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Abstract. Spline Galerkin methods for the double layer potential equation on
contours with corners are studied. The stability of the method depends on
the invertibility of some operators Rτ associated with the corner points τ .
The operators Rτ do not depend on the shape of the contour but only on
the opening angles of the corner points τ . The invertibility of these operators
is studied numerically via the stability of the method on model curves, all
corner points of which have the same opening angle. The case of the splines
of order 0, 1 and 2 is considered. It is shown that no opening angle located in
the interval [0.1π, 1.9π] can cause the instability of the method. This result is
in strong contrast with the Nyström method, which has four instability angles
in the interval mentioned. Numerical experiments show a good convergence
of the methods even if the right-hand side of the equation has discontinuities
located at the corner points of the contour.
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1. Introduction

Let D be a simply connected bounded domain in R2 with boundary Γ, and let nτ

denote the outer normal to Γ at the point τ ∈ Γ. It is well known that the solution
of various boundary value problems for the Laplace equation can be reduced to
solution of the integral equation

(AΓω)(t) = ω(t) +
1

π

∫
Γ

ω(τ)
d

dnτ
log |t− τ | dsτ + (Tω)(t) = f(t), t = x+ iy ∈ Γ

(1.1)

This work is partially supported by the Universiti Brunei Darussalam under Grant
UBD/GSR/S&T/19.



130 V.D. Didenko and A.M. Vu

where dsτ refer to the arc length differential and T is a compact operator. The
operator

VΓω(t) :=
1

π

∫
Γ

ω(τ)
d

dnτ
log |t− τ | dsτ

is called the double layer potential operator and it is well known [23] that it can
be represented in the form

VΓ =
1

2
(SΓ +MSΓM),

where SΓ is the Cauchy singular integral operator on Γ,

(SΓx)(t) :=
1

πi

∫
Γ

x(τ) dτ

τ − t
.

and M is the operator of complex conjugation, Mϕ(t) := ϕ(t).
If Γ is a smooth closed curve, then the double layer potential operator VΓ is

compact in the space Lp. This fact essentially simplifies the stability investigation
of approximation methods for the equation (1.1). However, if Γ possesses corner
points, the situation becomes more involved. One of the simplest cases to treat is
a polygonal boundary or a boundary with polygonally shaped corners and there
are a number of works investigating approximation methods for the equation (1.1)
on such curves [3, 5, 6, 16, 19, 21]. For a comprehensive survey, we refer the reader
to [2, 20].

In the present work we consider spline Galerkin methods for the double layer
potential equation (1.1) in the case of simple piecewise smooth curves. Such meth-
ods are often used to determine approximate solutions of (1.1). However, for con-
tours with corners, the stability analysis of the methods is not complete. On the
other hand, it is known that for boundary integral equations the presence of cor-
ners on the boundary may lead to extra conditions required for the stability of
the approximation method considered [9, 10, 11, 13]. The aim of the present work
is twofold. First, we obtain necessary and sufficient conditions for the stability of
spline Galerkin methods. It turns out that stability depends on the invertibility
of some operators associated with corner points of Γ. These operators belong to
an algebra of Toeplitz operators and, at present, there is no tool to verify their
invertibility. Therefore, our second goal is to present an approach to check the
invertibility of the operators mentioned. This approach is based on considering
our approximation methods on special model curves, and it allows us to show that
Galerkin methods for double layer potential equations on piecewise smooth con-
tours behave similarly to equations on smooth curves. Thus, it was discovered that
at least for the splines of degree 0, 1 and 2 the corresponding Galerkin method is
always stable provided that all opening angles of the corner points are located in
the interval [0.1π, 1.9π]. Similar results concerning the spline Galerkin methods for
the Sherman–Lauricella equation have been recently obtained in [12]. Note that
this effect is in strong contrast with the behaviour of the Nyström method which
possesses instability angles in the interval [0.1π, 1.9π], [13].
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This paper is organized as follows. Section 2 is devoted to description of spline
spaces and spline Galerkin methods. Here we also present some numerical examples
illustrating the efficiency of the method. Stability conditions are established in
Section 3, while Section 4 deals with the numerical approach to the search of
critical angles.

