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Abstract Support Vector Machines (SVMs) are widely
known as an efficient supervised learning model for classifi-
cation problems. However, the success of an SVM classifier
depends on the perfect choice of its parameters as well as
the structure of the data. Thus, the aim of this research is to
simultaneously optimize the parameters and feature weight-
ing in order to increase the strength of SVMs. We propose a
novel hybrid model, the combination of genetic algorithms
(GAs) and SVMs, for feature weighting and parameter opti-
mization to solve classification problems efficiently. We call
it as the GA-SVM model. Our GA is designed with a spe-
cial direction-based crossover operator. Experiments were
conducted on several real-world datasets using the proposed
model and Grid Search, a traditional method of searching
optimal parameters. The results show that the GA-SVM
model achieves significant improvement in the performance
of classification on all the datasets in comparison with Grid
Search. In terms of accuracy, out method is competitive with
some state-of-the-art techniques for feature selection and
feature weighting.
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1 Introduction

The accuracy of a classifier depends on its parameters and
the properties of the dataset. In non-separable cases, we can
use kernel functions to map the data into higher dimen-
sional spaces with the expectation that the data will be more
easily separated or better structured. However, it is not a
good choice due to the following reasons: first, it is difficult
to find the most appropriate kernel function for a specific
dataset. The choice of a kernel depends on the distribution
of the data. For instance, a polynomial kernel is suitable for
the data according to the multinomial distribution. Radial
basis functions are used to separate data by hyper-spheres.
In contrast, a linear kernel only allows us to select clas-
sifiers defined by hyperplanes. Second, the dimension of
the new space can be very large in practice. Consequently,
the computational time and required memory become very
costly.

Thus, researchers try to explore the properties of datasets
instead of mapping them into highly dimensional space.
Two of the most efficient approaches are feature selection
and feature weighting. Feature selection algorithms focus
on selecting the best subset of the input feature set to reduce
computational time and improve accuracy [1]. In feature
weighting strategies, highly important features are empha-
sized and less informative ones are ignored [2]. Feature
selection algorithms perform best when the features used to
describe instances are either highly correlated with the class
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label or completely irrelevant [3]. Feature weighting is more
appropriate for problems where the features vary in their
relevance.

SVMs are widely applied for classification problems
mainly due to its high accuracy and ability to deal
with high-dimensional data. SVMs showed state-of-the-
art performance in real-world applications such as text
categorization, hand-written character recognition, image
classification, biosequences analysis and so on [4–7]. How-
ever, like most machine learning algorithms, the classifi-
cation accuracy depends on not only its settings but also
the properties of the data. When using an SVM, two prob-
lems are confronted: how to rank the importance of features
for input data, and how to set the best kernel parameters.
Such problems have to be solved simultaneously because
weighting features influences the appropriate kernel param-
eters and vice versa [8]. To design an SVM classifier, one
must choose a kernel function, set the kernel parameters and
determine a soft margin constant C (the penalty factor for
miss-classified points). The Grid algorithm is an alternative
to finding the best C and γ when using the RBF kernel func-
tion. However, this method is time-consuming and may not
perform well [9, 10]. Moreover, the Grid algorithm cannot
carry out the feature weighting task.

Genetic algorithms (GAs) are known as powerful
tools for solving large-scale nonlinear optimization prob-
lems [11]. GAs find the optimal solution in parallel on
multi-directions by maintaining a population of potential
solutions from the search space. Unlike traditional multi-
point searching algorithms, GAs can easily escape from
local optima due to information exchange between solutions
based on principles of natural evolution. GAs have been
increasingly applied in conjunction with other techniques to
tackle classification problems. Some researchers proposed
GA-based approaches to selecting an optimal set of features,
that is used to build the classifier models such as decision
tree (DT), naive bayes (NB), k-nearest neighbor (k-NN) and
SVMs [8, 12–14]. The other hybrid GA-SVM model was
developed to generate both the optimal subset and the SVM
parameters at the same time [1, 15]. Silva applied both sin-
gle and multi-objective GA approaches to build sparse least
square support vector machines (LSSVM) classifiers [16].
Wu used GA with real representation to optimize the param-
eters of SVM with the aim of predicting bankruptcy [17].
However, these papers only focused on feature selection and
parameter optimization. In our research, we take advantages
of GAs to optimize feature weighting and parameter setting
simultaneously with the aim of increasing the robustness of
SVM classifiers.

The main contribution of this paper is proposing a
new method for finding an optimal set of feature weights
and the classifier configuration using GAs with a special
direction-based crossover operator. In feature weighting,

finding optimal feature weights in a huge search space
is a challenging task. In the paper, we designed a combina-
tion model of an efficient classifier and a powerful search
strategy, in which the SVM classifier is used to guide the
GA to the optimal solution. Unlike statistical methods, the
GA-SVM model needs no information about the weights of
features; it receives the feedback of the SVM classifier to
determine the searching directions. The experiments were
conducted with the RBF kernel. However, due to flexible
design of GA, the proposed model can adapt to other ker-
nel parameters as well as classifiers such as kNN and naive
Bayes.

The remainder of the paper is organized as follows: a
brief introduction to the SVMs is given in Section 3. Section
4 describes basic GA concepts. Section 5 describes the
technique used to combine GA-SVM for feature weighting
and parameter optimization. Section 6 discusses the exper-
imental results from using the proposed method to classify
several real-world datasets. Finally, general conclusions are
given in Section 7.

