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Abstract—Spectrum Sensing (SS) techniques play an important
role in the Cognitive Radio (CR) systems. In recent years, many
spectrum sensing techniques have been proposed in the literature
to identify the state of the Primary Users (PUs) in the temporal
domain. However, these techniques are usually interested in the
current state of channel without consideration to their status
in the past. In this paper, we applied Hidden Markov Model
(HMM) for SS in Cognitive Radio Network (CRN) and employ an
Expectation-Maximization (EM) method to estimate parameters
of the HMM in the presence of censored data. Further, we present
an optimal likelihood computation for censored data during the
online channel status estimation procedure. Simulation results
show the effectiveness of the proposed algorithm.

I. INTRODUCTION

With the rapid growth of wireless applications and services

in the recent decades, the demand for access to additional

frequency spectrum has been increasing dramatically. The

radio spectrum resource is a limited resource and is regulated

by government agencies. However, recent studies show that

the fixed spectrum assignment policy enforced today results

in poor spectrum utilization. CRN allows the exibility of

spectrum. It enables dynamic spectrum access (DSA) over

temporarily unused frequency band (called spectrum holes

or white space) already licensed to other PUs. To avoid

interference to primary system, such an unlicensed secondary

CR user (CU) is allowed to access to the spectrum holes only

at particular time and in a specic geographic location, and

must abandon it and seek another whenever the PU returns.

The task of seeking spectrum holes to identify spectrum

access opportunities is called spectrum sensing. Spectrum

sensing can be achieved by a single CU by using basic tech-

niques such as Energy Detection (ED), Matched Filter (MF),

Cyclostationary feature Detection (CFD) [1]. The principle

of ED is based on the difference between the energy of PU

transmission signal and the one of the noise at the receivers.

ED based spectrum sensing has low complexity and requires

no prior knowledge about the PU. However, its performance

is poor when the received SNR is low [8]. A matched filter is

obtained by correlating a known signal called template with an

unknown signal to detect the presence of the template in the

unknown signal. Therefore, with matched filtering detection

method, CU needs to know the transmitted waveform [13].

Cyclostationary detection is based on the cyclostationarity of

modulated signals. This method is robust when the signal

to noise ratio (SNR) is low, however, it requires partial

information of the PU signal and has high computation cost

[4], [11], [12].

Multipath fading, shadowing and hidden node problems also

degrade the performance of single user spectrum techniques.

To overcome this issue, Cooperative spectrum sensing (CSS)

methods were proposed. By cooperation, sensing information

from multiple CU is combined to make the final decision

more accurate than the individual decisions. However, this

performance improvement is achieved with the tradeoff of

additional system hardware [13], [14].

The SS techniques have been proposed in the literature to

identify the state of the PU in the temporal domain. Although,

CU may predict the status of channel based on the past sensing

results, most of these techniques make instantaneous decisions

based on current measurement received at the cognitive radio

node, and they do not consider the transmission pattern of

the PU which can be acquired from past measurements. Thus,

sensing performance can be improved by incorporating mea-

surement history into the sensing decision. Moreover, using all

available data may enable prediction of the PU activity, which

will allow a CU to better plan for its spectrum usage. HMM is

used to predict the usage behavior of a frequency band based

on channel usage patterns [2]. In [4], [5] the authors have

extended their idea of improvising HMM in spectrum sensing.

The accuracy of method in predicting the true states of the

sub-band is substantiated in [6], [7]. In [9], the Baum-Welch

algorithm has been applied to estimate the parameters of the

HMM model. Another HMM-based predictor is also proposed

in [8], but it only deals with deterministic traffic scenarios,

making it non-applicable in practice. When using HMM model

most previous authors assumed that all data could be observed

[4], [5], [6], [7], [8], [9], [10].

This paper addresses such the problem of missing data

when estimating parameters of HMM model. In the HMM

framework, the PU transmission pattern can be modeled by

either a discrete-time Markov chain or a continuous-time

Markov chain. According to our simulation result, we realize

that the modeling of the PU activity by using a continuous-

time Markov chain only improves the performance when the

PU changes its state within a sensing period of CU. Therefore,
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within this paper, we present the proposed method using

discrete-time Markov chain.