2. Spline spaces and spline Galerkin methods

Let us identify each point (x, y) of R2 with the corresponding point z = x+ iy in
the complex plane C. By L2 = L2(Γ) we denote the set of all Lebesgue measurable
functions f = f(t), t ∈ Γ such that

||f || =
(∫

Γ

|f(t)|2 |dt|
)1/2

< +∞.

By MΓ we denote the set of all corner points τ0, τ1, . . . , τq−1 of Γ. In order to
describe the spline spaces on Γ, let us assume that this contour is parametrized
by a 1-periodic function γ : R �→ C such that

τk = γ

(
k

q

)
, k = 0, 1, . . . , q − 1. (2.1)

In addition, we also assume that the function γ is two times continuously differ-
entiable on each subinterval (k/q, (k + 1)/q) and∣∣∣∣γ′

(
k

q
+ 0

)∣∣∣∣ = ∣∣∣∣γ′
(
k

q
− 0

)∣∣∣∣ , k = 0, 1, . . . , q − 1. (2.2)

For any two functions f, g ∈ L2(R), let f ∗ g denote their convolution, i.e.,

(f ∗ g)(s) :=
∫
R

f(s− x)g(x)dx.

If χ is the characteristic function of the interval [0, 1), then for any fixed d ∈ N,

let φ̂ = φ̂(d)(s) be the function defined by the recursive relation

φ̂(d)(s) =

{
χ(s), if d = 0,

(χ ∗ φ̂(d−1))(s), if d > 0.

The parametrization γ can be now used to introduce spline spaces on Γ. More
precisely, let n and d be fixed non-negative integers such that n ≥ d + 1. By
I(n, d) we denote the set of all integers j ∈ {0, 1, . . . , n − (d + 1)} such that the
interval [j/n, (j + d + 1)/n] does not contain any point sk = k/q, k = 0, 1, . . . , q.
Let Sd

n = Sd
n(Γ) be the set of all linear combinations of the functions

φ̂nj(t) = φ̂(d)(ns− j), t = γ(s) ∈ Γ, s ∈ R, j ∈ I(n, d).
For each j ∈ I(n, d) set

φnj := νd
√
nφ̂nj ,
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where

νd =

⎛⎝ d+1∫
0

∣∣∣φ̂(d)(s)
∣∣∣2 ds

⎞⎠−1/2

.

It is easily seen that φnj are normalized functions, i.e., ||φnj || = 1.
According to the spline Galerkin method, approximate solution ωn of the

equation (1.1) is sought in the form

ωn(t) =
∑

j∈I(n,d)
ajφnj(t) (2.3)

with the coefficients aj obtained from the system of linear algebraic equations

(AΓωn, φnj) = (f, φnj), j ∈ I(n, d). (2.4)

Note that the scalar product (·, ·) is defined by

(f, g) =

1∫
0

f(γ(s))g(γ(s))ds.

The stability of this Galerkin method will be studied in Section 3. However, here
we would like to illustrate the efficiency of the method by a few examples. For
simplicity, now we only consider equations with the operator T = 0. Although
special, this case is of the utmost importance. It occurs when reducing boundary
value problems for partial differential equations to boundary integral equations. In
particular, we determine Galerkin solutions of the double layer potential equation
with various right-hand sides f on two curves with corners. One of these right-hand
sides is continuous on both curves, whereas two others have discontinuity points,
some of which coincide with the corners. Let us describe the curves and right-hand
sides in more details. The curves L and M are obtained from the ellipse

γe(s) = a cos(2πs) + ib sin(2πs), s ∈ R,

by cutting a part of it and connecting the cutting points by arcs representing
cubic Hermit interpolation polynomials in such a way that each common point of
the curve obtained becomes a corner point satisfying the conditions (2.1), (2.2).
In Figure 1, the semi-axes of the ellipse are a = 3, b = 4. The curve L has two
corner points obtained by cutting off the part of the ellipse corresponding to the
parameter s ∈ [3/8, 5/8]. On the other hand, two parts of the ellipse corresponding
to the parameter s ∈ [3/8, 5/8]∪ [7/8, 9/8] are cut off to create the curve M. The
parametrization of the remaining parts of the curves L and M is scaled and shifted
so that the conditions (2.1) and (2.2) are satisfied. Let f1, f2 and f3 be the following
functions defined on the curves L and M,

f1(z) = −z|z|,

f2(z) =

{
−1 + iz, if Im z < 0,

1 + iz, if Im z ≥ 0,
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and

f3(z) =

{
−2 + iz, if Im z < Im z0,

2 + iz, if Im z ≥ Im z0,

where z0 = γe(3/8).

