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ABSTRACT
Identifying encrypted application traffic is an important is-
sue for many network tasks including quality of service, fire-
wall enforcement and security. One of the challenging prob-
lems of classifying encrypted application traffic is the im-
balanced property of network data. Usually, the amount
of unencrypted traffic is much higher than the amount of
encrypted traffic. To date, the machine learning based ap-
proach for identifying encrypted traffic often solely focused
on examining and improving algorithms. The techniques
for addressing imbalanced data are rarely investigated. In
this paper, we present a thorough analysis of the impact
of various techniques for handling imbalanced data when
machine learning approaches are applied to identifying en-
crypted traffic. The experiments are conducted on a well-
known network traffic dataset and the results showed that
some techniques for addressing imbalanced data help ma-
chine learning algorithms to achieve better performance.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; •Networks → Network reli-
ability;

Keywords
Machine learning; Encrypted Network Traffic; Imbalanced
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1. INTRODUCTION
In network analysis, traffic classification is a crucial re-

quirement for administrators to effectively manage their net-
work bandwidth and resource. Moreover, traffic classifica-
tion is important for security applications since it helps to
assess the security threats to the network. In traffic classi-
fication, the identification of encrypted traffic represents a
first step in identifying malicious behaviours since most of
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the time, users with malicious intentions try to hide their
behaviour either in encrypted or covert tunnels.

Traditionally, three are two approaches used for classifying
network traffic [20]: the first approach is to use well-known
port numbers (visible in TCP or UDP headers) while the
second approach is based on Deep Packet Inspection (DPI)
to look for specific protocol signatures. However, these ap-
proaches present some disadvantages in the modern net-
works. The first approach assumes that most application
always uses well-known port numbers. This assumption be-
comes increasingly inaccurate when applications use non-
standard ports to bypass firewalls or circumvent operating
system restrictions. The second approach assumes that the
payload of every packet is available. However, this assump-
tion is not always true since the access to payload maybe
restricted due to the violation of the organizational privacy
policies. Moreover, examining the payload of a packet at
the network speed is a computationally expensive. Conse-
quently, other techniques are required to increase the accu-
racy of network traffic classification.

Recently, many studies have attempted to employ ma-
chine learning techniques that use statistical flow informa-
tion (features) for network traffic classification. Such fea-
tures are extracted from the information on the transport
layer, which does not depend on port numbers or payload
inspections. The previous results of using machine learning
methods for classifying encrypted applications are promis-
ing [2, 4, 1, 18, 6]. However, one of the difficulty when ap-
plying machine learning techniques to identifying encrypted
traffic is the imbalanced structure of the network data. Since
there are many applications running simultaneously on the
network, the portion of encrypted traffic is often tiny com-
pared to the huge amount of unencrypted traffic. Thus, the
approach for handling imbalanced data plays a crucial role
in the performance of machine learning techniques.

To date, the research in classifying encrypted traffic has
focused on testing the efficiency and effectiveness of classi-
fiers. Different research groups have employed various ma-
chine learning techniques such as Hidden Markov model,
Naive Bayesian model and Decision Tree [1, 4, 6, 18]. How-
ever, there has not been any research on examining the effect
of the methods for addressing imbalanced data. This paper
is the first attempt to systematically investigate the impact
of the techniques for handling imbalanced data when ma-
chine learning techniques are used for identifying encrypted
traffic. The rest of this paper is organized as follows. Section
2 presents the related work in identifying encrypted network
traffic. The methods for handling imbalance data are shown
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in Section 3. Section 4 describes the experimental settings.
The result of our experiments are presented and discussed
in Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORK
Three have been a number of the previous work that at-

tempted to identify encrypted network traffic. However, the
existing work usually focused only on testing various ma-
chine learning algorithms and ignored to consider the im-
balanced structure of the data set.

Riyad et al. [1] assessed the performance of some ma-
chine learning algorithms including Adaboost, Support Vec-
tor Machine, Naive Bayesian, and Decision Tree (C4.5) in
identifying encrypted network traffic. Among the tested al-
gorithms, only Adaboost [19] method can handle imbalanced
data. The experimental results in [1] proved that Adaboost
algorithm has good generalization ability but sensitive to
the stopping criterion. Moreover, the decision tree classifier
(C4.5) is better than other classifiers when used for classi-
fying encrypted traffic.

