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Abstract 
 

In this study, we show how milli-fluidic tools can be used to elaborate polymer foams with 
tunable microstructural parameters, such as the size and the connectivity of the pores. We 
produce several samples having the same density and the same monodisperse pore size but 
different values of the closure rate of the windows separating the foam pores, which is estimated 
by measuring the proportion of closed cells and the size distribution of apertures for open-wall 
cells. This distribution is based on a distinction between the windows counting four or less edges 
from the windows counting more than four edges. Then a representative unit cell is reconstructed 
to mimic the main feature of microstructure information and serves as the basis to the 
computation of the sound absorbing parameter, using numerical homogenization techniques. 
Very good correspondences between numerical results and experimental measurements were 
observed. Our analysis reveals a significant dependence of membrane level on the sound 
absorption behavior of these foams. 
 

INTRODUCTION 
 

Solid foams are desirable materials for use in many applications where acoustical and/or 
mechanical energy absorption properties are required. Different methods have been proposed to 
predict the link between microstructural parameters and those properties [1-4]. 
To this regard, it has been shown that foam membranes, i.e. the solid films closing the windows 
separating the foam pores, can be of primary importance in acoustical capacity whereas they may 
occupy a very small volume fraction within the material. Accounting for the membranes effect 
led to the introduction of dedicated parameters, by measuring simply the fraction of open 
windows [4, 5] or distinguishing both fully open and partially open windows [6-11]. From such a 
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Characterization of the foam samples. As the density of the dried gelatin was measured to be 
1.36 volume and weight measurements of the prepared samples give the pore volume fraction. 
For the gelatin concentrations used in this study, the pore volume fraction was found to vary 
between 0.977 and 0.983, so that in the following we will consider that this parameter is 
approximately constant and equal to  = 0.980±0.003. Observation of the cylindrical surface of 
the sample (see Fig. 1a) allows for the pore (bubble) size to be measured:	ܦ௕ = 810 µm (the 
absolute error on	ܦ௕ is ±30 µm) for all the samples. In addition, the shape anisotropy degree was 
estimated through a ratio as ܽଵ =  ଶ (see Fig. 1b, note that this degree is also considered inܦ/ଵܦ
both axial and radial directions), providing values smaller than 1.15 for all samples, which justify 
to neglect this effect in the following. The membrane content is evaluated by measuring the 
closure rate of windows separating the pores. We proceed as follows: over several hundred 
windows observed on both top and bottom sample surfaces, the proportion of fully closed 
windows ݔ௙௖ is measured. For the partially closed windows ݔ௣, with a proportion equal to (1	–	ݔ௙௖), their average closure degree is also measured: ݎ௖ = 1 − ଶܶ ଵܶ⁄ , where ଵܶ	is the window 

size (the diameter/mean diameter of a circle/an ellipse enclosing the vertex of the corresponding 
polygonal face) and ଶܶ is the window opening (the diameter/mean diameter of a circle/an ellipse 
inscribed into the cell aperture) - see Fig. 1c. According to these notations, the membrane closed 
fraction writes: ௖݂ = ௙௖ݔ + (1 −  ௖. Note that in order to get all the structural informationݎ(௙௖ݔ

required for the modeling, we refine this treatment by distinguishing the windows counting 4 or 
less edges (referred to as ‘sq’), from the windows counting more than 4 edges (referred to as 
‘hex’). The structural characterization was completed by a measurement of the membrane 
thickness through SEM microscopy. From ten SEM images we obtain an average thickness equal 
to 1.5±0.25 µm, which is close to thicknesses measured for similar polymer foams [6, 9, 11]. 

The static air flow resistivity ߪ of ܮ௦-thick sample is obtained from the measured 
differential pressures ∆݌ and the controlled steady laminar flow rate ܳ [16], according to the 
standard ISO 9053 (method A): ߪ = ௦ܮ݌∆ ܳ⁄ . The relative error is between 5% and 10%. 

Acoustic properties are determined with a 3-microphone impedance tube [17, 18] (length: 1 
m, diameter: 40 mm). Separating distances are: Micro.1-Micro.2: 35 mm, Micro.2-Sample: 80 mm, 
Sample-Micro.3: 0 mm. Note that the diameter of the samples was slightly larger than 40 mm so 
that air leakage issue and sample vibration were successfully avoided. The test frequency ranges 
from 4 Hz to 4500 Hz with a step size of 4 Hz. 