In passing note that the function f2 has two discontinuity points neither of
which coincides with a corner of L or M. On the other hand, one of the corner
points of L is a discontinuity point for the function f3, and two discontinuity points
of f3 are located at the corner points of M. Let ωn = ωn(fj ,Γ) be the Galerkin
solution (2.3), (2.4) of the double layer potential equation with right-hand side fj

considered on a curve Γ, and let E
fj ,Γ
n be the quantity

Efj ,Γ
n = ‖ω2n(fj ,Γ)− ωn(fj,Γ)‖2/‖ω2n(fj ,Γ)‖2,

which shows the rate of convergence of the approximation method under consid-
eration. Table 1 illustrates how the spline Galerkin method with d = 0 performs
for the curves L and M and for the right-hand sides f1, f2 and f3.

Note that the integrals in the scalar products (AΓωn, φnj), j ∈ I(n, d) are
approximated by the Gauss–Legendre quadrature formula with quadrature points
coinciding with the zeros of the Legendre polynomial of degree 24 on the canonical
interval [−1, 1] scaled and shifted to the intervals [j/n, (j+d+1)/n]. More precisely,
we employ the formula

(AΓωn, φnj) =

1∫
0

AΓωn(γ(s))φnj(γ(s))ds ≈
24∑
k=1

wkAΓωn(γ(sk))φnj(γ(sk)), (2.5)

where wk, sk are weights and Gauss–Legendre points on the interval [j/n, (j+ d+
1)/n]. Composite Gauss–Legendre quadrature is also used in approximation of the
integral operators of AΓωn(γ(sk)), cf. [9]. Thus we employ the quadrature formula

∫
Γ

k(t, τ)x(τ)dτ =

1∫
0

k(γ(σ), γ(s))x(γ(s))γ′(s)ds

≈
m−1∑
l=0

r−1∑
p=0

wpk(γ(σ), γ(slp))x(γ(slp))γ
′(slp)/m

where m = 40, r = 24, slp = (l+εp)/m and wp and εp are, respectively, the Gauss–
Legendre weights and Gauss–Legendre nodes scaled and shifted to the interval
[0, 1]. For the discrete norm used in error evaluation, we set h0 = 1/128, h = 10−3

and choose the meshes

U1 := (0 + h0 : h : 0.5− h0)
⋃

(0.5 + h0 : h : 1− h0)
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Figure 1. Left: ‘pacman’ curve L; Right: ‘battleax’ curve M.

n E
(f1,L)
n E

(f1,M)
n E

(f2,L)
n E

(f2,M)
n E

(f3,L)
n E

(f3,M)
n

128 0.0257 0.0279 0.0248 0.0261 0.0445 0.0383

256 0.0129 0.0147 0.0125 0.0141 0.0286 0.0230

512 0.0054 0.0073 0.0052 0.0070 0.0186 0.0153

Table 1. Convergence of the spline Galerkin method, d = 0.

and

U2 :=(0+h0 : h : 0.25−h0)
⋃

(0.25+h0 : h : 0.5−h0)⋃
(0.5 + h0 : h : 0.75− h0)

⋃
(0.75 + h0 : h : 1− h0)

due to the fact that the curves L and M have two and four corner points, respec-
tively, cf. Condition 2.1. In the graphs of Figure 2, jumps appear when the corner
points of M and the discontinuity points of the right-hand side f3 coincide. At the
same time, it is quite remarkable that the condition numbers of the methods are
relatively small. For the interval considered, they do not exceed 10 and 5 for the
curve L and M, respectively.

Let us also point out that the results presented in Table 1 are comparable with
the convergence rates of the spline Galerkin methods for the Sherman–Lauricella
[22] and Muskhelishvili [14] equations on smooth curves. These estimates can still
be improved if one uses a more accurate approximation of the integrals arising in
the Galerkin method [17, 18]. Nevertheless, the approximate solutions presented
in Figure 2 demonstrate a good accuracy. We also computed Galerkin method
solutions of the double layer potential equation with the right-hand sides and
curves from [13]. Although these results are not reported here, there is a good
correlation with approximate solutions of [13] obtained by the Nyström method.
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Figure 2. Spline Galerkin solution of the double layer potential equa-
tion in the case n = 1024. Left: ‘pacman’ curve L; Right: ‘battleax’
curve M. First row: with r.-h. s. f1(z); second row: with r.-h. s. f2(z);
third row: with r.-h. s.f3(z).