After that, Carlos et al. [4] examined the performance of
unsupervised learning techniques for classifying encrypted
network traffic. They compared five unsupervised cluster-
ing algorithms including basic K-Means, semi-supervised K-
Means, Density-based spatial clustering of applications with
noise (DBSCAN), expectation-maximization (EM) and Multi-
Objective Genetic Algorithm (MOGA). The results showed
that their proposed clustering algorithm (MOGA) outper-
forms other algorithms in classifying encrypted network traf-
fic.

Recently, JZigang Cao et al. [6] conducted an analysis
on the recent advances and challenges in encrypted network
identification. More recently, Petr Velan et al. [18] described
a survey of encrypted network traffic classification and anal-
ysis. They described in detailed the structure of encrypted
network traffic and some tools for classifying network traf-
fic. They compared the performance of a large number of
classifiers including Markov models, Repeated Incremental
Pruning to Produce Error Reduction (RIPPER), AdaBoost,
SVMs, C4.5, K-mean, K-nearest neighbours and MOGA.

In machine learning, there has been a large number of re-
searches that afforded to address imbalanced data [16, 9, 7,
12, 3, 8, 17]. Generally, there are three approaches for han-
dling imbalanced data: Modifying the objective cost func-
tion, sampling and generating artificial data. However, to
the best of our knowledge, these techniques have not been
applied and investigated in encrypted network traffic classi-
fication. In the next section, we will present the techniques
for handling imbalanced data that are used in our paper.

3. METHODS
This section presents three techniques for addressing im-

balanced data that are used in this paper: Modifying the ob-
jective cost function, under-sample and over-sampling, and
generating artificial data. These techniques will be used to
prepare the training data for two machine learning tech-
niques: Classification and Regression Trees (CART)[5] and
Random forest (RF)[15]. We used CART and RF algorithms
in this paper since they have been showed the good perfor-
mance on classifying encrypted network traffic.

The Figure 1 presents the overview our system. The first
step was to collect data including encrypted traffic (SSH

Figure 1: The overview of our system.

traffic) and non-encrypted traffic. The feature extraction
step was then applied to the collected traffic to obtain 22
features of each traffic (the extracted features are shown
in the Section 4). After that,there techniques for handling
imbalanced data was used to prepare the training data for
the machine learning algorithms. Finally, the performance
of two machine learning algorithms (CART and RF) was
reported as the indicator for the goodness of the techniques
for addressing imbalanced data.

3.1 Modifying the Objective Cost Function
The method of modifying objective cost function is based

on weighting differently the samples in minor and major
classes. This method gives higher score on the minor sam-
ples to penalize more intensely on miss-classifying of the
sample in the minor class. If the algorithm miss-classifies
the samples in the minor class, the heavier penalty is set on
that. In our experiments, the weighting value for the minor
class is Ma/N and the weight on the major class is Mi/N
where Ma and Mi is the number of major and minor samples
and N is total samples in the dataset.

3.2 Under Sampling Methods
The objective of the under-sampling method is to reduce

the size of major class by removing some major instances.
Two under sampling methods used in this paper are: Ran-
dom under sampling and Condensed Nearest Neighbour.
Random under sampling - (RUS): RUS works by randomly
removing some instances in major class(see Algorithm 1 for
the more detailed). As shown in [10], RUS is an efficient
sampling method to deal with imbalanced class classifica-
tion problems. Moreover, RUS reduces the data size leading
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increasing the speed of classification algorithms. However,
the drawback is that it may removes some potentially useful
data.

Algorithm 1 Random under sampling

INPUT:
X: original training set
OUTPUT:
Xnew: new sampling set
BEGIN:
Xnew = X
while number of majority and minority samples is NOT
balance do

Generate a random number id
if X[id] is majority samples then
Xnew = Xnew \X[id]

end if
end while
END.