2 Related work

Various algorithms have been proposed in the literature of
feature weighting. These algorithms can be divided into two
groups: one which searches a set of weights through an iter-
ative algorithm and uses the performance of the classifier
as feedback to select a new set of weights [12, 18, 19];
the other computes the weights using the pre-existing bias
model, e.g. conditional probabilities, class projection, and
mutual information [20–22].

For the iterative approaches, Wu employed an evolution-
ary computation based method, namely Artificial Immune
System (AIS), to find optimal attribute weight values auto-
matically for weighted NB classification (AISWNB) [23].
The performance of the proposed method was validated on
36 UCI datasets and six image classification datasets from
Corel Image repository. The experimental results demon-
strate that the AISWNB method can significantly outper-
form its peers in classification accuracy, class probability
estimation, and class ranking performance.

Lee proposed a new paradigm of weighting method,
which assigns a different weight to values of each fea-
ture [24]. The method is called value weighting and
implemented in the context of naive Bayes using wrapper
method (VWNB). They reported that the VWNB method
improves the performance of naive Bayes significantly and
can be competitive with other state-of-the-art supervised
algorithms.

Regarding the pre-existing bias model, Sáez focused on
imputation methods to improve k-NN classification [25].
Under the imputation methods, the weight for each feature
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is estimated based on the rest of data and the Kolmogorov–
Smirnov nonparametric statistical test is utilized to measure
the changes between the original and imputed distribu-
tion of values. Three used imputation methods are k-NN
Imputation (kNNI) [26], using Support Vector Machine to
fill in missing values (SVMI) [27], Concept Most Com-
mon (CMC) [28]. They showed that their method was an
effective way of improving the performance of the Nearest
Neighbor classifier.

Jiang used a deep feature weighting (DFW) approach,
which estimates the conditional probabilities of naive Bayes
by computing feature weighted frequencies from training
data [29]. Firstly, they applied the correlation-based fea-
ture selection (CFS) to select relevant features, and then
defined weights of selected features and non-selected fea-
tures as 2 and 1, respectively. These values are used to
estimate the conditional probabilities of naive Bayes. The
experiments on 36 UCI datasets show that their method
rarely degrades the quality of the model compared to
standard naive Bayes and, in many cases, improves it
dramatically.

Xiang proposed a novel attribute weighting framework
called Attribute Weighting with Smooth Kernel Density
Estimation (AW-SKDE) [30]. In the AW-SKDE frame-
work, the attributes weights are generated by calculating
the mutual information between the features and the class
label. They made an assumption that if one attribute shares
more mutual information with the class label, that attribute
will provide more classification ability than other attributes,
and should therefore be assigned a higher weight. The
experimental results showed that the AW-SKDE algorithm
achieves comparable and sometimes better performance
than the classical naive Bayes as well as other algorithms
using a relaxed conditional independence assumption. How-
ever, their algorithm suffers from over-fitting.

3 Introduction of support vector machines (SVMs)

This section will briefly describe an effective classifi-
cation algorithm in supervised machine learning called
Support Vector Machines (SVMs) [31]. Firstly, we intro-
duce the algorithm for separable datasets, then present its
general version designed for non-separable datasets, and
finally provide a theoretical foundation for SVMs based
on the notion of margin. We start with the description of
binary (two-class) classification problems in the separable
case.

3.1 The optimal hyperplane for separable data

Given a training set S = {xi, yi}mi=1, with input vectors
xi ∈ Rn and target labels yi ∈ {−1, +1}, for the linearly

separable case, the data points will be correctly classified by
any hyperplanes w · x + b = 0 satisfying

yi(xi · w + b) − 1 ≥ 0, ∀i = 1, .., m (1)

Although many hyperplanes perfectly separate the
training samples into two classes, SVMs find an optimal
separating hyperplane with the maximum margin (distance
to closest points) by solving the following optimization
problem:

min
w,b

1

2
||w||2 (2)

subject to yi(w · xi + b) ≥ 1, ∀i ∈ [1, m]. This quadratic
optimization problem can be solved by finding the saddle
point of the Lagrange function:

L (w, b, α) = 1

2
||w||2 −

m∑

i=1

αi[yi (w · xi + b) − 1] (3)

where αi denotes Lagrange variables, αi ≥ 0 ∀ i = 1, ..m.
The Karush Kuhn -Tucker (KKT) conditions for a max-

imum of (3) are obtained by setting the gradient of the
Lagrangian with respect to the primal variables w and b to
zero and by writing the complementary conditions:

∇wL = w −
m∑

i=1

αiyixi = 0 ⇒ w =
m∑

i=1

αiyixi (4)

∇bL = −
m∑

i=1

αiyi = 0 ⇒
m∑

i=1

αiyi = 0 (5)

∀i, αi [yi (w · xi + b) − 1] = 0 ⇒ αi = 0 ∨ yi (w · xi + b)−1 = 0

(6)

By (4), the weight vector w solution of the SVM problem
is a linear combination of the training set vectors x1, ..., xm.
According to complementary conditions (6), the value of
w only depends on vectors xi that correspond the αi �= 0.
Such vectors are called support vectors. They fully define
the maximum-margin hyperplane or the SVM solution.