3. Local operators and stability of the spline Galerkin method

Let us briefly describe the approach we use in the study of the stability of the
Galerkin method. For more details, we refer the reader to [8, 24, 25]. Let Pn

denote the orthogonal projection from L2(Γ) onto Sd
n(Γ). The spline Galerkin

method (2.4) can be rewritten as

PnAΓPnωn = Pnf, n ∈ N. (3.1)

Definition 3.1. The approximation sequence (PnAΓPn) is said to be stable if there
exists n0 ∈ N and a constant C > 0 such that for all n ≥ n0 the operators
PnAΓPn : Sd

n(Γ) �→ Sd
n(Γ) are invertible and ‖(PnAΓPn)

−1Pn‖ ≤ C.
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Let AΓ denote the set of all bounded sequences of bounded linear operator
An : ImPn �→ ImPn such that there exist strong limits

s− limAnPn = A, s− lim(AnPn)
∗Pn = A∗.

Moreover, let K(L2(Γ)) denote the ideal of all compact operators in L(L2(Γ)), and
let G ⊂ AΓ be the set of sequences which converge uniformly to zero. Recall that
the sequence of orthogonal projection (Pn) in L2(Γ) converges strongly to identity
operator and P ∗

n = Pn. It follows that

s− lim
n→∞PnAΓPn = AΓ, s− lim

n→∞(PnAΓPn)
∗Pn = A∗

Γ.

It is well known[8, 24, 25] that the set of sequences

J Γ = {(An) ∈ AΓ : An = PnKPn +Gn, K ∈ K(L2(Γ)), (Gn) ∈ G}
forms a close two-sided ideal of AΓ.

Proposition 3.2 (cf. [8, Proposition 1.6.4]). The sequence (PnAΓPn) is stable if and
only if the operator AΓ ∈ L(L2(Γ)) and the coset (PnAΓPn) + J Γ ∈ L(AΓ/J Γ)
are invertible.

Recall that both Fredholm properties and invertibility of the operator AΓ in
various spaces have been studied in literature [2, 4, 23, 27]. Therefore, our main
task here is to investigate the behaviour of the coset (PnAΓPn) + J Γ. Note that
it is more convenient to consider this coset as an element of a smaller algebra.

Thus let BΓ denote the smallest closed C∗-subalgebra of AΓ which contains
the sequences (PnMSΓMPn), (PnSΓPn), all sequences (Gn) ∈ G, and all sequences
(PnfPn) with f ∈ CR(Γ). It follows from [24, 25] that J Γ ⊂ BΓ and (PnAΓPn) ∈
BΓ. Therefore, BΓ/J Γ is a C∗-subalgebra of AΓ/J Γ, hence the coset (PnAΓPn)+
J Γ is invertible in AΓ/J Γ if and only if it is invertible in BΓ/J Γ. However, the
invertibility of the coset (PnAΓPn) + J Γ in the quotient algebra BΓ/J Γ can be
showed by a local principle. Thus, with each point τ ∈ Γ, we associate a curve Γτ

as follows. Let θτ ∈ (0, 2π) be the angle between the right and left semi-tangents to
Γ at the point τ . Further, let βτ ∈ (0, 2π) be the angle between the real axis R and
the right semi-tangent to Γ at the same point τ . Let Γτ be the curve defined by

Γτ := ei(βτ+θτ)R+
−

⋃
eiβτR+

+

where R+
− and R+

+ are positive semi-axes directed to and away from zero, respec-
tively. On the curve Γτ consider the corresponding double layer potential operator
AΓτ = I + VΓτ . Moreover, let

φ̃nj(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
φ̂(d)(ns− j), if t = eiβτ s

0, otherwise
j ≥ 0,{

φ̂(d)(ns− j + d), if t = ei(βτ+θτ )s

0, otherwise
j < 0

.



