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Abstract—With the rapid development of uncertain and large-
scale datasets, Fuzzy Possibilistic C-means Clustering (FPCM)
and Granular Computing (GrC) were introduced together with
the aim to solve the feature selection and outlier detection
problems. Utilizing the advantages of the FPCM and GrC, an
Advanced Fuzzy Possibilistic C-means Clustering based on Gran-
ular Computing (GrFPCM) was proposed to select features as
a preprocessing step for clustering problems and granular space
is used to handle the uncertainty. Experimental results reported
for various datasets in comparison with other approaches exhibit
the advantages of the proposed method.

Index Terms—fuzzy clustering, fuzzy possibilistic c-means clus-
tering, granular computing, feature selection, outlier detection.

I. INTRODUCTION

Clustering is a technique widely used in data mining. It is
used to detect any structures or patterns in datasets, in which
objects in one cluster exhibit substantial similarity. Clustering
algorithms involve various methods, e.g hard clustering like
k-means and its various [1] or fuzzy clustering like Fuzzy C-
mean clustering (FCM) [5].

Fuzzy clustering algorithms were designed to deal with
the uncertainty or vague information. A variant of fuzzy
clustering is based on possibilistic approach which was first
proposed by Krishnapuram et al. [4]. The algorithm determines
a possibilistic partition in which a possibilistic membership is
used to define the absolute degree of typicality of a point in any
particular clusters. The larger the distance between an object
to a centroid, the lower the possibilistic membership grade
and the lower the object affects on clustering of the centroid.
Therefore, methods of outlier detection or noise removal may
be applied. However, the possibilistic approach still exists
some drawbacks such as identical clusters and choosing its
parameters. Therefore, Zhang et al. [2] proposed a combination
method between Fuzzy C-means and Possibilistic C-means,
namely Fuzzy Possibilistic C-means (FPCM), to resolve the
identical issue of the possibilistic approach.

Nowadays, clustering problems often are used to deal with
large and high dimensional datasets which also raises some
issues to be resolved to retrieval useful information from
these datasets [11]. The one is how to remove noises and
redundant features, also called dimensional reduction. Most
of the clustering algorithms in general and FPCM algorithm

in particular are sensitive to large or high dimensional data or
both. In deed, an object has many features and each feature has
a different role or some features evenly are noises. An efficient
way to handle this issue is selection of a subset of relevant
features. Dimensional reduction will be efficient method to
find clusters by mining better datasets through the relevant
features and reducing data size for efficient storage, collection
and processing [16].

Feature selection is one of the commonly used techniques
to reduce the number of dimensions. It aims to select a subset
of the relevant features according to an evaluation criterion so
that the selected features fully represent the dataset to solve
the problem [3]. The feature selection is capable of improving
the learning performance by removing irrelevant features and
decreasing the required storage through reducing the number
of features. Thus, feature selection has commonly been used
to remove irrelevant features and improve the performance of
classification.

Many heuristic algorithms of feature selection have been
proposed to reduce the number of dimensions. While J. Qian
proposed an attribute reduction algorithms for big data using
a map reduce [13], L.Sun et al. designed a feature selection
method based on rough entropy [8], [10] or granular com-
puting [15]. In addition, Q.H.Hu et al. introduced a feature
selection method which was formed by combining granular
computing and approximation theory [11]. However, these
feature selection methods need the labelled samples as training
samples to select the necessary features, applications were only
focused on the classification or decision system problems.

Meanwhile, clustering is completed for unlabeled data
which poses a challenge in feature selection. In such cases,
definition of relevant features is unclear and need to be
resolved. However, the feature selection methods, which were
proposed for clustering as filter, wrapper and hybrid models,
are usually designed based on the greedy approach according
to an evaluation criterion [16]. It results in time-consuming
and low efficiency for very large-scale dimensional data.

Recently, granular computing is a powerful tool to study
granulation for handling complex problem, massive data,
uncertain information and high dimensional data [6], [7].
Granular computing has become a new method which can
simulate human thinking and solve problems in computational
intelligence which concern the idea of granularity and the logic
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of granularity [14] and it is also used as a base for feature
selection methods [11], [15].

