
Speed up Querying Encrypted Data on Outsourced 
Database 

Kim Giau Ho 
Le Quy Don Technical University 

236 Hoang Quoc Viet street 
Hanoi, Vietnam 

(+84) 919 447 897 

hkgiau@gmail.com 

Ly Vu 
Le Quy Don Technical University 

236 Hoang Quoc Viet street 
Hanoi, Vietnam 

(+84) 978 366 574 

lyvt@mta.edu.vn 
 

Nam Hai Nguyen, Hieu Minh 
Nguyen 

Academy of Cryptography Techniques 
141 Chien Thang street 

Hanoi, Vietnam 
(+84) 989193571 

hieuminhmta@gmail.com 
 

 

ABSTRACT 

The rapid development of cloud computing has appeared 

outsourced database and that is essential solution to reduce the 

cost for data owners (DOs). The user's data which is stored on the 

cloud will face many risks from attackers including service 

providers. To ensure the security of data, the DOs encrypt data 

before storing on the cloud. However, the encrypting before 

storing will increase the processing time to encode/decode records 

when querying to the database. Therefore, speeding up querying 

on the encrypted database is essential in an environment where 

data need to be encrypted before pushing to the cloud. In this 

paper, we propose a new method to improve the speed of querying 

on the encrypted database using parallel computing. The 

experimental results prove the effectiveness of our proposed 

method. 

CCS Concepts 

• Security and privacy➝Management and querying of 

encrypted data 

Keywords 

Cloud computing; outsourced database; querying encrypted data; 

parallel processing 

1. INTRODUCTION 
Recent days, to manage data, almost companies choose to store 

data under database form. This storing method helps the DOs to 

access and share data to others easily. There are two ways to store 

data that are in-house data and on-line data. In the in-house 

storing method, the DOs manage data on their own server without 

sharing on the Internet. So that, the DOs need to have servers, 

operating systems, database management systems, and employees. 

Moreover, increasing of storing and processing data requires the 

DOs to pay higher cost for upgrading hardware, software, and 

training employees. In the on-line storing method, the DOs push 

data to a server on the Internet. In this case, the DOs can access 

data, share data everywhere on the Internet but they have to pay 

expense for hiring servers with more security methods. 

With the development speed of cloud computing, companies have 

more solutions to manage data. One of them is Outsource 

Database Service – ODBS [1]. In this service, a Database Service 

Provider (DSP) will manage and maintain executions on data of 

the companies. DOs mine data through the methods of DSP. 

Therefore, DOs will reduce expense in investing resource and 

employees to manage and maintain database. 

In many cases, the content of data includes sensitive information 

leading the DOs do not want to allow to access by unauthorized 

users. Otherwise, there are many attackers who try to get or 

destroy database illegally. Therefore, the DOs need to have a 

specific strategy to protect their own data.  

To ensure the confidentiality of data, many researchers contribute 

data encryption solutions before pushing to outsourced database 

environment. However, data encryption methods increase the 

computation complex of accessing data effecting to database 

query performance. Therefore, choosing an encryption model to 

ensure the confidentiality and computation performance of the 

outsourced database needs to be considered. As shown in the 

Figure 1, the outsourced database model includes three 

components which are the data owners (client side), the database 

service provider (server), and the queriers (client side) [1]. In this 

model, the data owners create and modify database and outsource 

its database to the server and the users query to database on the 

server. 

 
Figure 1. The model of outsource database [1]. 

 

To ensure computation performance of the outsourced database, 

we propose a parallel computation solution to speed up querying 

data on encrypted data. Q.Zhang et al. [2] proposes the 

Qscheduler tool to parallel query on database system. However, 

this method performs on plain text data and executes concurrent 

queries to the database by parallel computation. Ying-Fu Huang et 

al. [3] presents a parallel query method on plain text data where 

they perform the intersection, JOIN, SORT, GROUP, etc. 

operators of data tables. The work of Samaraddhi Shastri [4] 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 

components of this work owned by others than ACM must be honored. 

Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission 

and/or a fee. Request permissions from Permissions@acm.org. 

ICMLSC '17, January 13-16, 2017, Ho Chi Minh City, Viet Nam 
© 2017 ACM. ISBN 978-1-4503-4828-7/17/01…$15.00 

DOI: http://dx.doi.org/10.1145/3036290.3036299 

 

47



displays a speeding up method of querying on encrypted data. 

However, in their work, the parallel processing is applied for 

binary searching. To do that, they need sorting encrypted data 

before querying by users. 