Spline Galerkin Methods for Double Layer Potential Equations 137

By Sd
n(Γτ ) we denote the smallest closed subspace of L2(Γτ ) which contains all

functions φ̃nj , j ∈ Z. Correspondingly, Sd
n(R

+) is the smallest subspace of L2(R+)

containing all functions φ̃nj , j ≥ 0 for βτ = 0. In addition, let P τ
n and P+

n be
the orthogonal projections of L2(Γτ ) onto Sd

n(Γτ ) and L2(R+) onto Sd
n(R

+), re-
spectively. Now algebra BΓτ and its ideal J Γτ can be defined analogously to the
construction of BΓ and J Γ.

Similarly to Proposition 3.2, one can formulate the following result.

Lemma 3.3. The sequence (P τ
nAΓτP

τ
n ) ∈ BΓτ is stable if and only if the operator

AΓτ is invertible and the coset (P τ
nAΓτP

τ
n ) + J Γτ is invertible in the quotient

algebra BΓτ /J Γτ .

Note that the invertibility of the operator AΓτ can be studied quite easily. It
turns out that this operator is isometrically isomorphic to a block Mellin operator
(see relations (3.2)–(3.6) below). The invertibility of block Mellin operators de-
pends on the invertibility of their symbols in an appropriate function algebra and
is well understood [15, 26]. It follows that the operator AΓτ is always invertible.
Therefore, the coset (P τ

nAΓτP
τ
n ) +J Γτ is invertible in the corresponding quotient

algebra if and only if the sequence (P τ
nAΓτP

τ
n ) is stable. Let us now consider the

stability problem in more detail. By L2
2(R

+) we denote the product of two copies
of L2(R+) provided with the norm

‖(ϕ1, ϕ2)
T ‖L2

2(R
+) =

(
‖ϕ1‖2L2(R+) + ‖ϕ2‖2L2(R+)

)1/2

,

and let η : L2(Γτ ) �→ L2
2(R

+) be the mapping defined by

η(f) =
(
f(sei(βτ+θτ )), f(seiβτ )

)T

.

This isometry generates an isometric algebra isomorphism Ψ : L(L2(Γτ )) �→
L(L2

2(R
+)) defined by

Ψ(A) = ηAη−1. (3.2)

In particular, for the operators P τ
n , I and VΓτ , one has

Ψ(P τ
n ) = diag (P+

n , P+
n )

and

Ψ(I) =

[
I 0
0 I

]
, Ψ(VΓτ ) =

[
0 Nθτ

Nθτ 0

]
, (3.3)

where Nθ is the Mellin convolution operator defined by

(Nθ(ϕ))(σ) =
1

2πi

∫ +∞

0

(
1

s− σeiθ
− 1

s− σe−iθ

)
ϕ(s) ds. (3.4)

The operatorNθ can also be written in another form reflecting its Mellin structure–
viz., ⇐= ??

Nθ(ϕ)(σ) =

+∞∫
0

kθ

(σ
s

)
ϕ(s)

ds

s
(3.5)
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where

kθ = kθ(u) =
1

2π

u sin θ

|1− ueiθ|2 . (3.6)

Thus

Ψ(AΓτ ) =

[
I Nθτ

Nθτ I

]
, (3.7)

and an immediate consequence of the isomorphism (3.2) is that the sequence
(P τ

nAΓτP
τ
n ) is stable if and only if so is the sequence (Ψ(P τ

nAΓτP
τ
n )). On the

other hand, the study of the stability of the sequences (Ψ(P τ
nAΓτP

τ
n )), τ ∈ Γ can

be reduced to the study of two main cases related to the nature of the points τ ∈ Γ.
Thus if τ �∈ MΓ, then θτ = π so that the operator Nπ = 0 and Ψ(P τ

nAΓτP
τ
n ) is

just the diagonal sequence diag (P+
n , P+

n ) which is obviously stable. Therefore the
corresponding coset (P τ

n ) + J Γτ ∈ BΓτ/J Γτ is invertible. Consider now the case
where τ is a corner point of Γ, and θτ ∈ (0, 2π) is the opening angle of this corner.
By l2 we denote the set of sequences of complex numbers (ξk)

+∞
k=0 such that

∞∑
k=0

|ξk|2 < ∞.

Moreover, let Λn be the operator acting from Sd
n(R

+) into l2 and defined by

Λn

⎛⎝ ∞∑
j=0

ξj φ̃nj

⎞⎠ = (ξ0, ξ1, . . .).