There are many hybrid models between granular computing
and other methods which are used to form a new type of
machine learning algorithms. These methods are based on
granule structure for various types of dataset or learning
methods [9], [12].

In light of this brief review, GrC can be combined with
clustering method to utilize feature selection for clustering to
alleviate the negative impact of the high dimensional problem.
In addition, selecting subset(s) of features may help improving
the clustering results similar to improving the supervised
methods as classification and decision systems [14].

Therefore, an advanced Fuzzy Possibilistic C-means Clus-
tering is proposed on basis of a combination of FPCM
algorithm with granular computing to handle noise removal
or outlier detection and feature selection for dealing with
high dimensional data. The proposed method not only takes
advantage of FPCM ability in handling noises but also uses
the granular computing theory to assess the significance of
the features, which is a basic for eliminating the effects
of irrelevant features and noise objects. Thus, the algorithm
potentially enhance the clustering results. Experiments are
implemented on several high dimensional datasets to illustrate
the proposed method.

The paper is organized as follows: Section II briefly in-
troduces some backgrounds about fuzzy clustering, fuzzy
possibilistic c-means clustering and granular computing; Sec-
tion III proposes the advanced fuzzy possibilistic c-means
clustering based on granular clustering; Section IV offers some
experimental results and section V covers a conclusion and
proposes future research directions.

II. PRELIMINARIES

A. Fuzzy Possibilistic C-Means Clustering Algorithm

Fuzzy Possibilistic C-Means Clustering Algorithm (FPCM)
was proposed by Zhang et al. [2]. FPCM algorithm is built
based on a combination of two algorithms FCM [5] and PCM
[4], which has two types of memberships: 1) A possibilistic
membership that measures the absolute degree of typicality of
a point in any particular cluster, and 2) a fuzzy membership
that measures the relative degree of sharing of a point among
the clusters.

The objective function for FPCM was built as follows:

JFPCM (T,U, V ;X, γ) =
c∑
i=1

n∑
k=1

umikt
p
ikd

2
ik, 1 ≤ m, p ≤ ∞

(1)

+
c∑
i=1

γi

n∑
k=1

umik (1− tik) (2)

in which dik =‖ xk − vi ‖ is Euclidean distance between
the object xk and the centroid vi, c is the number of clusters,
n is the number of objects, p is a weighting exponent of
possibilistic membership (p > 1) and fuzzifier m (m > 1).

The scale parameter γi standing in (2) is to incorporate the
possibilistic membership degrees and fuzzy membership ones:

γi = K

∑n
k=1 t

p
iku

m
ikd

2
ik∑n

k=1 t
p
iku

m
ik

,K > 0 (3)

where K is a constant.
tik denoted the possibilistic membership degree of xk

belonging to the ith cluster and uik denoted the degree of
fuzzy membership. They are determined as follows:

tik =
1

1 +
(
d2ik
γi

) 1
p−1

,∀i, k (4)

uik =
1∑c

j=1

(
t
(p−1)/2
ik dik

t
(p−1)/2
jk djk

) 2
m−1

(5)

in which i = 1, 2, ..., c; k = 1, 2, ..., n.
The centroids are computed as follows:

vi =

∑n
k=1 t

p
iku

m
ikxk∑n

k=1 t
p
iku

m
ik

,∀i (6)

in which i = 1, 2, ..., c.
Defuzzification in the FPCM is made as if uik > ujk for

j = 1, 2, ..., c and j 6= i then xk is assigned to the ith cluster.
This algorithm can be briefly described as follows:

Algorithm 1 Fuzzy Possibilistic C-Means Clustering algo-
rithm
1 Input: A dataset X = {xi, xi ∈ Rd}, i = 1, 2, ..., n, the number

of clusters c (1 < c < n), weighting exponents p,m(1 < p,m <
+∞) and error ε.