In this paper, we present the parallel computation method on 

querying encrypted data. Because the query responds from an 

encrypted data are cipher texts. So that, to get plain text responds, 

the server of the DO has to decrypt one by one database record for 

clients. If the number of records is huge, the processing time to 

get query responds is long. Our proposed method aims to reduce 

processing time significantly to decrypt records when querying a 

huge number of records. 

The rest of this paper is constructed as follows. Section 2 presents 

some related works of the encrypted data query problem; our 

proposed work will be showed in Section 3; Section 4 presents 

experimental results and Section 5 concludes our paper. 

2. RELATED WORKS 
There are many published works related to the approaches of 

encrypted data query in which it can divide in three approaches. 

Firstly, using metadata or structure of tree (like XML) stores 

additional information to support querying on encrypted data [5, 

6]. Secondly, using mediate servers translates query sentences [7, 

8]. Thirdly, querying directly is executed on encrypted data but 

this method only supports some query forms [9, 12]. 

The work of Hacigumus et al. [5] proposes a solution to perform 

query on the encrypted database where a program named as query 

translator is used to translate query from plain text query of users 

to cipher text query. In their work [5], the data is encrypted before 

storing on the server of SP. Moreover, data has metadata which 

are indexes allowing performing query on data at the server of SP 

without decrypting data. The DO uses metadata to translate the 

query of clients into appropriate query to perform on the server. 

Clients will receive results when the server of SP returns query. 

Based on the metadata, queries divide into two components which 

are queries at the server side of encrypted data and queries at the 

client side. Queries at the client side perform on a client machine 

through a DO's machine where the DO filters query results and 

returns to clients. However, the drawback of this method [5] is 

that the high expense for storage and re-calculating after updating 

database. Moreover, the combination of queries such as SUM, 

COUNT, AVERAGE, etc. cannot perform. 

R. Brinkman et al. [6] present a searching method on encrypted 

data by comparing the encrypted XML data tags and outsourced 

data. In their work, the data is divided into blocks and these 

blocks are encrypted before pushing to server. The DO stores 

encryption information to decrypt in processing of respond 

queries. In the searching process, the needed data sequences are 

encrypted to compare with tokens and determine the location of 

that data sequence. In the getting data process, the encryption 

responds are decrypted based on the information which is stored 

by the DO. This method is only performed searching on query 

sentences that match the XML data tags without processing data 

content in the tags. 

In the work of A. Popa et al. [7], they display an encryption model 

and a method to perform query on an encryption database using 

the mediate server named as CryptDB proxy. The CryptDB proxy 

stores private keys, database diagrams, and current encryption 

layers of each column. The database server stores an incognito 

diagram in which table names and column names are substituted 

by identification names. Data is encrypted by clients and the 

CryptDB uses some supported tables. The CryptDB provides 

some user defined functions to servers that allow the servers 

calculating some specific operators on encrypted data. The 

advantage of the CryptDB is allowing the servers calculating on 

encrypted data without decrypting it and resulting by encrypted 

data. The CryptDB is an mediate system which provides high 

performance encryption for online applications on database 

management systems. It can perform the huge number of 

Structure Query Language (SQL) queries on encrypted data 

without any modification inside the database management system 

servers and results are decrypted by trusty clients. It can work 

with almost SQL databases with low expense due to the ability of 

changing encryption models automatically based on the number of 

queries to choose and ensure enough executions on database 

quickly. 

The CryptDB can address almost but not entire SQL query types 

on the encrypted database and guarantee the private property of 

data. Moreover, the processing time of CryptDB is low. However, 

the CryptDB needs a strong trusty proxy so that attackers can 

access to the CryptDB relying on a weak proxy. In that case, 

attackers can decrypt database records to archive entire data 

information. Therefore, this model depends widely on the secure 

level of the proxy server. 

3. METHODOLOGY 

3.1  Storage Model of Encryption Database 
The DO encrypts data before storing on an outsourced database. 

To execute calculations in querying, the DO server need to know 

the structure of database. Therefore, the DO server stores data tags 

in the XML file to match the structure of encrypted data. Instead 

of storing the plain text of table names, field names, the DO uses a 

hash function to encrypt these values into cipher texts. In this case, 

attackers or SP cannot have the structure of the database of the 

DO. The model is shown in Figure 2 where DOs encrypt data and 

create indexes before pushing to outsource database. 

 

Figure 2. The model of encrypted database storage. 