Substitute (4) and (5) into (3), the dual form Lagrangian
LD(α) of (2) is derived as follows:

max LD(α)
α

=
m∑

i=1

αi − 1

2

m∑

i,j=1

αiαjyiyj (xi · xj ) (7)

subject to αi ≥ 0 i = 1, .., m and
∑m

i=1αiyi = 0.
To find the optimal hyperplane, LD(α) must be maxi-

mized with respect to non-negative αi . The objective func-
tion is a standard quadratic optimization problem that can
be solved by using several standard optimization methods.
The solution α can be used directly to determine the param-
eters w∗ and b∗ of the optimal hyperplane returned by the
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SVM. Thus, we obtain an optimal decision hyperplane f (x)

(8) and an indicator decision function sign[f (x)].

f (x) =
m∑

i=1

α∗
i yi (xi · x) + b∗ =

∑

i∈SV

α∗
i yi (xi · x) + b∗

(8)

where b∗ is calculated based on rewriting condition (6) as
follows:

b∗ = yi −
m∑

j=1

αjyj (xj · xi) (9)

3.2 The optimal hyperplane for non-separable data

In most practical settings, data are often not linearly separa-
ble [31]. For any hyperplane w · x + b = 0, there exists xi

such that

yi(xi · w + b) − 1 � 0 (10)

In this case, an SVM selects a hyperplane that minimizes
the training error. The constraints in Section 3.1 cannot all
hold simultaneously, but the above concepts can be extended
to the non-separable case. To get the formal setting of this
problem, non-negative slack variables ξi are proposed such
that:

yi(xi · w + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, .., m (11)

Here, a slack variable ξi measures the distance by which
vector xi violates the desired inequality, yi(w · xi + b) ≥ 1.
For a hyperplane w.x+b = 0, a vector xi with ξi > 0 can be
viewed as an outlier. An SVM finds the optimal hyperplane
by minimizing the expression below:

min
w,b,

1

2
||w||2 + C

m∑

i=1

ξi (12)

subject to yi(w · xi + b) ≥ 1 − ξi ∧ ξi ≥ 0, i ∈ [1, m].
Minimizing the expression (12) is an NP-hard problem.

There are two conflicting objectives: seeking a hyperplane
with larger margin and limiting the total amount of slack
variables measured by

∑m
i=1ξi . The parameter C ≥ 0 is

known as trade-off between two such objectives. Typically,
C is determined via k-fold cross validation method.

The optimization model can be solved by maximizing the
dual variables Lagrangian LD(α) (13), which only differs
from that of the separable case (7) by the constraints α i ≤
C:

max LD(α)
α

=
m∑

i=1

αi − 1

2

m∑

i,j=1

αiαjyiyj (xi · xj ) (13)

subject to 0 ≤ αi < C, i = 1, .., m ∧ ∑m
i=1 αiyi = 0.

Two parameters w and b of the optimal hyperplane can
be determined directly via solution α similar to separable

case (4) and (9). However, support vectors in non-separable
case include outliers and vectors which lie on marginal
hyperplanes.

3.3 Non-linear SVM

The main idea of creating non-linear kernel classifiers is
mapping the data into a higher-dimensional feature space in
the hope that in the higher-dimensional space the data could
become more easily separated or better structured. This is
performed by using a mapping function � and replacing the
dot products in (13) by the kernel function (14):

K(xi, xj ) = (�(xi), �(xj )) (14)

max LD(α)
α

=
m∑

i=1

αi − 1

2

m∑

i,j=1

αiαjyiyjK(xi, xj ) (15)

subject to 0 ≤ αi < C, i = 1, .., m ∧ ∑m
i=1 αiyi = 0.

Some widely used kernel functions include polynomial,
radial basis function (RBF) and sigmoid kernel, which are
shown as functions (16), (17) and (18). Choosing the most
appropriate kernel function and its parameters are com-
pletely based on the specific dataset. There are various
methods to determine parameters in kernel functions. In
this paper, we use the genetic algorithm to find the optimal
values of parameters and weights of data attributes.

– Polynomial kernel:

K(xi, xj ) = (1 + xi · xj )
d (16)

– Radial basis function kernel (alternative form):

K(xi, xj ) = exp(−γ ||xi − xj ||2) (17)

– Sigmoid kernel:

K(xi, xj ) = tanh(kxi · xj − δ) (18)

4 Genetic algorithms - GAs

Genetic algorithms have been used in science and engi-
neering as adaptive algorithms for solving practical prob-
lems [32]. The exploitation of the principles of evolution
as a heuristic method enables genetic algorithms to solve
optimization problems effectively (with the acceptable solu-
tions) without using the traditional conditions (continuity or
differentiability of the objective function) as prerequisites.

One of the most important characteristics of GAs is the
ability to work with a population of individuals, each repre-
senting a feasible solution to a given problem. The search is
now performed in parallel on multi-points. However, this is
not a simply multi-points searching algorithm because the
points are interactive with each others based on principles of
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natural evolution [33]. The basic steps of GAs (Fig. 1) are
described as follows [34]:

– Step 1: t = 0 ; Initialize P(t) = {x1, x2, ..., xn} , where
n is the number of individuals.

– Step 2: Calculate the value of the objective functions for
P(t).

– Step 3: Create a crossover pool MP = se{P(t)} where
se is selection operator.

– Step 4: Determine P ′(t) = cr{MP }, with cr is the
crossover operator.

– Step 5: Determine P ′′(t) = mu{P ′(t)}, with mu is the
mutation operator.

– Step 6: Calculate the value of the objective functions for
P ′′(t)

– Step 7: Determine P(t + 1) = P ′′(t) and set t = t + 1
– Step 8: Return Step 3, if the stop condition is not

satisfied.

Solutions representation This task plays a crucial role in
designing genetic algorithms, deciding whether to apply the
evolutionary operators. One of the traditional representa-
tions of GAs is the binary representation. In this way, a
feasible solution to a problem is represented as a vector
of bits called a chromosome. Each chromosome consists
of many genes; a gene represents a parametric component
of the solution. A different type of chromosome repre-
sentation is using real numbers. With this representation,
the evolution operators will perform directly on the real
values(genes).

