0 E H arbitrary and f (t) = f for all t, then

(10.19)	 u(t)--* u,., in H ast-->w.

Proof. Let w(t) = u(t) — u.. We have, by differences,

dw(t)

dt
+ vAw(t)+Bu(t)--Bu.,=0,

2 If n = 2, u() is unique and is a strong solution (at least for t > 0). If n = 3, u() is not necessarily
unique, and we must assume that u() satisfies the energy inequality (see Remark 3.2).
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70	 PART II. QUESTIONS RELATED TO STATIONARY SOLUTIONS

and, taking the scalar product with w(t),

1 d	 _

	

(10.20)	 {w(t){ 
2+

 v 11W(t)11
2 +

	 -b(u(t), u(t), w(t)) b(u.., u^, w(t)) O.2 dt

Hence, with (2.34),

1 d	 2+	
2 = —b(w(t),

 dt
w(t)	 v {,w(r){{	 b(w(t), u^, w(t)).

Using (2.30) with m, = 2, m2 =1, m 3 = 0, we can majorize the right-hand side of
this equality by

Cl {w(t)1112 I

which, because of (2.20), is less than or equal to

i I

with (3.10) this is bounded by

v ll w ( t){I2 + j { w ( t )12 1
2	 v 13

where c2 = 3(c;/2)413 . Therefore,

.	 d wt 2v
II W ( t) 11

2^ ^ 2  w ( t) 1 2Au 4'3l 1021	( 10.21) 	I ( ) +I 	 l/3 	 f	 ^{	 ,dt	 v

	( 10.22)	 d w(t) 2 +  vA - c2 Au 4i3 I W(t) 12 0.
dt	 v

If

	(10.23)	 v = vA, -- 123 {Au^I4/3 > 0 ,

v^

then (10.22) shows that 1w(t)j  decays exponentially towards 0 when t -- > 00:

w(t)1:Iw(0)1e - V`,

w(0) = u0 - u.. Using the estimation (10.17) for u rm, we obtain a sufficient
condition for (10.23), which is exactly (10.18).

If we replace u(t) by another stationary solution u* of (10.7) in the
computations leading to (10.22), we obtain instead of (10.22)

v {u*-. up{2 0.

Thus (10-23) and (10.18) ensure that u* = u rm ; i.e., they are sufficient conditions
for uniqueness of a stationary solution, like (10.8).

The proof is complete.	 ❑

3 The proof that (w'(t), w(t)) = 2(d/dt) Iw(t)1 2 is not totally easy when n = 2, and relies on [RT,
Chap. III, Lemma 1.2]. If n = 3 we do not even have an equality in (10.20), but an inequality ,
which is sufficient for our purposes: a technically similar situation arises in [RT, Chap. III, § 3.6].
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STATIONARY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS	 71

Remark 10.1. Under the assumptions of Theorem 10.2, consider the linear
operator from D(A) into H defined by

(.4,+1)=v(A4), iji)+b(0,u.,4,)+b(u..,<k,4,) b4), 4, €D(A),

whose adjoint .4* from D(A) into H is given by

(, * 4, 4/) = v(A4), 4') + b( , urm, d)) + b(u^ 4,, 4)) d 4), 4i E D(A).

Then with the same notation as in the proof of Theorem 10.2, we have

dw(t)
+ sIw(t) + Bw(t) =0,

dt

and (10.20) is the same as

ld
1 d 1w(t)j

2
 + v(s4w(t), w(t)) = 0

2 dt

or

1 d
2 dt 

IW(t)12+ V 	 2^ w(t), w(t)) =0.

The operator (( +.  *)/2)!' is selfadjoint and compact from H into itself, and
the conclusions of Theorem 10.2 will still hold if we replace (10.18) by the
conditions that the eigenvalues of (s4 + sd *)/2 are >0.

10.2. An abstract theorem on stationary solutions. In this section we derive
an abstract theorem on the structure of the set of solutions of a general
equation

	(10.24)	 N(u)=f;

this theorem will then be applied to (10.7).
Nonlinear FredhoIm operators. If X and Y are two real Banach spaces, a

linear continuous operator L from X into Y is called a Fredholm operator if
i) dim ker L<oo,

ii) range L is closed,
iii) coker L = Y/range L has finite dimension.
In such a case the index of L is the integer

	

(10.25)	 i (L) = dim ker L — dim coker L.

For instance, if L = L 1 + L2 where L, is compact from X into Y and L2 is an
isomorphism (resp. is surjective and dim ker L 2 = q), then L is Fredholm of
index 0 (resp. of index q). For the properties of Fredholm operators, see for
instance R. Palais [I],  S. Smale [11.