Condensed Nearest Neighbour (CNN): CNN was first intro-
duced by Hart [12] that generates a consistent subset of an
original sample set. In this algorithm, the original sample
set is divided into two sets as S and T . Initially, the S set
has one sample that is randomly selected from the original
set and the remaining samples are in the T set. CNN then
scans all samples of T and adds to S if that sample is mis-
classified by the content of S. The algorithm scans T as
many times as necessary until no sample transfer from T
to S. In CNN, the misclassified data lies close to the deci-
sion boundary as shown in Algorithm 2. The disadvantage
of CNN is that it is very computational expensive since the
algorithm needs to repeatedly scan the T set.

Algorithm 2 Condensed Nearest Neighbour

INPUT:
X: original training set
C: Classifier
OUTPUT:
Consistent subset S of T
BEGIN:
S = X[0]
T = X \ S
while Having samples in T transfer to S do

for all samples x[i] ∈ T do
Use classifier C in S
if C can not classified x[i] then
S = S ∪ x[i]

end if
end for

end while
END

3.3 Over Sampling Method
The purpose of the over sampling method is to raise the

samples in the minor class. The random over sampling
(ROS)[13] is used in this paper. ROS generates some copies
of the samples of the minor class as shown in Algorithm 3.
This method is easy to implement and has low computa-
tional cost. The main drawback of ROS is overfitting prob-
lem as generating same copies of the minor class. Moreover,

Algorithm 3 Random oversampling

INPUT:
X: original training set
OUTPUT:
Xnew: new sampling set
BEGIN:
while number of minority and majority samples is NOT
balance do

Generate a random number id
if X[id] is minority samples then
xnew = X[i]
Xnew = X ∪ {xnew}

end if
end while
END.

due to the huge size of major class, ROS can make dataset
extremely large.

3.4 Generating Artificial Data
The first method for generating artificial data used in

this paper is Synthetic Minority Over-sampling Technique
(SMOTE). The SMOTE was first introduced by Nitesh et
al. [8] where the authors proposed an over-sampling tech-
nique in which minority samples are generated by ”synthetic”
samples rather than replicating samples. Synthetic samples
are samples that are generated by operating on the feature
space of that samples and its k-nearest neighbours where k
is chosen based on the amount of minority samples required.
In detail, to create synthetic samples, let di vector be the
different of feature vector of minority sample xi and it’s k-
nearest neighbours and let d′i = di ∗ r where r is random
number in [0, 1]. A new sample x′i = xi + d′i is generated.

After SMOTE was proposed, there has been a number of
improved versions. Nguyen et al. [17] proposed a new tech-
nique to improve SMOTE [8]. The idea is that sampling
on the entire of the minority class is less important than
generating samples along the decision boundary. In this ap-
proach, they used support vectors obtained by training a
Support Vector Machines (SVMs) classifier on the original
training set. New samples are generated by combining each
minority class support vector with its nearest neighbours
using interpolation or extrapolation technique based on the
density of majority samples in its nearest neighbours. This
technique is referred to as SMOTE-SVM and the its details
is described as in Algorithm 4.

4. EXPERIMENTAL SETTINGS
The experiments were conducted on the Network Informa-

tion Management and Security Group (NIMS) dataset [2].
The NIMS dataset consists of packets collected from the in-
ternal network of Dalhousie University Computing and In-
formation Services Centre (UCIS) in 2007. The collected
traffic is the network traffic between the university and the
commercial Internet where different network models are sim-
ulated with many applications. There are six encrypted ser-
vices as Shell login; X11; Local tunneling; Remote tunnel-
ing; SCP; and SFTP. Some unencrypted applications are
also emulated in this network such as DNS, HTTP, FTP,
P2P (limewire),and telnet. In totally, the NIMS dataset in-
cludes 14,681 encrypted flows and 699,170 unencrypted flows
and the ratio of encrypted to unencrypted flows is about
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Algorithm 4 SMOTE-SVM borderline oversampling