Selection The goal of the selection stage is guiding the
search towards better individuals and maintaining a high
genotypic diversity in the population. The quality of each
individual is evaluated by mean of the fitness function. This
value is used to determine which individual will be selected
for the next generation whereby the more greater qual-
ity the individual has the more chance it is chosen. Some
commonly used selection methods include:

– Roulette wheel: Selecting individuals is based on prob-
ability (proportional to the value of the fitness function).
Each is assigned a slice of a circular “roulette wheel”,

the size of the slice being proportional to the individ-
ual’s fitness. The wheel is spun N times, where N is the
number of individuals in the population. On each spin,
the individual under the wheel’s marker is selected to
be in the pool of parents for the next generation [32].

– Tournament selection: The selection process involves
running several “tournaments” between two individuals
chosen randomly from the population. The better indi-
vidual (the winner) having the greater fitness value is
selected for the next generation.

– Elitist selection: For this selection strategy, a limited
number of individuals with the best fitness values are
chosen for the next generation. Elitism avoids losing
individuals with good genetics by crossover or mutation
operators.

Crossover Crossover operators are applied to generate new
individuals from their parents. Crossover operators are
inspired by the idea that offspring inherit the best charac-
teristics from their parents. In terms of searching, crossover
operators perform a search of the area around the solu-
tion represented by the parent individuals. There are some
crossover techniques including single-point, two-point and
uniform crossovers.

Mutation Similar to crossover operators, mutation oper-
ators are also used to simulate mutation phenomena in
biology. Mutations often generate new individuals different
from their parents. In terms of searching, mutation opera-
tors aim to deploy the finding out of the local area. Figure 2
illustrates the genetic crossover and mutation operators.

The evolutionary process is repeated until the stop cri-
teria such as the pre-defined number of generations and an
acceptable fitness value are satisfied [33, 35] (Fig. 1).

5 Hybrid model GA-SVM for feature weighting
and parameter optimization

In this section, we present in detail how to combine GA
and SVM for feature weighting and parameter optimiza-
tion involving chromosome design, fitness function, and
system architecture. Our implementation was carried out

Fig. 1 Basic steps of genetic
algorithm
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Fig. 2 Illustration of the two-
point crossover and mutation
operators and their effects in the
generation of the offspring

on C# language by extending LIBSVM, which is origi-
nally designed by Chang and Lin [36]. The source code is
publicly available at http://www.mediafire.com/download/
0movktlqv04c8qu/GA SVM Code.rar

5.1 Chromosome design

The proposed model searches kernel function parameters
and the weights of features simultaneously. Hence, the chro-
mosome must contain two such parts. In our experiments,
we used the RBF kernel function for two reasons. Firstly,
this kernel maps samples into a higher-dimensional space;
hence, it can handle the case when the relation between
class labels and attributes is nonlinear. The second reason is
the number of hyperparameters, which influences the com-
plexity of model selection. The RBF kernel only requires
two parameters C and γ . Figure 3 shows the structure of a
chromosome in this case.

Real coding was used to represent the chromosome. All
genes in the chromosome have value in the range [0, 1].
Two first genes c and g represent the values of C and
γ respectively, while w1 ∼ wn represent the weights of
features. Note that, we search values of C and γ in the
ranges [C1, C2] and [γ1, γ2]. Thus, parameters C and γ

of the SVM classifier are obtained by mapping c and g into
corresponding ranges via the following formula:

C = C1 + c ∗ (C2 − C1) and γ = γ1 + g ∗ (γ2 − γ1) (19)

In the implementation, we allow users to vary lower-
bound and upper-bound values of C and γ as well as other
parameters of the genetic algorithm.

Fig. 3 The structure of a chromosome for optimizing C, γ and
weights of features

5.2 Fitness function

The performance of SVM classifiers is used to design a
single objective function for GAs. In the decoding pro-
cess, both training and testing datasets are transformed
by multiplying feature ith with the corresponding weight
wi, i = 1, .., n. After that, the SVM model with the RBF
kernel function is built based on C, γ (19) and the trans-
formed training dataset. The accuracy of the classifier on
the testing dataset is used to assesses the quality of the
chromosome.

For multiple class datasets, we set the accuracy as the
fitness value of the chromosome. Meanwhile, for two-
class datasets, the fitness value can be constructed from
other widely employed performance measures such as
Accuracy, F-measure and Matthews correlation coefficient
(MCC). These values are calculated according to the con-
fusion matrix, which contains information about actual and
predicted classifications done by a classification system
(Table 1). In Table 1, we assume that the labels of data are
1 (positive) or -1 (negative). The meaning of values in the
confusion matrix are as follows.

– TN is the number of correct predictions that an instance
is negative.

– FN is the number of incorrect predictions that an
instance is positive.

– FP is the number of incorrect of predictions that an
instance negative.

– TP is the number of correct predictions that an instance
is positive.

Table 1 The confusion matrix

Predicted

1 −1

Actual 1 True Positive (TP) False Negative (FN)

−1 False Positive (FP) True Negative (TN)

http://www.mediafire.com/download/0movktlqv04c8qu/GA_SVM_Code.rar
http://www.mediafire.com/download/0movktlqv04c8qu/GA_SVM_Code.rar
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Accuracy = T P + T N

T P + FN + FP + T N
(20)

MCC = 2 · T P · T N − FP · FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(21)

F − measure = 2 · Precision · Recall

P recision + Recall
(22)

where precision = T P/(T P + FP) and recall =
T P/(T P + FN).