Now let w be a connected open set of X, and N a nonlinear operator from w
into Y; N is a nonlinear Fredholm map if N is of class ' and its differential
N'(u) is a Fredholm operator from X into Y, at every point u E w. In this case
it follows from the properties of Fredholm operators that the index of N'(u) is
independent of u; we define the index of N as the number i (N'(u )).
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72	 PART II. QUESTIONS RELATED TO STATIONARY SOLUTIONS

Let N be a 19' mapping from an open set w of X into Y, X, Y being again
two real Banach spaces. We recall that u E X is called a regular point of N if
N'(u) is onto, and a singular point of N otherwise. The image given by N of
the set of singular points of N constitutes the set of singular values of N. Its
complement in Y constitutes the set of regular values of N. Thus a regular
value of N is a point f E Y which does not belong to the image N(W ), or such
that N'(u) is onto at every point u in the preimage N - '(f ).

Finally we recall that a mapping N of the preceding type is proper if the
preimage N(K) of any compact set K of Y is compact in X.

We will make use of the following infinite dimensional version of Sard's
theorem due to S. Smale [l]  (see also K. Geba [11).

THEOREM. Let X and Y be two real Banach spaces and w a connected open set
of X. If N : W --> Y is a proper 19 k Fredholm map with k > max (index N, 0), then
the set of regular values of N is a dense open set of Y.

We deduce easily from this theorem:
THEOREM 10.3. Let X and Y be two real Banach spaces and w a connected

open set of X, and let N: to --> Y be a proper k Fredholm map, k ? 1, of index
0.

Then there exists a dense open set w 1 in Y and, ƒor  every fE  w 1 , N 1 (f) is a
finite set.

If index N = q >0 and k ? q, then there exists a dense open set W, in Y and,
ƒor  every f E to t , N -1 (f) is empty or is a manifoldold in w of class c k and dimension

q•
Proof. We just take co, = the set of regular values of N which is dense and

open by Smale's theorem. For every f E to 1 , the set N -1 (f) is compact since N is
proper. If index (N) = 0, then for every ƒE:  w, and u E N - '(f ), N'(u) is onto (by
definition of W 1 ) and is one-to-one since

dim ker N'(u) = dim coker N'(u) = 0.

Thus N'(u) is an isomorphism, and by the implicit function theorem, u is an
isolated solution of N(v) = f. We conclude that N -' (f) is compact and made of
isolated points: this set is discrete.

If index (N) = q - k, for every f E w,, and every u e N - '(f ), N'(u) is onto and
the dimension of its kernel is q: it follows that N -1 (f) is a manifold of
dimension q, of class k like N. C]

Applications of this theorem to the stationary Navier—Stokes equation (and
to other equations) will be given below.

10.3. Application to the Navier—Stokes equations. We are going to show
that Theorem 10.3 applies to the stationary Navier—Stokes equation (10.7) in
the following manner:

(10.26)	 X=D(A), Y=H, N(u)= vAu+Bu.

It follows from (2.36) that B() is continuous from D(A) X D(A) and even
V312 x V312 into H and N makes sense as a mapping from D(A) into H.D
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STATIONARY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 	 73

LEMMA 10.1. N: D(A) --* H is proper.
Proof. Let K denote a compact set of H. Since K is bounded in H, it follows

from the a priori estimation (10.17) that N -' (K) is bounded in D(A) and thus
compact in V312 . As observed before, B(,, •) is continuous from V312 x V312 into
H, and thus B (N - l (K )) is compact in H.

We conclude that the set N - ' (K) is inciuded in

v - 'A - '(K _ B(N ^(K»),

which is relatively compact in D(A), and the result follows. 	 ❑

We have the following generic properties of the set of stationary solutions to
the Navier-Stokes equations.

THEOREM 10.4. We consider the stationary Navier-Stokes equations in a
bounded domain (Cl or Q) with periodic or zero boundary conditions, and n =2
or 3.

Then, fór  every v > 0, there exists a dense open set Q„ c H such that ƒor  every
f€,  the set of solution of (10.5)-(10.7) is finite and odd in number.

On every connected component of 6, the number of solutions is constant, and
each solution is a t °° function  of f.

Proof. i) We apply Theorem 10.3 with the choice of X, Y, N indicated in
(10.26) (and w = X). It is clear that N is a t°` mapping from D(A) into H and
that

(10.27)	 N'(u)•v=vAv+B(u,v)+B(v,u) Vu,vED(A).

It follows from (3.20) that for every u E D(A), the linear mappings

vHB(u, v),	 v'-+B(v, u)

are continuous from V into H and they are therefore compact from D(A) into
H. Since A is an isomorphism from D(A) onto H, it follows from the
properties of Fredholm operators (recalled in § 10.2) that N'(u) is a Fredholm
operator of index 0.