2 Output: The possibilistic membership matrix T, fuzzy member-
ship matrix U and the centroid matrix V.

3 Step 1:
3.1 The number of iterations is set to l = 0.
3.2 Execute a fuzzy c-means clustering algorithm [5] to find an
initial U (l) and V (l).
3.3 Compute γ1, γ2, ..., γc based on the U (l) and V (l) as follows:
γi =

∑n
k=1 u

m
ikd

2
ik∑n

k=1
um
ik

4 Step 2:
repeat :
4.1 l = l + 1.
4.2 Update the possibilistic membership matrix T (l) by using (4).
4.3 Update the fuzzy membership matrix U (l) by using (5).
4.4 Update the centroid matrix V (l) =

[
v
(l)
1 , v

(l)
2 , ..., v

(l)
c

]
by

using (6).
4.5 Apply (3) to compute γ1, γ2, ..., γc based on the T (l),U (l)

and V (l)

until :
Max

(
||U (l+1) − U (l)||

)
≤ ε

5 Assign data xk to ith cluster if uik > ujk, j = 1, 2, ..., c and
j 6= i.

B. Granular Computing

Granular computing is a new concept and computing
paradigm of processing information. When using granular
computing in clustering, a granule is formed by a set of
elements which are drawn together by indistinguishability,
similarity, proximity or functionality.
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Considering a clustering system S = (X,A, V, f) denoted
as S(X,A) with X = {x1, x2, ..., xn} being a non-empty
finite set of objects; A = {a1, a2, ..., ad} is a non-empty finite
set of features; V =

⋃
a∈A

Va with Va is called the value domain

of the feature a, f is the information function of the system,
f : X ×A→ V

Some definitions which were proposed in [17], are intro-
duced to granulate the clustering system as follows.

While Def.2.1 is used to determine an indiscernibility rela-
tion between objects of X of a clustering system S = (X,A)
on a subset of features, Def.2.2 is used to construct an
information granule of the clustering system S based on an
relation which is defined in Def.2.1. On the basis of the
granule, a definition of granularity of the clustering system
on a subset of features is built in Def.2.3, which is used to
assess the impact of the features on the clustering system S.

Definition 2.1: For each subset of features B ⊆ A, the non-
empty set determines an indiscernibility relation on X as fol-
lows: RB = {(xi, xj) ∈ X ×X|fa (xi) = fa (xj) ,∀a ∈ B}
RB is an equivalence relation on X, and it forms a partition
of X , denoted by X/RB = {[xi]B |xi ∈ X} where [xi]B =
{xj ∈ X| (xi, xj) ∈ RB} is called an equivalence class of xi
with respect to B.

A granule for clustering system is defined as follows:
Definition 2.2: Let S = (X,A) be a clustering system. An

information granule is defined as grk = (ϕk,m(ϕk)), where
ϕk refers to the intention of information granule, and m(ϕk)
represents the extension of information granule.

Suppose that B = {a1, a2, ..., ad′} ∈ A then there must
exist ϕk = {I1, I2, ..., Id′} such that Ij ∈ Vaj is a set of
feature values corresponding to B. Then, the intention of an
information granule can be denoted by ϕk = {I1, I2, ..., Id′},
and the extension can be denoted by m(ϕk) = {x ∈
X|f(x, a1) = I1 ∧ f(x, a2) = I2 ∧ ... ∧ f(x, ad′ ) = Id′ , aj ∈
B}, j ∈ {1, 2, ..., d′}. Here, m(ϕk) describes the internal
structure of the information granule.
A granularity of system of features set B, denoted GK(B),
which is defined for examining the maintenance of clustering
system.

Definition 2.3: Let S = (X,A) be a clustering system, the
concept Granularity of System of features set B based on
the Granules set Gr = {grk} denoted GK(B), B ⊆ A, is
determined as follows:

GK(B) =
|Gr/B|∑
k=1

|m (ϕk)|2/|X|2, m (ϕk) ∈ grk.

For example, the dataset X = {x1, x2, x3, x4}, xi ∈ R3,
the set of features A = {a1, a2, a3} and B = {a1, a2},
where x1 = (1, 2, 3), x2 = (1, 2, 1), x3 = (2, 3, 1) and
x4 = (1, 2, 2). Suppose Ij = f(xi, aj) = x

(j)
i then we

obtain the set of granules Gr/B = {gr1, gr2}, in which
gr1 = (ϕ1,m(ϕ1)), ϕ1 = (1, 2), m(ϕ1) = {x1, x2, x4}, and
gr2 = (ϕ2,m(ϕ2)), ϕ2 = (2, 3), m(ϕ2) = {x3}. Resulting in
GK(B) = (32/42) + (12/42) = 10/16.