In GAs, the objective functions are very important and
they notably affect the rate of convergence and the quality
of the best solutions [37]. We also conducted some experi-
ments on several two-class datasets with different objective
functions in (20 ∼ 22). Then, the output data are analyzed
carefully to explore the effectiveness of each objective function
according to two criteria: time efficiency and quality of the
optimal solution measured by the accuracy of SVM classifiers.

5.3 System architecture

We suggest an architecture for the hybrid system GA-SVM
as Fig. 4. In this model, the task of GA is to search opti-
mal parameters of SVM and weight of features. Besides, the
SVM plays a role as oriented search strategy for GA by eval-
uating the fitness of chromosomes. The details of the hybrid
model are described as follows:

1. Data pre-processing (scaling). Scaling before applying
SVM is very important. The main advantage of scal-
ing is to prevent attributes in greater numeric ranges
dominating those in smaller numeric ranges. Another
advantage is to avoid numerical difficulties during the
calculation process [9]. When using the Grid algorithm,
according to our experimental results, feature value
scaling can help to increase SVM accuracy. Normally,
each feature is linearly scaled to the range [−1, +1] or
[0, 1] by formula (23).

v′ = v − mina

maxa − mina

(23)

where v′ is scaled value, v is original value, mina , maxa

are low bound and upper bound of the feature value,
respectively.

Typically, we have to use the same method to scale
both training and testing data. For example, suppose
that we scaled the first attribute of training data from
[−10, +10] to [−1, +1]. If the first attribute of test-
ing data lies in the range [−11, +8], we must scale the
testing data to [−1.1, +0.8].

For the task of finding the weights of features, scal-
ing data may be unnecessary for GA-SVM model.

However, in order to gain the best results for the Grid
algorithm, we performed this process. Then all exper-
iments of both the approaches were conducted on the
scaled datasets.

2. Decoding(generating training data and parameters
C, γ for SVM). This step converts the values of the
chromosome into parameters C, γ of the SVM by (19)
and the weights of features. In both the training and
testing datasets, the feature values of instances are mul-
tiplied by the corresponding weights using following
formula.

x̄ij = xij ∗ wj (24)

where xij and x̄ij are the value of the j th field of the
ith instance before and after scaling. wj is the weight
of the j th field.

3. Fitness evaluation After decoding stage, C, γ and the
scaled training dataset are used to build the SVM model.
The scaled testing dataset is used to evaluate the per-
formance of the classifier. When the predicted data is
obtained, each chromosome is evaluated by the fitness
functions described in Section 5.2.

4. Genetic operators. In this step, a new generation
is produced by genetic operators including selection,
crossover, mutation, and replacement.

5. Stopping criteria. The population is improved through
many generations. The evolutionary process ends when
stopping criteria are satisfied. Some typical criteria are
used such as a number of iterations, acceptable results
or a fixed number of last generations without changing
the fitness value.

6. Elitism replacement. To maintain the good solutions
of each generation that may be lost during the evolu-
tionary process by crossover and mutation operators,
we use the elitism replacement technique. For each
generation, we store the best chromosome and replace
worst chromosome in the next generation with such
chromosome.

6 Experiments

6.1 Experimental setup

The detailed settings for the genetic algorithm are as fol-
lows: population size 500, crossover rate 0.9, mutation
rate 0.05, two-point crossover, elite selection and elitism
replacement. In addition, we set the ranges of C [0.01 -
32000] and γ [10−6 - 8]. The aim of such ranges is to limit
the searching bounds of two SVM parameters when using
the RBF kernel (19). Corresponding to real-value coding,
genetic operators are performed as follows:
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Fig. 4 The system architecture
of the hybrid GA-SVM model
for feature weighting and
parameter optimization

– Crossover

Xold
1 = {x11, x12, .., x1n}, Xold

2 = {x21, x22, .., x2n}
(25)

xnew
1t = x1t + σ(x2t − x1t ), t ∈ [p1, p2] (26)

xnew
2t = x2t − σ(x2t − x1t ), t ∈ [p1, p2] (27)

Xnew
1 = {x11, .., x1p1−1, x

new
1p1

, .., xnew
1p2

, x1p2+1, ..., x1n}
(28)

Xnew
2 = {x21, .., x2p1−1, x

new
2p1

, .., xnew
2p2

, x2p2+1, ..., x2n}
(29)

where p1 and p2 are two random values of cut points.
Xold

1 and Xold
2 represent the pair of parents before

crossover operation; Xnew
1 and Xnew

2 represent off-
spring. In addition, σ , which has the range of [-1,1], is
a random micro number that controls the variance of
each crossover operation. In other words, we partially
perturb the parent in directions of the differential vector
between two parents.

– Mutation

Xold = {x1, x2, .., xn} (30)

xnew
k = LBk + σ(UBk − LBk) (31)

Xnew = {x1, x2, .., x
new
k , .., xn} (32)

where k is the position of the mutation. LB and UB

are the lower and upper bounds on the parameters. LBk

and UBk denote the lower and upper bounds at location
k. Xold and Xnew represent the individuals before and
after the mutation operation.

The stopping criteria are that the number of generations
reaches 600 or the best fitness value does not improve dur-
ing the last 100 generations. The best chromosome of the
final generation is selected as the solution of the problem.