 
MULTI-SCALE MODELING OF ACOUSTIC MATERIALS 
 
Macro-scale model. From the macroscopic perspective the equivalent-fluid approach is applied 
where a rigid porous medium is substituted by an effective fluid characterized by the effective 
density [12] and effective bulk modulus [13, 14] given as follows: 

 ( )
2

0
0

0

2
1 ,j

j

ρ ηαφσρ ω ρ α ω
ωρ η σφΛ

∞
∞

   = + +     
 (1)
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(2)

where ߩ଴ is the density of air at rest, and ߢ = ߛ ଴ܲ is the air adiabatic bulk modulus, ଴ܲ the 
atmospheric pressure, ߛ =  to the	(௣ܥ)  is the ratio of heat capacity at constant pressure	௩ܥ/௣ܥ

heat capacity at constant volume (ܥ௩). 
The homogeneous layer is described by the wave number ݇(߱) and the characteristic 

impedance ܼ௖(߱) as follows, 

 ( ) ( ) ( ) ( ) ( ) ( )ck K , Z Kω ω ρ ω ω ω ρ ω ω= =  (3)

The normal incidence sound absorption coefficient of a porous layer is derived from the 
complex reflection coefficient ܴ: 

  ( ) ( )2

0 0 0 01 s sR , R Z c / Z cα ρ ρ= − = − +  (4)

with ܿ଴ is the sound speed in air and ܼ௦ is the normal incidence surface impedance. For a layer of 
thickness ܮ௦, this impedance is given by ܼ௦(߱) = −݆ ܼ௖ ⁄ cotg݇ܮ௦. 
Micro-scale model. Eq. (1) and (2) involve 6 parameters (߶, Λ′, ߙ ,ߪஶ , Λ and ݇଴ᇱ  ): the porosity ߶ and the thermal characteristic length Λ′ are defined from local geometry, and others are 
computed from the numerical solutions of (i) the Stokes equations [12] (the static air flow 
resistivity ߪ); (ii) the potential flow equations [12] (the high frequency tortuosity ߙஶ and the 
viscous characteristic length Λ); and (iii) the equations of the diffusion controlled reactions [19] 
(the static thermal permeability ݇଴ᇱ ). A detailed view is provided in Ref. [20]. 

Local geometry model. A periodic unit cell (PUC) is used to represent the structure of our foam 
samples [2]. The cell is based on the Kelvin paving and is 14-sided polyhedron: 8 hexagons and 6 
squares. As we are mostly interested in the effect of the closure rate of windows, the cell skeleton 

is made of idealized ligament having a length ܮ = ௕ܦ 2√2⁄  and an equilateral triangular cross 
section of edge side	ݎ = ௕(1ܦ0.62 − )଴.ସହ[21]. The global closure rate of the cell can be tuned 

by varying the number of partially closed windows, i.e. ௣ܰ௦௤ ≈ 6 × ௣௦௤ݔ ௣௦௤ݔ) + ௙௖௦௤)ൗݔ  and ௣ܰ௛௘௫ ≈ 8 × ௣௛௘௫ݔ) +  ௖௛௘௫ݎ ௖௦௤ andݎ .௙௖௛௘௫), as well as the closure level of those windows, i.eݔ

respectively (details are given in the characterization section). The number of fully closed 

windows is equal to ௙ܰ௖௦௤ = 6 − ௣ܰ௦௤ and ௙ܰ௖௛௘௫ = 8 − ௣ܰ௛௘௫. 

 
RESULTS AND DISCUSSION 
 
Results for both airflow resistivity measurements and structural characterization reveal that the 
gelatin concentration ܥ௚௘௟ in the foaming solution controls the closure rate of cell windows (see 

Tab. I): ௖݂ varies from ~30% to ~80%  when ܥ௚௘௟ varies from 12% to 18% and measured results 

of static resistivity show a significant increase upon the high level of ௖݂. Note that the resistivity 
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CONCLUSION 
 
Polymer foams with tuned values of the pore closure rate were elaborated. Their acoustical 
properties were studied experimentally. Three-dimensional periodic unit cells were then 
reconstructed, accounting for a detailed microstructural characterization. The membrane content 
was evaluated by measuring the proportion of fully and partially closed windows, together with 
the average closure degree of the partially closed ones. This treatment was refined by 
distinguishing the windows counting 4 or less edges from the windows counting more than 4 
edges. Then, the corresponding 3D PUC serve as a basis to compute from numerical 
homogenization techniques transport parameters entering into the classical semi-
phenomenological models from which an approximate but robust description of the sound 
absorption can be determined on a microphysical background. Results showed good agreement 
between computed and experimental transport and sound absorbing properties and revealed how 
the membrane content can be finely tuned to control the absorption of long wavelength acoustic 
waves. The present coupled experimental/numerical approach shows an interesting way for 
enhancing the functionality of porous materials within the context of sound absorption. We 
demonstrated in this work that a systematic link between structure, property, and elaboration of 
foams can be achieved. It should therefore be possible to tailor the acoustical properties of these 
materials by controlling both the pore size and the membrane content. Further work will follow 
on the proposed approach for highlighting fully optimized materials. 
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