A XML file is a document structured by tags. By using tags, the 

XML file can create a database structure that allows to access 

directly or generate a searching tree. The XML file is supported in 

almost programming languages with parser packets such as SAX, 

DOM, and SRAX. The structure of the XML file is a text form 

leading the XML file having small size and low processing time. 

For one database query, the DO server only relies on the field 

names, table names in the XML file instead of using a hash 

function to calculate field names table names. So that, the 

processing time become lower. 

48



 

Figure 3. Structure of XML file. 

This ability of the XML file is proved in Figure 3. The Figure 3 

presents the structure of a table in the XML file named as 

Employee (EmployeeID, Name, Birthday, Sex, Address). In this 

case, the Employee table is structured as 1-1 mapping shown in 

Table 1. Therefore, the DO stores the table name as: “079711ea 

16f37fe4 22587534 46c08153 51870043” instead of storing the 

name as Employee. This storage information is similar for fields in 

the table. 

Table 1. Structure of Employee table in XML file 

Employee 079711ea 16f37fe4 22587534 46c08153 

51870043 

EmployeeID 64cdfdca c10cb6e6 09f0f808 e30a9a71 

df67cc36 

Name 709a2322 0f2c3d64 d1e1d6d1 8c4d5280 

f8d82fca 

Birthday 1d87df58 b83b360a d4033d3c df062a7b 

87359cd6 

Sex e301dd60 62f7e9a7 9975fe8e 2d0ba916 

94c4dbc3 

Address d70f93df 5e8f9b55 be44fbee e9d20397 

2e3383d4 

 

3.2 Query on Encryption Database 
If a client wants to query to a database, the client will send a 

request to the database server and the server replies a respond as a 

plain text. The simple approach in querying encrypted database is 

downloading entire data into the DO's server then decrypting one 

by one record to execute query. However, this method spends 

huge storage resource and processing time. The other approach is 

querying related data then decrypting records to calculate these 

queries. Querying on the encrypted database has to match the 

tables of a XML file to guarantee the result of queries correctly. 

Some kinds of queries as SELECT, INSERT, UPDATE, and 

DELETE can perform directly on the encrypted data while 

combination queries need to modify before executing on the 

encrypted data. In this paper, we perform queries as INSERT, 

UPDATE, DELETE, SELECT combines with SUM, AVERAGE, 

MAX, MIN, and so on. For example, a client wants to update a 

new address of an employee who has the code as “01”. The query 

form on plain text data and cipher text data are presented in 

equation 1 and equation 2: 

UPDATE Employee SET Address = <new data> 

WHERE EmployeeID= ‘01’ 

 

UPDATE t SET f5 = Enc(<new data>, key)  

WHERE f1= Enc(‘01’, key)                

where t is accessed data table in the XML file corresponding to 

the “Employee” tag, f1 corresponding to the “EmployeeId” tag; f5 

corresponding to the “Address” tag; Enc(data, key) is a encrypted 

function with the determined key. The Figure 4 describes the 

process of querying to the encrypted database of a user based on 

XML tags. 

 

Figure 4. The model of querying data on outsourced encrypted database. 

 

 

Figure 5. Sequent processing model. 

 

 
Figure 6. Parallel processing model. 

 

3.3 Our Proposed Model 

3.3.1 Parallel processing 
Parallel processing is a computation process where multiple tasks 

are executed at the same time. There are two kinds of parallel 

processing models as divided data and divided tasks. The divided 

data model is applied to problems which have to deal with large 

data and each part of data can executed separately, then the result 

is the summarize of each part. This model is simple but it requires 

no dependency between data blocks. The divided tasks model is 

used to divided entire process into separate tasks where each task 

has ability to execute independently. The design of this model is 

more complicated than previous because we may have to re-

design sequence algorithm to suit with the requirement which has 

multi tasks performing separately. The result is the synthetic of all 

tasks. 

Parallel processing is used mainly in high performance 

computations. The recent years, parallel computation is 

considered in almost problems which need high performance. The 

Figure 5 and Figure 6 show the sequence and parallel computation 

model correspondingly. In these Figures, the computation process 

(1) 

(2) 

49



has three tasks named as A, B, C. In the Figure 5, each task is 

executed sequentially which means that after finishing the task A 

then performing the task B and after finishing the task B then 

performing the task C. Therefore, the processing time of entire 

process is the sum of processing time of the task A, B, and C. 

While in the Figure 6, the task A and C are divided into four sub-

tasks named as A1, A2, A3, A4 and C1, C2, C3, C4 correspondingly. 