To evaluate the effectiveness of the proposed system in
different classification tasks, we conducted experiments on
several real-world datasets from the UCI database (Hettich,
Blake, and Merz, 1998) [38] and evaluated the results on
various criteria. The criteria are detailed in Sections 6.2 and
6.3. The short description of the used datasets is mentioned
in Table 2.

We use k-fold cross validation technique to assess the
results. In this method, the original data is randomly par-
titioned into k equal sized sub-parts. The cross-validation
process is repeated k times (the folds). At step k, the kth part
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Table 2 The datasets from the UCI repository

No. Dataset #classes #instances #pos. instances #neg. instances #features

1 German (credit card) 2 1000 300 700 24

2 Australian (credit card) 2 690 307 383 14

3 Pima-Indian diabetes 2 768 268 500 8

4 Heart disease (Statlog Project) 2 270 120 150 13

5 Breast cancer (Wisconsin) 2 699 241 458 10

6 Contraceptive Method Choice 3 1473 − − 9

7 Ionosphere 2 351 126 225 34

8 Iris 3 150 − − 4

9 Sonar 2 208 111 97 60

10 Statlog project: Vehicle 4 846 − − 18

11 Vowel 11 990 − − 13

is used for testing by the trained model, which is built based
on the remaining k − 1 sub-parts. The k results from the
folds can then be averaged (or otherwise combined) to pro-
duce a single estimation. The advantages of this technique
are that all of the test sets are independent and the reliabil-
ity of the the results could be improved. In our experiments,
we choose k = 10 and combine k results to estimate the
performance of the classifiers (Fig. 4).

6.2 Evaluation criteria

Accuracy (overall hit rate) is considered the most impor-
tant criterion to evaluate the effectiveness of a classification
algorithm. However, the power of a classifier is demon-
strated by not only the final results (the accuracy) but
also other criteria, which are discussed in more detail in
Section 6.3. One of these criteria is the ability of discrim-
ination between classes. For binary classifiers, sensitivity
and specificity are two metrics, which describe how well

the classifiers discriminate between positive and negative
classes. Where, sensitivity (or True Positive Rate - TPR)
is the proportion of positive instances that are classified as
positive. Specificity (or True Negative Rate - TNR) is the
proportion of negative instances classified as negative.

The ability of a classifier to discriminate between
positive cases and negative cases is evaluated using
Receiver Operating Characteristic (ROC) curve analysis.
This method is also used to compare the diagnostic per-
formance of two or more diagnostic classifiers [39]. An
ROC curve is a graph of sensitivity (y-axis) and 1 - speci-
ficity (x-axis). The curve contains all possible cut-off points,
which are selected to discriminate between the two popu-
lations (with positive or negative class values). The ROC
curve shows the trade-off between sensitivity and speci-
ficity. Based on the curve analysis method, the closer the
curve follows the left-hand border and then the top border
of the ROC space, the more accurate the classifier is. The
area under the curve (AUC) is the evaluation criterion for the

Table 3 Experimental results of GA-SVM approach and Grid algorithm on the test sets (T PR - True Positive Rate, T NR - True Negative Rate)

No. Dataset GA-SVM Grid algorithm

TPR TNR Accuracy TPR TNR Accuracy

1 German 56.67 91.29 80.90 (+5.00) 47.67 88 75.90

2 Australian 91.86 85.90 88.55 (+2.61) 87.30 84.86 85.94

3 Diabetes 63.06 91.40 81.51 (+4.82) 51.49 90.20 76.69

4 Heart disease 92.67 85.83 89.63 (+5.19) 80.83 87.33 84.44

5 Breast cancer 96.68 97.60 97.28 (+0.71) 95.02 97.38 96.57

6 Contraceptive N/A N/A 59.40 (+4.55) N/A N/A 54.85

7 Ionosphere 96.03 98.67 97.72 (+3.13) 88.10 98.22 94.59

8 Iris N/A N/A 99.33 (+3.33) N/A N/A 96

9 Sonar 98.20 94.85 96.63 (+9.13) 93.69 80.41 87.50

10 Vehicle N/A N/A 91.13 (+5.55) N/A N/A 85.58

11 Vowel N/A N/A 99.90 (+8.71) N/A N/A 91.19
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Table 4 Performance comparison of the proposed approach and other algorithms on two-class datasets

No. Dataset GA-SVM Grid algorithm C4.5 Random forest Naive Bayes Boosting

1 German 80.90 75.90 73.90 76.20 74.00 72.60

2 Australian 88.55 85.94 85.22 86.81 72.46 86.23

3 Diabetes 81.51 76.69 73.83 74.48 76.30 74.35

4 Heart disease 89.63 84.44 76.67 81.48 85.93 80.00

5 Breast cancer 97.28 96.57 93.99 97.00 95.85 94.99

6 Ionosphere 97.72 94.59 91.45 92.59 81.77 90.88

7 Sonar 96.63 87.50 71.15 84.62 67.79 71.63

classifier. This criterion is less affected by sample balance
than accuracy.

6.3 Experimental results and discussion

Table 3 shows the summary of classification results for the
11 UCI datasets using the two approaches. For this experi-
ment, the accuracy is set as the fitness function of the GA.
For multi-class datasets, TPR and TNR are marked N/A
because they are not calculated. In the paper, we applied the
optimal values of C, γ and the weights for entire instances
of the dataset when doing k-fold cross validation (23). The
results from k folds are combined to obtain the final output,
which are used to calculate the performance metrics such as
TPR, TNR and accuracy. This is different from the experi-
ments of Cheng-Lung Huang and Chieh-Jen Wang [1]. They
selected features and optimized the parameters for training
and testing data in each step of cross-validation, separately.
This may result in higher average of performance metrics;
however, it does not indicate what a pair of (C, γ ) and a set
of features are useful for the dataset. Thus, the Grid algo-
rithm is used as the baseline to compare with our model in
the same experimental conditions.