III. ADVANCED FUZZY POSSIBILISTIC C-MEANS
CLUSTERING BASED ON GRANULAR COMPUTING

A. Feature reduction base on Granular Computing

According to concepts of granular computing, the signifi-
cance of a set of features in clustering system was proposed
[17]. Given a clustering system S = (X,A), there is a feature
in A, denoted a ∈ A, so that we can measure the degree of
importance through the quantity of the granularity of A if the
feature a is removed. Thus, Def.3.1,Def.3.2 and Def.3.3 are
constructed to determine a reduction set of features C : C ⊆ A
based on the concept of the granularity of A which is defined
in Def.2.3.

Definition 3.1: The significance degree of feature a ∈ A,
denoted SigA−{a}(a), is defined as follows:

SigA−{a}(a) = GK(A− a)−GK(A)
Note that the larger degree SigA−{a}(a) takes, the more
important the feature a is.

Definition 3.2: Given an information system S = (X,A)
and feature a ∈ A, the feature a is called redundant feature
to A if the value of GK(A− a) is equal GK(A). Otherwise,
the feature a is called necessary feature to A. The set of all
the necessary features is the core of A, denoted Core(A).

Definition 3.3: Given an information system S = (X,A)
and a set of features C : C ⊆ A. Set C is called a reduction
of A if C is independent. All the reduction of A is denoted
by Red(A).

The reduction algorithm can be briefly described as follows:

Algorithm 2 Feature reduction based on Granular Comput-
ing
1 Input: A granular information system S=(X,A) where X 6= ∅ is

the universe and A 6= ∅ is the set of features. The granularity
of A is denoted as GK(A).

2 Output: C is as the minimum reduction of A.
3 Step 1. Determine the core of features Core(A) as follow:

Calculate the significance degree of each feature a ∈ A, denoted
SigA−{a}(a), if SigA−{a}(a) 6= 0 then select feature a into
Core(A).

4 Step 2.
4.1 Assign C := Core(A).
4.2 If GK(C) = GK(A) then terminal criteria is meet.
4.3 repeat :

4.3.1 For each feature a ∈ A − C to C, calculate its
significance degree to C ∪ {a}: SigC(a).

4.3.2 Find the feature a so that its significance degree to C
reach the maximal value, i.e. SigC(a) = max

a
′∈A−C

(
SigC

(
a
′
))

4.3.3 Add feature a to the core, i.e. C := C ∪ {a}
until : GK(C) = GK(A)

B. Granular space construction and feature selection

Let consider a clustering system S = (X,A) where
X = {x1, x2, ..., xn} and A = {a1, a2, ..., ad}. We construct
a granular space as follows:

First, the objects X = {x1, x2, ..., xn} are clustered into
c clusters on each jth feature by FPCM algorithm, j ∈ A.
On each jth feature, the clusters are labeled by numbering in
ascending order, i.e. 1, 2, 3.
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Second, a cluster label matrix, denoted F, is formed from
f(i, j) which is the label of the ith object on the jth feature,
1 ≤ f(i, j) ≤ c, i.e. F = [f(i, j)](n×d).

Finally, from the values {f1, f2, ..., fd} of a row in the
cluster label matrix F, we can construct a granule grk =
{ϕk,m(ϕk)} where ϕk = {f1, f2, ..., fd}, m(ϕk) = {xi ∈
X : f(i, 1) = f1 ∧ f(i, 2) = f2 ∧ ... ∧ f(i, d) = fd}. So a
granular space, denoted G, is formed from the set of granules,
i.e. G = {grk}, k = 1, 2, ..., ng with ng is the number of the
granules, 1 ≤ ng ≤ n, denoted ng = |G|.

However the set of granules can be divided into two types of
granule: non-conflict and conflict granules which are defined
as follows:

Definition 3.4: Consider a granular clustering system S =
(G,A), granular space G = {grk}, k = 1, 2, ..., ng and
ng = |G|. A non-conflict granular space with respect to A,
denoted GrSP , is formed by GrSP = {grk1}, in which
grk1 = {ϕk1 ,m(ϕk1)} where ϕk1 = {f1, f2, ..., fd} and
f1 = f2 = ...fd. Otherwise, a conflict granular space with
respect to A, denoted GrSN , is formed by GrSN = {grk2},
in which grk2 = {ϕk2 ,m(ϕk2)}, ϕk2 = {f1, f2, ..., fd} and
∃fp 6= fq

Remark: The significance of a feature only affect on the
GrSN , thus the feature selection method be only applied on
the GrSN .