Therefore, the processing time of entire process approximates 

processing time of the task B with one by four processing time of 

the task A and C. Therefore, using parallel computation helps 

reducing processing time significantly. The parallel computers are 

divided based on supporting ability of its hardware. For example, 

multi-cores computers and multi-processes computers which have 

a multi-tasks processing component in a single machine while grid 

computing uses multi-computers to process multi-tasks.  

 

 

Figure 7. Parallel decryption on encrypted database. 

3.3.2 Our proposed methodology 
When a client queries to the encrypted data of an outsourced 

database, the system will map to table names in the XML file to 

re-write the query sentence then decrypting result records. This 

decryption process is shown in Figure 7. Decrypting records 

execute with the huge number of records leading high processing 

time. To reduce processing time, the DO can allow performing 

parallel decrypting records on CPU or GPU. 

For example, when a client wants to display the Employee table or 

process on feedback data, the client has to decrypt one by one 

record. As we presented above, if there are the huge number of 

records, the decryption time is extremely large. Therefore, in this 

paper, we divide the set of feedback data D into subsets and the 

decryption is executed on each subset concurrently shown in 

Figure 7 where the feedback data D is divided into D1, D2, D3,…, 

Dn depending on the number of processes in our case n = 2. The 

data blocks Di is decrypted by parallel computation to get raw 

data named as R1, R2, …, Rn. This computation can be applied on 

the combination of queries on SQL such as SUM, AVERAGE, 

COUNT, etc. 

The parallel algorithm for decrypting data is shown in the table 2 

with SELECT command. The execution is on the equation 3.  

                                                                       (3) 

where t is the data in the XML file corresponding to Employee tag; 

f1, f2, …, fn corresponding to data fields. The respond queries are 

in the set D which includes the encrypted records. In the case of 

the size of the set D is huge, the processing time is the time for 

consequent decryption of records. In the algorithm, the set D is 

divided into n subsets for parallel decryption on each subset. 

Therefore, the decryption time is max(TD1, TD2, …, TDn) where 

TDj is the decryption time of the Dj set. The Section 4 shows that 

using our parallel processing method on the encrypted database 

will reduce significantly processing time comparing with 

consequently decrypting each encrypted record. 

 

Table 2. Algorithm of query to encrypted database by parallel 

processing 

 

Dataset D 

//Main function 

D Execute(SELECT f1, f2, …, fn FROM t) 

D = D1 D2 Dn 

Thread T1 = new Thread(F1) 

Thread T2 = new Thread(F2) 

… 

Thread Tn = new Thread(Fn) 

R Join(T1,T2,…,Tn) 

Return R 

//Function F1 

Foreach record r in D1 

 r’Decrypt(r) 

R1 Calculate in r’ 

Return R1 

//Function F2 

Foreach record r in D2 

 r’Decrypt(r) 

R2 Calculate in r’ 

Return R2 

… 

//Function Fn 

Foreach record r in Dn 

 r’Decrypt(r) 

Rn Calculate in r’ 

Return Rn 

50



4. EXPERIMENTS 
To measure our parallel model on querying an encrypted database, 

we test on the computer environment as Corei3-1.5GHz, 4GB 

memory. The querying data program is executed by sequent 

algorithm and parallel algorithm. The number of threads is two. 

We implement on the C#, Visual studio 2013 program language 

and the database management SQL. The encryption algorithm is 

used as the AES. The record has five data fields (as described in 

section 3.1). For each scenario, we execute ten times and plot 

processing time on mili-second (ms). 

The results show that when the number of database records is 

small as 282 records, the processing time of sequent and parallel 

decryption has a little different as in Figure 8 where the 

processing time for sequent decryption is about 1.4 times of 

parallel decryption as shown in the Figure 8. However, when the 

database becomes larger as about 5140 records and 10120 records 

as shown in the Figure 9 and Figure 10 respectively, the 

processing time sequent decryption are up to 1.7 and 1.8 times of 

parallel decryption correspondingly. Therefore, the parallel 

processing decryption is meaningful with the huge number of 

encrypted records. When using outsource database to store data 

becomes more popular, the server has to deal with thousands of 

queries at the same time. So that, processing time for encrypted 

database is the one of strong factors that effectives to the 

performance of accessing database from clients. These 

experimental results prove that using parallel processing on 

querying to encrypted database is an optimal approach to address 

the performance of outsources database system. 

 

Figure 8. Result of querying on 282 encrypted records. 

 

Figure 9. Result of querying on 5140 encrypted records. 