The results in Table 3 indicate that the hybrid GA-SVM
approach improves classifier performance significantly in
comparison with the Grid algorithm; the bold values denote
the improvement of the proposed model over the Grid algo-
rithm. Based on measures of the TPR, TNR and accuracy,
the proposed model always achieves higher values than the
Grid algorithm for all the experimental datasets. Especially,
there are improvement of 9.13 % and 8.71 % on accuracy
of two datasets Sonar and Vowel. On the Sonar dataset, for
the GA-SVM approach, its true positive rate is 98.20 %, its
true negative rate is 94.85 % and its accuracy is 96.63 %.
For the Grid algorithm, its true positive rate is 93.69 %, its
true negative rate is 80.41 % and its accuracy is 87.5 %.

We also carried out the classifications by using differ-
ent algorithms including C4.5, random forest, naive bayes
and boosting to provide reference points for comparisons.
We used the implementations of these algorithms in the

WEKA workbench version 3-6-131 to conduct the tests. All
the parameters in the algorithms were left as default values.
Each dataset was classified by each classifier using 10-fold
cross validation. The predicted results on 10 validation folds
were combined to calculate the performance of the clas-
sifier. Table 4 summarizes the experimental results on 7
two-class datasets using various algorithms, where the val-
ues of our method and the highest values of other methods
are marked in bold. The Table 4 shows that SVMs is not
the most powerful algorithm but the hybrid GA-SVM model
outperforms the other algorithms on all the datasets.

To verify the performance of the proposed method,
we compared GA-SVM with several other state-of-the-art
feature weighting approaches including AW-SKDE [30],
AISWNB [23], DFWNB [29], FW-KNNI, FW-CMC and
FW-SVMI [25]. The algorithms performance was evaluated
in terms of the classification accuracy using 10-fold cross
validation technique. As can be seen in Table 5, the GA-
SVM significantly outperforms the other feature weighting
methods on most of the datasets except the Breast cancer.
The discrimination between the performance of the GA-
SVM and the other feature weighting algorithms can be
explained by two main reasons. Firstly, the pre-existing bias
approaches (AW-SKDE, DFWNB, FW-KNNI, FW-CMC
and FW-SVMI) use the attribute independence assumption
when it is usually violated in real-world datasets. Secondly,
SVM shows more efficient than the other algorithms on the
experimental datasets (Table 4). Meanwhile, in our method,
SVM classifiers are strengthened by using GA to auto-
matically calculate feature weights and kernel parameters.
As a result, the GA-SVM obtains the remarkable results
in comparison with the state-of-the-art feature weighting
methods.

To assess the discrimination ability between classes of
a classifier, we take German and Australian datasets to
analyze ROC curves of GA-SVM approach and the Grid
algorithm. In Fig. 5, the blue curves are closer the left-

1http://www.cs.waikato.ac.nz/ml/weka

http://www.cs.waikato.ac.nz/ml/weka
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Table 5 Performance comparison of the proposed approach and other feature weighting methods. The highest accuracy on each dataset is marked
in bold

No. Dataset GA-SVM AW-SKDE(MI) AISWNB DFWNB FW-KNNI FW-CMC FW-SVMI

(Xiang 2015) (Wu 2014) (Jang 2016) (Saez 2014)

1 German 80.90 - 75.80 74.28 - - -

2 Australian 88.55 86.09 85.13 86.54 - - -

3 Diabetes 81.51 - 75.86 78.80 - - -

4 Heart disease 89.63 83.70 83.52 83.33 73.70 75.19 75.19

5 Breast cancer 97.28 96.85 97.24 97.31 - - -

6 Ionosphere 97.72 91.45 90.69 91.20 88.55 87.09 87.67

7 Iris 99.33 - 94.87 94.47 95.33 96.00 94.00

8 Sonar 96.63 - 76.76 83.31 86.97 86.55 86.02

9 Vehicle 91.13 66.90 62.81 62.60 - - -

10 Vowel 99.90 - 67.26 67.42 99.49 99.39 99.39

hand border and the top border of the ROC space than the
red ones. AUC are 0.9236, 0.9189 (Australian) and 0.7853,
0.6809 (German). The AUC values reveal that the GA-
SVM approach outperforms the Grid algorithm in terms of
discrimination ability.

Analyzing the behavior of algorithms is not based on the
final results, but also on results during the execution pro-
cess. To assess the combination ability between GA and
SVM, we recorded the fitness value (accuracy) of the best
solution each 10 generations. As shown in Fig. 6, the per-
formance of SVM classifiers are improved continuously
and quickly converge to the optimal solutions. Specifically,
it is after around 65 generations on most of the exper-
imental datasets. For vehicle and heart dataset, the rates
of convergence are slower than others. The optimal solu-
tions are correspondingly obtained after near 150 and 250
generations.

For genetic algorithms, choosing a proper fitness func-
tion plays a very important role [37]. The fitness function
orients searching strategy of GAs to obtain the best solutions

within a large search space. Appropriate fitness functions
will help GAs in exploring the search space more effectively
and efficiently. In contrast, inappropriate fitness functions
can easily lead GAs to get stuck in a local optimal solution
and lose the discovery power. To illustrate, we take three
datasets (Breast cancer, Ionosphere and Sonar) to conduct
tests with different fitness functions including Accuracy, F-
measure and Matthews correlation coefficient (MCC) (20 ∼
22). For each dataset and objective function, we run the test
10 times using different random seeds.