In the FPCM algorithm, the outlier or noisy object xk can
be removed, X := X − {xk} if xk satisfies the following
conditions:

t
(j)
ik < θ with ∀i = 1, 2, ..., c and j = 1, 2, ..., d (7)

Where t
(j)
ik is the possibilistic membership degree of xk on

the jth feature in cluster i and θ is a noisy parameter.
Besides, the noisy feature aj , aj ∈ A can be also removed,

if f(1, j) = f(2, j) = ... = f(n
′
, j), where n

′
is the number

of object in X after removing the outliers.

A := A− {aj} (8)

The granular space construction and feature selection
method can be briefly described as follows:
Algorithm 3 The granular construction and feature selection
1 Input: A dataset X = {xi}, i = 1..n, A = a1, a2, ..., ad, c is

the number of cluster and θ is a noise filter parameter.
2 Output: The feature set C is the minimum reduction of A and

the granular space G=GrSN ∪GrSP
3 Step 1:

3.1 Execute Algorithm 1 on each feature aj ∈ A to form a cluster
label matrix F = [f(i, j)](n×d) where f(i, j) is the cluster label
of the ith object on the jth feature.
3.2 Remove outlier objects and features by using (7) and (8),
respectively.

4 Step 2: Construct granular space
4.1 Initialize GrSP = ∅, GrSN = ∅, r = 0, ID =
{1, 2, ..., n}, k = 0, where r is the index of row of the matrix
F , ID is the index set and k is the number of granules.
4.2 repeat

4.2.1 k = k + 1
4.2.2 repeat

r = r + 1

until r ∈ ID
4.2.3 Set ϕk to set of values of rth row in the matrix F:

ϕk = f(r, 1), f(r, 2), ..., f(r, d
′
), where d

′
is the number of

features in A after removing the outliers.
4.2.4 Find m(ϕk) = {xi ∈ X : f(i, 1) = f(r, 1) ∧

f(i, 2) = f(r, 2) ∧ ... ∧ f(i, d
′
) = f(r, d

′
)}.

if |m(ϕk)| > 0 then
4.2.4.1 for each xi ∈ m(ϕk):

X = X − {xi}, ID = ID − {i}
4.2.4.2 grk = (ϕk,m(ϕk))

4.2.4.3 if f(r, 1) = f(r, 2) = ... = f(r, d
′
) then

GrSP = GrSP ∪ {grk}
else

GrSN = GrSN ∪ {grk}
until ID = ∅

5 Step 3: Apply Algorithm 2 on the the granular set GrSN to reach
the minimum reduction C of A.

C. Advanced FPCM based on Granular computing

Consider a granular clustering system S = (G,A), granular
space G = {grk}, k = 1, 2, ..., n and n = |G|.

The valued interval of the jth feature of a input granule
grk = (ϕk,mk(ϕk)) is denoted I(k)j = [aj bj ] where aj and
bj is defined as follows:

aj = min(x
(j)
i ),∀xi ∈ mk(ϕk) (9)

bj = max(x
(j)
i ),∀xi ∈ mk(ϕk) (10)

in which x(j)i is the value of the object xi on the jth feature.
The new distance between a granule grk and the centroid

vi = {vi1, vi2..., vid}, d = |A|, i = 1, 2, ..., c is defined as
follows:

‖grk − vi‖ =

√√√√ d∑
j=1

(∥∥∥I(k)j − vij
∥∥∥)2 (11)

where

||I(k)j − vij ||
def
=

{
0, if vij ∈ [aj , bj ]

min (|aj − vij | , |bj − vij |)
(12)