INPUT:
X: original training set
N : number of new sampling set
m: number of nearest neighbours
nn: nearest neighbour vector
β: coefficient of extrapolate/interpolate function
OUTPUT:
Xnew: new sampling set
BEGIN:
- Run SVMs classifier on X to have support vector index
id and SV s = X[id] is the set of support vectors
- Set T = N

100
+ |X| is the number of new samples

- Set k = N
100

is the number of nearest neighbours of mi-
nority class
- Distributing T satisfy that each svi ∈ SV s, generate
quantity[i] samples
for each svi ∈ SV s do

- Compute m nearest neighbours in X
- Generate quantity[i] new samples by following ways:
if there are less m

2
is minority samples then

xnew = svi + β(svi − nni,j) {extrapolate samples}
else
xnew = svi + β(nni,j − svi) {interpolate samples}

end if
end for
return Xnew = X ∪ {xnew}
END.

0.021. Thus, this dataset can be considered as an imbal-
anced dataset.

Traffic flows are defined by the sequence of packets that
have same five tuples including the source IP address, the
destination IP address, the source port number, the desti-
nation port number, and protocol type [14]. Each flow is
described by 22 statistical features [2] as shown in Table 1.

We randomly selected 50% data samples for training and
the rest for testing. The techniques of sampling and gener-
ating artificial data were then applied to the training data
to reduce the number of over-class samples or to increase
the number of minor-class samples. The number of unen-
crypted samples (major-class) after applying under-sample
techniques (RUS and CNN) and the number of encrypted
samples (minor-class) after applying over-sampling technique
(ROS) and generating artificial data techniques (SMOTE
and SMOTE-SVM) are presented in Table 2. In the table,
the number of the original encrypted and unencrypted sam-
ples are shown in the first two rows. It can be seen that,
after applying the sampling and generating artificial data
techniques, the number of the samples in two classes are
roughly equal.

Table 3: Confusion matric of encrypted traffic iden-
tification

Positive Prediction Negative Prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

For each classification algorithm (CART and RF), we per-
formed five set of experiments including (1) no technique for
imbalanced data (No-handling); (2) the objective cost func-

Table 1: Statistical features for network flow
Index Feature name Abbreviation

1 min forward packet length minfpktl
2 mean forward packet length meanfpktl
3 max forward packet length maxfpktl
4 std dev forward packet length stdfpktl
5 min backward packet length minbpktl
6 mean backward packet length meanbpktl
7 max backward packet length maxbpktl
8 std dev backward packet length stdbpktl
9 min forward inter arrival time minf iat
10 mean forward inter arrival time meanf iat
11 max forward inter arrival time maxf iat
12 std dev forward inter arrival time stdf iat
13 min backward inter arrival time minbiat
14 mean backward inter arrival time meanbiat
15 max backward inter arrival time maxbiat
16 std dev backward inter arrival time stdbiat
17 duration of the flow duration
18 protocol (tcp, udp) proto
19 total forward packets totalfpackets
20 total forward volume totalfvolume
21 total backward packets totalbpackets
22 total backward volume totalbvolume

Table 2: The number of unencrypted samples in
RUS and CNN and the number of encrypted sam-
ples in ROS, SMOTE and SMOTE-SVM

Methods Number of samples
Original-encrypted 17725

Original-unencrypted 339200
RUS 35450
CNN 18216
ROS 321425

SMOTE 321213
SMOTE-SVM 320888

tion modification (Cost-function); (3) random under sam-
pling technique (RUS); (4) Condense Nearest Neighbours
(CNN); (4) random oversampling technique (ROS); and (5)
generating data technique (SMOTE and SMOTE-SVM). For
all algorithms, we used the their implementation in the Scikit
learn machine learning packet. Scikit learn is a popular ma-
chine learning packet in Python [11]. The default parame-
ters of all algorithms in Scikit learn packet were selected.