The operators Λn are continuously invertible and there is a constant m such that

||Λn|| ||Λ−n|| ≤ m for all n = 1, 2, . . . ,

where Λ−n := Λ−1
n , [7]. This implies that the sequence (Ψ(P τ

nAΓτP
τ
n )) is stable if

and only if the sequence (Rτ
n),

Rτ
n := diag (Λn,Λn)Ψ(P τ

nAΓτP
τ
n ) diag (Λ−n,Λ−n) : l

2 × l2 �→ l2 × l2

is stable.

Lemma 3.4. The sequence (P τ
nAΓτP

τ
n ) is stable if and only if the operator Rτ := Rτ

1

is invertible.

Proof. According to the above considerations, the sequence (P τ
nAΓτP

τ
n ) is stable

if and only if so is the sequence (Rτ
n). Note that the operators Rτ

n have the form

Rτ
n =

[
I A12

A21 I

]
where A21 = A12 = ΛnP

+
n NθτP

+
n Λ−n.

Consider now the operators ΛnP
+
n NθτP

+
n Λ−n, n ∈ N. Let Jn : Sd

n(R
+) →

Sd
1 (R

+) be the operator defined by

(Jnφ)(s) := φ(s/n).
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Then Jnφ̃jn = φ̃j1 and Λn = Λ1Jn. This implies the relation

ΛnP
+
n NθτP

+
n Λ−n = Λ1JnP

+
n NθτP

+
n J−1

n Λ−1 = Λ1P
+
1 NθτP

+
1 Λ−1,

so that (Rτ
n) is a constant sequence. Therefore it is stable if and only if the operator

Rτ = Rτ
1 , is invertible. �

Using the above results, one can obtain a stability criterion for the spline
Galerkin method.

Theorem 3.5. If operator AΓ is invertible, then the spline Galerkin method (3.1) is
stable if and only if all the operators Rτ : l2 × l2 �→ l2 × l2, τ ∈ MΓ are invertible.

Proof. It follows from Proposition 3.2 that the spline Galerkin method is sta-
ble if and only if the coset (PnAΓPn) + J Γ ∈ BΓ/J Γ is invertible. By Allan’s
local principle [1, 8, 25], this coset is invertible if and only if so are all the
cosets (P τ

nAΓτP
τ
n ) + J Γτ , τ ∈ Γ. However, as we already know, for τ /∈ MΓ

the coset (P τ
nAΓτP

τ
n ) + J Γτ is always invertible in the corresponding quotient-

algebra BΓτ /J Γτ . On the other hand, if τ ∈ MΓ, then by the Lemma 3.4 the
coset (P τ

nAΓτP
τ
n ) + J Γτ is invertible if and only if so is the corresponding opera-

tor Rτ , and the proof is completed. �

4. Numerical approach to the invertibility of local operators

Theorem 3.5 shows that the stability of the spline Galerkin method depends on the
invertibility of the operators Rτ , τ ∈ MΓ. However, these operators belong to an
algebra of Toeplitz operators generated by piecewise continuous matrix functions
and at present there is no analytic tool to check their invertibility. On the other
hand, a numerical approach to such a kind of problem has been proposed in [10, 11].
Thus one can consider stability of an approximation method on curves having
corner points with the same opening angle. If this is the case, the stability of the
corresponding method depends on the operator itself and on only one additional
operator Rτ . More precisely, the following result is true.

Proposition 4.1. If Γ is a piecewise smooth curve such that all corners τ ∈ MΓ

have the same opening angle, then

1. For any τ1, τ2 ∈ MΓ one has Rτ1 = Rτ2 .
2. The operator Rτ1 is invertible if and only if the spline Galerkin method

(Pn(I + VΓ)Pn) is stable.

Proof. This result is an immediate consequence of Theorem 3.5. One only has to
take into account that if Γ satisfies the conditions stated, then the corresponding
operator I + VΓ is invertible on the space L2(Γ), [27]. �

Thus in order to detect critical angles, i.e., the opening angles θτ where
the operators Rτ are not invertible, one can compute the condition numbers of
the method on families of special contours L(θ), θ ∈ (0, 2π) all corner points
of which have the same opening angle. As a result, at any critical point of the
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method, the graph representing the condition numbers has to have an “infinite”
peak regardless of the family of the curves used. In this paper we employ the
curves L1(θ),L2(θ), proposed in [10, 11], which have one and two corner points,
respectively, together with a new 4-corner curve L4(θ). The curves L1(θ),L2(θ)
have the following parametrizations

L1(θ) : γ1(s) = sin(πs)eiθ(s−0.5), 0 ≤ s ≤ 1;

L2(θ) : γ2(s) =

⎧⎪⎨⎪⎩
−1

2
cot(θ/2) +

1

2 sin(θ/2)
eıθ(2s−0.5) 0 ≤ s < 0.5,

1

2
cot(θ/2)− 1

2 sin(θ/2)
eıθ(2s−1.5) 0.5 ≤ s < 1.