The distance (11) is used to compute the possibilistic mem-
bership function and fuzzy membership function as follows:
tik is the possibilistic membership degree of the granule grk

in the ith cluster and uik is the fuzzy membership degree. They
are determined in a similar was as in the FPCM algorithm:

tik =
1

1 +
(
d2ik
γi

) 1
p−1

,∀i, k (13)

uik =
1∑c

j=1

(
t
(p−1)/2
ik dik

t
(p−1)/2
jk djk

) 2
m−1

(14)

in which i = 1, 2, ..., c, k = 1, 2, ..., n.
dik is calculated by using (11), if the distance between

granule grk and vi equals to 0 then the fuzzy membership
uik is assigned to 0.
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Cluster centroids are computed in the same way of FPCM
as follows:

vi =

∑n
k=1 t

p
iku

m
ik

|mk(ϕk)|∑
t=1

xt|xt ∈ mk (ϕk)∑n
k=1 t

p
iku

m
ik

,∀i (15)

in which i = 1, 2, ..., c.
The GrFPCM algorithm can be briefly described as follows:

Algorithm 4 Advanced FPCM based on Granular Comput-
ing
1 Input: A clustering system S(X,A) where a dataset X =
{x1, x2, ..., xn}, a set of features A = a1, a2, ..., ad, the number
of cluster c, error ε and noisy parameter θ.

2 Output: The possibilistic membership matrix T, fuzzy member-
ship matrix U and the centroid matrix V

3 Step 1: Apply Algorithm 3 on the clustering system S(X,A) to
obtain the feature set C which is the minimum reduction of A
and the granular space G.

4 Step 2:
Apply Algorithm 1 on the clustering system S = (G,C) as
follows:
4.1 The number of iterations is set to l = 0
4.2 repeat :

4.2.1 l = l + 1.
4.2.2 Update the possibilistic membership matrix T (l) by

using (13).
4.2.3 Remove the outlier or noisy granular grtik≥θ =

{grk ∈ G : max(tik) ≥ θ,∀i = 1, 2, ..., c}
4.2.4 Update the fuzzy membership matrix U (l) by using

(14).
4.2.5 Update the centroids V (l) =

[
v
(l)
1 , v

(l)
2 , ..., v

(l)
c

]
by

using (15).
4.2.6 Apply (3) to compute γ1, γ2, ..., γc based on the T (l),

U (l) and V (l)

until :
Max

(
||U (l+1) − U (l)||

)
≤ ε

5 Assign data grk to the ith cluster if uik > ujk, j = 1, 2, ..., c
and j 6= i.

IV. EXPERIMENTS

In this section, some well-known available datasets with the
pre-defined number of clusters are used in the experiments.
We also offer a comparative analysis of the clutering results
between various clustering methods involved: FCM, PCM,
FPCM and GrFPCM (the proposed methods in this study).

Through the adjustments in the experiments, the clustering
results are stable with parameters which are set as follows:

Exponential parameters m and p are set to 2, the noise
parameter θ = 0.1, error ε = 0.00001, the adjustment γ in
FPCM and GrFPCM methods is calculated with K = 1

The resulting classification performance of the classification
is evaluated by determining True Positive Rate (TPR) and
False Positive Rate (FPR) defined as follows:

TPR =
TP

TP + FN
; FPR =

FP
TN + FP

(16)

where TP is the number of correctly classified data, FN is the
number of incorrectly misclassified data, FP is the number of

incorrectly classified data and TN is the number of correctly
misclassified data.

A. Experiment 1

In the first experiment, the well-known datasets are Wis-
consin Diagnostic Breast Cancer (WDBC), E. coli promoter
gene sequences (DNA) and Madelon 1 are considered. Detailed
characteristic datasets and the set of minimum reduction of
features are shown in Table I. In which the features of datasets
are indexed from 1 (not 0).

TABLE I
CHARACTERISTIC DATASETS AND FEATURE SELECTION

Dataset No of No of Class Feature Selection
Instance Features

WDBC 569 30 2 a7, a11, a22, a27
DNA 106 57 2 a14, a16

Madelon 4400 500 2 a48, a64, a119,a201,
a241, a277, a310, a321,
a362, a417, a472, a475

The datasets in Table I are clustered by running FCM,
FPCM and GrFPCM with the number of clusters is the number
of classes. While FCM and FPCM perform the clustering on
the datasets with all features, GrFPCM performs clustering on
the granular space G with the reduced features which is the
output of Algorithm 3. The clustering results or the quality of
classification are reported in terms of indices TPR and FPR,
which are shown in Table II.