We have shown in Lemma 10.1 that N is proper: all the assumptions of
Theorem 10.3 are satisfied. Setting 0 1, = the set of regular values of N = Nv, we
conclude that 0„ is open and dense in H and, for every f E O,,, N --'(f),  which is
the set of solutions of (10.7), is finite.

ii) Let (0) E , be the connected components of C. (which are open), and let
f,,, f , be two points of t i for some i. Let u„ E N -' (f„). There exists a continuous
curve

s E[0,1]x-+f(s)Eti,	 ƒ(0) = ƒ()V f(1)=f1,

and the implicit function theorem shows the existence and uniqueness of a
continuous curve s'-su(s)  with

N(u(s)) = f (s), 	 u(0) = u (,.

Since f (s) is a regular value of N, for all s E [0, 1], u(s) is defined for every
s, 0 ^ s :1, and therefore u (1) E N -' (f, ). Such a curve {s - u (s )} can be con-
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74	 PART II. QUESTIONS RELATED TO STATIONARY SOLUTIONS

structed, starting from any uk E N- '(ƒ0). Two different curves cannot reach the
same point u* E N- '(f i) and cannot intersect at all, since this would not be
consistent with the implicit function theorem around u or around the intersec-
tion point. Hence there are at least as many points in N- '(f,) as in N- '(f0). By
symmetry the number of points is the same.

It is clear that each solution Uk = Uk (f) is a 16°° function of f on every 0.
iii) It remains to show that the number of solutions is odd. This is an easy

application of the Leray-Schauder degree theory.
For fixed v >0 and f E C, we rewrite (1.7) in the form

	(10.28)	 T(u) = vu +A - 'Bu = Af= g,

u, g e D(A). By (10.17), every solution u„ of T,, (u,) = Ag, 0: A 251, satisfies

	2 	3
{{<R,	 R =1+	 C2

2 {f{+ s ^^2 {Ï{	v 	 v ^l 1

Therefore the Leray-Schauder degree d (T, Ag, BR ) is well defined, with BR

the hall of D(A) of radius R. Also, when Ag is a regular value of T, i.e., Af is a
regular value of N, the set Tv'(Ag) is discrete = lu l ,... , uk }, and
d(T, Ag, BR) = ;= 1 i(ui ) where i(ui )=index u; .

It follows from Theorem 10.1 that there exists A * E [0, 1], and for 0 < A
*, N - '(A f) contains only one point u. By arguments similar to that used in

the proof of Theorem 10.1, one can show that N'(u) is an isomorphism, and
hence for these values of A, d (T , Ag, B R ) = ±1. By the homotopy invariance
property of degree, d (T, g, B R ) = ±1 and consequently k must be an odd
number.

	

The proof of Theorem 10.4 is complete. 	 ❑

Remark 10.2.
i) The set C is actually unbounded in H; cf. C. Foias-R. Temam [131.
ii) Similar generic resuits have been proved for the flow in a bounded

domain with a nonhomogeneous boundary condition (i.e., 4 0 in (1.9)):
generic finiteness with respect to f for 0 fixed, with respect to 0 for f fixed and
with respect to the pair f, <P; see C. Foias-R. Temam [3], [4], J. C. Saut-R.
Temam [2], and for the case of time periodic solutions, J. C. Saut-R. Temam
[2], R. Temam [7].

iii) When fl is unbounded, we lack a compactness theorem for the Sobolev
spaces Hm (f) (and lack the Fredholm property). We do not know whether
results similar to that in Theorem 10.4 are valid in that case; cf. D. Serre [1]
where a line of stationary solutions of Navier-Stokes equations is constructed
for an unbounded domain fl.

We now present another application of Theorem 10.3, with an operator of
index 1, leading to a generic result in bifurcation. We denote by S(f, v) c D(A)
the set of solutions of (1.5)-(1.7) and

	(10.29)	 S(f) = U S(f, v).
v>0
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STATIONARY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 	 75

FIG. 10.1

THEOREM 10.5. onder the same hypotheses as in Theorem 10.4, there exists a
GS -dense set C c H, such that for every fEO,  the set S(f) defined in (10.29) is a
16 °° manifoldold o f dimension 1.

Proof. We apply Theorem 10.3 with X = D(A) x R, Y = H, w = wm =
D(A) x (1/m, c)cX, m N, N(u, v) = vAu + Bu, for all (u, v) E X. It is clear that
N is 19  from w into Y and

N'(u, v) • (v, g) = vAv + B(u, v) + B(v, u) + µAu.