The 4-corner curve L4(θ) is constructed as follows. First, connect the two points
A = (1 − i) and B = (1 + i) by an arc representing a Hermite interpolation
polynomial such that

̂(−→
OA,

−→
tA

)
= −θ/2,

̂(−−→
OB,

−→
tB

)
= θ/2,

where O denotes the origin,
−→
tA and

−→
tB are, respectively, the tangential vectors

at the points A and B, and
̂
(
−→
t1 ,

−→
t2 ) is the angle measured from

−→
t1 to

−→
t2 in

the counterclockwise direction (see Figure 3). Further, rotate the arc obtained
around the origin by angles 0.5π, π and 1.5π. Some curves from this family are
presented in Figure 3. Note that the Hermite interpolation polynomial used has
the parametrization

P3(s) = 1− i+ as+ (2i− a)s2 + (a+ b− 4i)s2(s− 1), 0 ≤ s ≤ 1,

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

θ=0.2π

θ=0.5π

θ=π

θ=1.5π

B(1,1)

A(1,−1)

Figure 3. Curves L4(θ) for various θ.
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where

a = 3 sin

(
3π

4
+

θ

2

)
+ 3i cos

(
3π

4
+

θ

2

)
, b = 3 sin

(
π

4
− θ

2

)
+ 3i cos

(
π

4
− θ

2

)
.

Now our numerical experiments can be described as follows. First, we divide
the interval [0.1π, 1.9π] by the points {θk}, where θk = π(0.1+k×0.01). For every
family of the test contours Lj(θk), θk ∈ [0.1π, 1.9π], j = 1, 2, 4 consider the spline
Galerkin methods with n = 256 based on the splines of order 0, 1 or 2. Compute
then the condition numbers of the corresponding linear algebraic systems described
by (2.4). Should there appear any point θ∗ in the vicinity of which the condition
numbers become large, a neighborhood of θ∗ is refined by a smaller step 0.001π,
and condition numbers are recalculated with n changed to 512. The outcome of our
computations is presented in Figure 4. In all cases, one can observe the absence of
peaks in the graphs, which means that the Galerkin methods under consideration
do not have “critical” angles in the interval [0.1π, 1.9π]. In other words, if the
opening angles of all corners of the integration contour are located in the interval
[0.1π, 1.9π], the spline Galerkin methods based on the splines of degree 0, 1 or 2
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Figure 4. Logarithm log10 of condition numbers versus opening angles
for Galerkin methods with n = 256 for various contours and spline
spaces. Left: contour L1; middle: contour L2; right: contour L4; first
row: d = 0; second row: d = 1; third row: d = 2
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are always stable. Another remarkable feature is that for the Galerkin methods
based on the splines of the same degree, all graphs are of the same shape and
for any θ ∈ [0.1π, 1.9π] the corresponding condition numbers are very close. This
suggests a conjecture that the condition numbers of the Galerkin methods possess
certain “locality” properties. They rather depend on the value of the critical angles
present than on the shape of the curves used.

Note that all numerical experiments are performed in MATLAB environ-
ment(version 7.9.0) and executed on an Acer Veriton M680 workstation equipped
with a Intel Core i7 vPro 870 processor and 8GB of RAM. These are time consum-
ing computations and it took from one to two weeks of computer work to obtain
data for each graph in Figure 4.

5. Conclusion

In this work, necessary and sufficient conditions of the stability of the spline
Galerkin method for double layer potential equations on simple piecewise smooth
contours are established. The theoretical results are verified by using curves with
different number of corner points and numerical results are in a good correlation
with theoretical studies. It turns out that the spline Galerkin methods based on
splines of degrees 0, 1, 2 are always stable and the convergence rates of the methods
are comparable with other works.
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