To evaluate the performance of the tested methods, we
used the confusion matrix described in Table 3. For the
binary classifier, four possible outcomes are possible. En-
crypted flow correctly detected as encrypted flow (TP), or
incorrectly predicted as unencrypted (FN). The unencrypted
traffic correctly predicted as unencrypted traffic (TN), or
incorrectly predicted as encrypted traffic (FP). From the re-
sults in the confusion matrix, we measure the detection rate
(DR) as the prediction probability of the encrypted traffic
correctly and the false alarm rate (FAR) as the detection
probability of the unencrypted traffic incorrectly. These
measures are defined in the equations 1 and 2. The best
classifier is the algorithm which achieves the highest DR
value the lowest FAR value.
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DR =
TP

TP + FN
(1)

FAR =
FP

FP + TN
(2)

5. RESULTS AND DISCUSSION
This section presents the results of our experiments. Each

experiment was performed ten times. The results were then
averaged over ten runs. The table 4 represents the average
values and the variance of DR and FAR of the CART classi-
fier with and without using method for handling imbalanced
data techniques. It can be seen from this table that most
algorithm achieved genuinely small value of FAR. This is
understandable since the value for FAR is calculated rely-
ing on the ability of false prediction of majority class. With
the huge amount of unencrypted traffic and tiny portion of
encrypted traffic in the dataset, the ratio of false prediction
to total number of unencrypted traffic is very small.

Moreover, this table shows that using techniques for han-
dling imbalanced data is promising in identifying encrypted
traffic. Overall, when the CART algorithm combining with
preprocessing imbalanced data, the DR value was increased
from around 1-7%. More precisely, when no techniques for
addressing imbalanced data was used, the CART classifier
achieved the DR value of 89,48%. When CART was in-
corporated with methods for imbalanced data such as CNN
and SMOTE-SVM, the DR value is 95.07% and 96.12%, re-
spectively. Other techniques including WS, RUS, ROS and
SMOTE also improve the ability to predict the minor class
but the improvement is only marginal. The effective tech-
niques for handling imbalanced traffic data for the CART
classifier are CNN and SMOTE-SVM where SMOTE-SVM
is the best method with the DR value exceeding more 7%
comparing to when only using the CART classifier.

The results of the RF classifier when combining with im-
balanced data processing techniques are showed in Table 5.
Similar to the CART algorithm, the value of FAR is very
tiny. Particularly, some algorithms achieved the value of
FAR at zero. This did not achieve with the CART classifier.
Table 5 also presents the good ability of the RF classifier in
classifying the encrypted network traffic. Comparing with
the results in Table 4, most method for imbalanced data
processing when combined with the RF classifier performed
better than the CART classifier. SMOTE-SVM is the only
technique that achieved lower value of DR when combined
with the RF classifier. However, the value of FAR when
SMOTE-SVM is combined with RF is much less than that
its value when combined with the CART algorithm.

Table 6 presents the processing of the methods for address-
ing imbalanced data. Although the CNN and SMOTE-SVM
has high detection rate, they also need much higher process-
ing time compared to other. The reason is that CNN needs
to scan all the remaining set of samples after each time tak-
ing one sample while in SMOTE-SVM method, to generate
a new sample, the SVM classifier have to run many times to
find the nearest neighbours for each support vectors. There-
fore, using the CNN and SMOTE-SVM can achieve better
performance with the sacrifice of the preprocessing time.
However, the data pre-processing can be executed offline.
Therefore, these methods are the good candidates when the
accuracy of the detection is the main priority.

Overall, the results in this section prove that using tech-
niques for addressing imbalanced data is important for the
encrypted network traffic classification problem where the
huge number of samples are collected and the encrypted
traffic is much more rarely than normal traffic. For this
type of data, an under sampling method such as CNN and a
method for generating artificial samples (SMOTE-SVM) is
the best solutions to pre-process data before using machine
learning algorithms.

6. CONCLUSIONS AND FUTURE WORK
This paper presented an analysis of the impact of the tech-

niques for handling imbalanced data in machine learning
to encrypted traffic classification problem. Three methods
for processing imbalanced data were investigated. The ex-
periments were conducted on a well-known network traffic
dataset. The results showed that using the approaches for
handling imbalanced data is beneficial for machine learn-
ing when they are applied to solve this problem. In the
future, we would like to investigate and develop better ma-
chine learning techniques and better techniques for address-
ing imbalanced data to improve the effectiveness of machine
learning in identifying encrypted network traffic.
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