For (u, v) E w, N'(u, v) is the sum of the operator

(v, µ) --* B(u, v) + B(v, u) + µAu,

which is compact4 , and the operator

(v,µ)--*vAv,

which is onto and has a kernel of dimension 1. Thus N'(u, v) is a Fredholm
operator of index 1 and N is a nonlinear Fredholm mapping of index 1.

The proof of Lemma 10.1 and (10.17) shows that N is proper on D(A) x
(vo, co), for all v0 >0 and in particular v o =1/m.  Hence Theorem 10.3 shows
that there exists an open dense set C m c H, and for every f€ Cm, Nm'(f) is a
manifold of dimension 1, where Nm is the restriction of N to 0m . We set

= nm , 1 Cm, which is a dense GS set in H, and, for every f€ C, S(f)
Um^1 N m'(f) is a manifold of dimension 1.

Remark 10.3. i) By the uniqueness result in Theorem 10.1, S (f) contains an
infinite branch corresponding to the large values of v.

ii) Since S(f) is a 19 °° manifold of dimension 1, it is made of the union of
curves which cannot intersect. Hence the usual bifurcation picture (Fig. 10.1) is
nongeneric and is a schematization (perfectly legitimate of course!) of generic
situations of the type shown in Fig. 10.2.

Remark 10.4. Other properties of the set S(f, v) are given in C. Foias—R.
Temam [3], [4] and J. C. Saut—R. Temam [2]. In particular, for every
v, f, S(f, v) is a real compact analytic set of finite dimension.

4 Same proof essentially as in Theorem 10.4.
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76	 PART II. QUESTIONS RELATED TO STATIONARY SOLUTIONS

10.4. Counterexamples. A natural question concerning Theorem 10.4 is
whether 0. is the whole space H or just a subset. Since Theorem 10.4 is a
straightforward consequence of Theorem 10.3, this question has to be raised at
the level of Theorem 10.3. Unfortunately, the following examples show that we
cannot answer this question at the level of generality of the abstract Theorem
10.3, since for one of the two examples presented 0 v = H, while for the second
one 0 v ^ 11.

Example 1. The first example is the one-dimensional Burgers equation
which has been sometimes considered in the past as a model for the Navier-
Stokes equations: consider a given v >0 and a f unction f: [0, 1] --> ll which
satisfies

	d2u	 du .
	(10.30)	 -v dx z +u dx

 =
f on (0, l ),

	(10.31)	 u(0)=u(l)=0.

For the f unctional setting we take H = L 2(0, 1), V = H(0, 1), D(A) =
H^(0, 1) fl H 2(0, 1), Au = -d 2 u/dx 2 , for all U E D(A ),

dv
B(u, v) = u , V u, v E

V
 , Bu = B(u, u ).

dx

Then, given f in H (or V'), the problem is to find u E D(A) (or V) which
satisfies

	(10.32)	 vAu+Bu = f.

We can apply Theorem 10.3 with X = D(A), Y = H, N(u) = vAu + Bu. The
mapping N is obviously 1 C and

N'(u) • v = vAv+B(u, v)+B(v, u);

N'(u), as the sum of an isomorphism and a compact operator, is a Fredholm
operator of index 0. Now we claim that every u E D(A) is a regular point, so
that w, = H.

In order to prove that u is a regular point, we have to show that the kernel
of N'(u) is 0 (which is equivalent to proving that N'(u) is onto, as index
N'(u) = 0) . Let v belong to N'(u); v satisfies

	d 2 v	 dv	 du
	--	-v --- +u—+v ---=0Z    	 on (0, 1),	 v (0) v ( 1 ) 0

	dx	 dx dx

By integration - vv' + uv =constant = a, and by a second integration taking into
account the boundary conditions we find that v = 0.

Since the solution is unique if f =0 (u = 0), we conclude that

	

(10.33)	 (10.30)-(10.31) possesses a unique solution V v, V f.

Example 2. The second example is due to Gh. Minea [1]  and corresponds to
a space H of finite dimension; actually H = ff .
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Theorem 10.3 is applied with X = Y = ff, , N(u) = vAu + Bu for all u =
(u 1 , u2 , u3) E R 3 . The linear operator A is just the identity, and the nonlinear
(quadratic) operator B is defined by Bu = (b(u2 + u3), —Su, u 2 , —bu 1 u 3) and
possesses the orthogonality property Bu • u = 0. The equation N(u) = f reads

vu, + S(IA2 + u3) = fi,

vue
— bul u2=f2,

vu3 —SU 1 U 3 =f.

It is elementary to solve this equation explicitly. There are one or three
solutions if 1ƒ21+1ƒ3 1 ^ 0. In the "nongeneric case", f2 = f _ 3 = 0, we get either one
solution, or one solution and a whole circie of solutions: w Y in this case.
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