In Table 6, the results are shown in the form of average ±
standard deviation. As can be seen, for the three datasets, the
Accuracy function achieves slightly higher average accu-
racy but the convergence velocity is slower in comparison
with the MCC function. In particular, the Accuracy obtains
the highest accuracies on the Ionosphere and Sonar datasets;
the corresponding values are 97.95 % and 97.26 % after
approximately 68 and 86 generations, respectively. For the
MCC function, the accuracies reach 97.86 % and 97.12 %
after around 57 and 59 generations. The MCC function

Fig. 5 ROC curves for two datasets using GA-SVM approach and Grid algorithm. Figure 5a and b show curves for Australian and German
datasets, respectively
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Fig. 6 Running process of the hybrid system GA-SVM on 11 UCI datasets

obtains the highest accuracy, 97.61 %, on the Breast cancer
dataset. The F-measure function is as slow as the Accuracy
function in terms of computational time and the perfor-
mance of the F-measure function does not outperform the
other functions. It is worth noticing that the Accuracy func-
tion achieves the highest accuracies. The accuracies of the
MCC function are not as high as that of the Accuracy func-
tion, but the MCC function converges faster. The F-measure
function is weaker than the Accuracy and MCC functions
regarding to time efficiency and optimal solution quality.

When dealing with real-world applications, we often face
a complicated problem called imbalanced datasets, which
contain many more samples from one class than from the
rest of the classes [40, 41]. For example, in medical diag-
nosis of a certain cancer, we assume that the cancer is the
positive class and non-cancer (healthy) is the negative class.
For diagnostic data, the number of negative instances is usu-
ally greater than positive ones. In this scenario, classifiers
may bias the majority class due to the pursuit of error min-
imization. It results in great accuracy on the majority class,
but very poor accuracy on the minority class. Meanwhile,

detecting positive instances is more important than detect-
ing negative ones. The imbalanced data problem can be seen
in Tables 2 and 3. Taking the diabetes dataset, for exam-
ple, the number of positive and negative instances are 268
and 500. For the GA-SVM approach, the true positive rate
is 63.06 % and the true negative rate is 91.14 %. Similarly,
for Grid algorithm, the true positive rate is 51.49 % and the
true negative rate 90.2 %. Imbalanced datasets can be han-
dled by sampling methods to re-balance them artificially
or modifying SVMs [41]. Although our approach does not
deal with imbalance problems, it is interesting that in the
efforts of achieving the highest accuracy, the GA does not
direct SVM classifiers to the majority classes. The hybrid
model improves the accuracy rates on all classes and main-
tains the fairness between classes in comparison with the
Grid algorithm (Table 3).

The average running time for the GA-SVM approach
are slightly inferior to that of the Grid algorithm. However,
the performance of classifiers are improved significantly
according to various estimation. In addition, it is impor-
tant to notice that the proposed model has abilities to find

Table 6 The performance of the hybrid model GA-SVM by different objective functions. The bold values are the highest accuracy and the
minimum number of generations on each dataset

Dataset Objective Functions Avg.TPR Avg.TNR Avg. Accuracy #Generations

Accuracy 96.68±0.65 97.97±0.21 97.53±0.20 47±27.10

Breast cancer F-Measure 97.72±0.90 97.47±0.46 97.55±0.08 46±22.71

MCC 97.34±0.98 97.55±0.41 97.61±0.19 60±30.91

Accuracy 96.43±0.86 98.80±0.47 97.95±0.29 68±28.60

Ionosphere F-Measure 96.35±0.67 98.80±0.37 97.92±0.33 70±37.12

MCC 96.11±0.87 98.84±0.60 97.86±0.31 57±21.11

Accuracy 98.29±0.65 96.08±0.65 97.26±0.40 86±36.58

Sonar F-Measure 98.29±0.66 95.15±0.98 96.83±0.56 85±35.98

MCC 98.20±0.42 95.88±0.97 97.12±0.51 59±25.14
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the general properties of the datasets that will be useful for
further works.

7 Conclusions

In this paper, we presented a novel method that improves
the performance of SVMs by using GAs based on direc-
tional information. The hybrid model GA-SVM is applied
to optimize the parameters and feature weighting simulta-
neously for classification problems. It is essential because
weighting feature influences the appropriate kernel param-
eters and vice versa. As far as we know, previous research
did not use GAs to perform feature weighting and parameter
optimization for support vector machines.

We conducted experiments to evaluate classification
accuracy of the proposed GA-SVM approach with the RBF
kernel and the Grid algorithm on the 11 real-world datasets
from UCI database. According to different assessment cri-
teria such as accuracy and AUC, the proposed GA-based
approach always obtains better classifiers than some latest
feature weighting approaches. This study showed experi-
mental results with the RBF kernel. However, other kernel
parameters can also be optimized using the same techniques
due to the flexible design of GAs.

Currently, our approach is time-consuming because the
training procedure of SVMs is repeated many times. Thus,
to find the optimal parameters and attribute weights for big
datasets using the proposed model, we need some modifica-
tions to reduce the computational time. In future work, we
adapt the model for big datasets by concurrently applying
following solutions:

– Speed up the training time of SVMs by using some
methods to reduce the size of datasets.

– Split datasets into a ratio of 3:1:1 for training, valida-
tion, and testing instead of 10 folds for cross-validation.

– Adopt parallel computing to evaluation of individuals.
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