Beside of relying on the ability of the computer, using the number 

of threads is considered carefully. Because if we use many threads, 

we have to pay much more processing time to divide data before 

executing and conclude data after executing. In some cases, the 

delay time is large even though it makes the processing time of 

parallel computation becoming bigger than sequent computation. 

 

 

Figure 10. Result of querying on 10120 encrypted records. 

 

5. CONCLUSION 
The security of database is ensured by encrypting data before 

pushing it on an outsourced database server. However, encrypting 

data makes querying time on that data becoming longer due to 

decrypting that data before using it. Therefore, protecting data 

from hackers means losing more time to query data. Therefore, 

our paper proposes a method to reduce query time on the 

encrypted database by parallel decryption on the responding data 

queries. The experimental results show that our method is 

meaningful in reducing processing time in querying encrypted 

database.  

However, to improve the speed of query, we need more solutions 

to support in which the encryption algorithm is one of factors that 

can delay computation processes on an encrypted database. So 

that, the selection of encryption algorithms needs to appropriate 

with the requirement of processing time for decrypting records. 

One of solutions is using a symmetry encryption algorithm due to 

the rapid of encryption and decryption. However, this solution 

needs more cost for calculating on encrypted database. Because a 

server has to decrypt records to calculate on the plain text of 

records, then encrypt records to respond results to clients. If using 

a homomorphism algorithm is better for calculating on encrypted 

data but increasing processing time on encryption and decryption 

data. Therefore, the method of combination many encryption 

algorithms to separate query cases corresponding to encrypted 

data are developing in our feature works. As described above, our 

feature work focuses on the solution of parallel processing for the 

combination of some algorithms to classify queries corresponding 

to each encryption algorithm. For example, text data is encrypted 

by the AES algorithm or numeric data is encrypted by 

homomorphism algorithms, etc. where homomorphism algorithms 

can reduce time processing for querying. 

6. REFERENCES 
[1] http://sprout.ics.uci.edu/past_projects/odb/.  

[2] Q. Zhang, S. Li, and J. Xu, "QScheduler: A Tool for Parallel 

Query Processing in Database Systems," in Engineering of 

Complex Computer Systems (ICECCS), 2014 19th 

International Conference on, 2014, pp. 73-76. 

51



[3] Y.-F. Huang and W.-C. Chen, "Parallel Query on the In-

Memory Database in a CUDA Platform," in 2015 10th 

International Conference on P2P, Parallel, Grid, Cloud and 

Internet Computing (3PGCIC), 2015, pp. 236-243. 

[4] S. Shastri, R. Kresman, and J. K. Lee, "An Improved 

Algorithm for Querying Encrypted Data in the Cloud," in 

Communication Systems and Network Technologies (CSNT), 

2015 Fifth International Conference on, 2015, pp. 653-656. 

[5] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, "Executing 

SQL over encrypted data in the database-service-provider 

model," in Proceedings of the 2002 ACM SIGMOD 

international conference on Management of data, 2002, pp. 

216-227. 

[6] R. Brinkman, L. Feng, J. Doumen, P. H. Hartel, and W. 

Jonker, "Efficient tree search in encrypted data," Information 

System Security Journal, vol. vol.13, pp. 14-21, 2004. 

[7] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, 

"CryptDB: Processing queries on an encrypted database," 

Communications of the ACM, vol. 55, pp. 103-111, 2012. 

[8] B. H. Chen, P. Cheung, P. Y. Cheung, and Y.-K. Kwok, 

"CypherDB: A Novel Architecture for Outsourcing Secure 

Database Processing," p. 1, 2015. 

[9] Z.-F. Wang and A.-G. Tang, "Implementation of encrypted 

data for outsourced database," in Computational Intelligence 

and Natural Computing Proceedings (CINC), 2010 Second 

International Conference on, 2010, pp. 150-153. 

[10] C. Gentry, S. Halevi, and N. P. Smart, "Homomorphic 

evaluation of the AES circuit," in Advances in Cryptology–

CRYPTO 2012, ed: Springer, 2012, pp. 850-867. 

[11] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, 

"Processing analytical queries over encrypted data," in 

Proceedings of the VLDB Endowment, 2013, pp. 289-300. 

[12] K. Mallaiah and S. Ramachandram, "Applicability of 

Homomorphic Encryption and CryptDB in Social and 

Business Applications: Securing Data Stored on the Third 

Party Servers while Processing through Applications," 

International Journal of Computer Applications, vol. 100, 

2014. 

 

 

 

 

52