Table II shows the clustering results in which the higher
TPR value and lower FTR value, the better algorithm is. The
GrFPCM obtained the highest TPR and the smallest FPR on
three datasets with the feature selection is shown in Table II.

B. Experiment 2

The five public cancer datasets are Lymphoma, Leukaemia,
Global Cancer Map, Embryonal Tumours and Colon 2, are
used to illustrate the proposed method in the case of high-
dimensional datasets. The datasets are shown in Table IV.

TABLE IV
CHARACTERISTIC DATASETS AND FEATURE SELECTION (FS)

Dataset No of No of Class FS
Instance Original Features

Lymphoma 45 4026 2 15
Leukaemia 38 7129 2 6
Global Cancer Map 190 16063 14 16
Embryonal Tumours 60 7129 2 8
Colon 62 2000 2 9

The experiment has been carried out in the following
scenario:

First, every dataset with the original features in Table IV
is clustered by FCM and FPCM. Second, the features of
datasets in Table IV is reduced by Algorithm 3. Then, every
dataset with the reduced features is clustered by running

1http://www.ics.uci.edu/ mlearn/mlrepository.html
2http://www.upo.es/eps/bigs/datasets.html

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016    002580



TABLE II
CLUSTERING RESULTS FOR EXPERIMENT 1

Dataset FCM FPCM GrFPCM
FS TPR FPR FS TPR FPR FS TPR FPR

WDBC 30 89.5% 4.5% 30 92.7% 2.8% 4 95.4% 1.9%
DNA 57 85.6% 6.7% 57 91.4% 3.1% 2 96.1% 1.7%

Madelon 500 86.1% 5.9% 500 90.8% 3.3% 12 94.8% 2.1%

TABLE III
CLUSTERING RESULTS FOR EXPERIMENT 2

Dataset FCM FCM (FS) FPCM FPCM(FS) GrFPCM
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Lymphoma 89.2% 4.6% 89.9% 4.2% 89.8% 3.1% 93.2% 1.8% 96.1% 1.7%
Leukaemia 72.1% 9.5% 82.1% 7.2% 81.4% 7.3% 89.4% 4.2% 93.6% 1.4%
Global Cancer Map 89.6% 4.8% 90.4% 3.2% 90.2% 5.5% 93.2% 2.5% 96.8% 1.2%
Embryonal Tumours 80.1% 9.1% 87.6% 6.3% 88.1% 7.6% 91.1% 4.6% 95.3% 1.9%
Colon 79.1% 7.9% 81.7% 6.9% 80.9% 9.5% 86.8% 4.9% 92.8% 3.4%

sequentially algorithms FCM and FPCM. Finally, GrFPCM
performs clustering on the granular spaces with the reduced
features which are the output of Algorithm 3. In which the
number of clusters is assigned to the number of classes.

The clustering results or the quality of classification are
reported in terms of indices TPR and FPR in Table III. In
which FCM and FPCM columns are results by running the
algorithms datasets with all features, FCM(FS) and FPCM(FS)
columns are results obtained by running the ones with the
reduced features.

From Table III, the TPR values obtained by running GrF-
PCM on five datasets are greater 92% and obviously higher
than the ones obtained from other methods. In addition, the
FPR values are also smaller than the ones reached from other
algorithms. In addition, the TPR and FPR values obtained
by FCM and FPCM after reducing features are better than
ones obtained by FCM and FPCM without reducing features,
respectively.

Therefore, we can conclude that as forming the granular
space for experimental datasets for handling the uncertainties,
noises and the irrelevant features , the quality of the clustering
results has been improved.

V. CONCLUSION

This paper presented an advanced fuzzy possibilistic c-
means clustering method based on granular computing, which
can reduce the features of datasets to obtain a set of key
features, while eliminating the facial features. In addition,
the proposed method being endowed with granular computing
becomes beneficial when it comes to handle the uncertainties.

The experiments completed for several well-known datasets
show that the proposed method generates better results than
those produced by some other existing clustering methods.

Some next studies may be focused on the use of evo-
lutionary methods (such as Genetic algorithms) to optimize
parameters of the clustering method.
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