The rest of the paper is organized as follows. In Section II,

we formulate the HMM based method for spectrum sensing

and present the Forward algorithm for decoding the HMM in

order to estimate the channel status. Section III presents the

EM algorithm for parameter estimation of emission probability

density function of the HMM, and incremental update method

for re-estimation formulas. In Section IV, a treatment method

for computing likelihood of censored data is presented. The

effectiveness of the proposed method is evaluated in Section V

and the conclusions is presented at the end of the paper.

II. FORMULATION OF HMM IN SPECTRUM SENSING

In [6] a hidden Markov model (HMM) is used to combine

RSSI (Received Signal Strength Index) measurements and

channel utilization information for channel status estimation.

The hidden states comprise the possible channel status, of

which reference RSSI fingerprints have been recorded in the

training phase. The estimation of the channel status can then

be carried out either by the Forward algorithm or by the

Viterbi algorithm. While the former computes the probability

of being in a certain state by gathering the probabilities over

all possible predecessor states, the latter considers only the

most probable predecessor. In the following we consider the

Forward algorithm.

Let st ∈ S(S = {0, 1}) denote the value that the hidden

state variable takes at time t, which we identify with the status

of the considered channel at time t: st = 0 or st = 1 indicates

that the channel is free at time t and the channel is busy at time

t, respectively. Further, let x = [x1, . . . xt] be the sequence

of RSSI measurements up to time t. Our goal is to compute

P (st=j|x1:t), i.e., the probability of being in state j for all

possible channel status S, given all RSSI values measured so

far. Using Bayes’ rule, the probability can be expressed as

follows:

P (st=j|x1:t) =
P (st=j, x1:t)

p(x1:t)

∝ p(st=j, x1:t) =: αt(j), (1)

where the so-called Forward variable αt(j) is the probability

of being at time t in state j, while having observed the

sequence of x1:t.

The forward variable can be written as follows

αt(j) =
∑

i

p(st=j, st−1=i, x1:t)

=
∑

i

p(xt|st=j, st−1=i, x1:t−1)

· P (st=j|st−1=i, x1:t−1)

· P (st−1=i, x1:t−1). (2)

Applying the properties of the HMM, which are depicted

in the graphical model of Fig. 1, and assuming the RSSI

measurements to be statistically independent of each other

given the user location, we arrive at

αt(j) =
∑

i

p(xt|st=j)

· P (st=j|st−1=i) · P (st−1=i, x1:t−1)
︸ ︷︷ ︸

=αt−1(i)

(3)

which is a recursion of the forward variable.

Equation (3) shows how the different knowledge sources

are combined. The transition probabilities P (st=j|st−1=i)
indicate how likely the channel status changes from i to j

within one time step. The choice of the transition probabilities

thus encodes our knowledge about the channel utilization

information. The term p(xt|st=j) is the likelihood of the

RSSI measurement xt, assuming the channel status is j. Its

computation is described in the next section.

st−1 st st+1

ot−1 ot ot+1

Fig. 1. Hidden Markov Model.

III. TREATMENT OF CENSORED DATA FOR PARAMETER

ESTIMATION OF EMISSION PROBABILITY DENSITY

FUNCTION

In this section, we utilize the EM algorithm for estimating

parameters of emission probability density functions of the

HMM which are Gaussian data as developed in [15]. Since

our purpose is to estimate the channel status in CRN, the

HMM has only 2 possible states, i.e., free and busy. For each

state, its emission probability density function is needed to

be estimate. Let y = y1, ..., yN ; yi ∈ R be the complete

data where N is the number of RSSI observations and where

the yi are independent and identically distributed random

variables with Gaussian probability density function (PDF)

pY (yi) = N (yi;µ, σ
2). Observable are x = x1, ..., xN , where

xi = max(yi, c), where c is censoring threshold for each

sample. The purpose is to develop a parameter estimation

method for θ = (µ, σ2) of the underlying Gaussian. Here we

assume that x can be noise only data or PU signal data for

the free channel or busy channel respectively.

Employing the EM algorithm considering that y and x are

the complete and the incomplete data. Expectation of the log-

likelihood of the complete data given the observed data is

computed as follows

Q(θ; θ(κ)) = E
[

ln (pY (y; θ)) |x; θ
(κ)

]

(4)

=

N∑

i=1

∫
∞

−∞

ln (pY (yi; θ)) p
(

yi|xi; θ
(κ)

)

dyi (5)
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where κ is the iteration index and θ = (µ, σ2) is parameter to

be estimated.

In [15] authors have shown that the following iterative

algorithm

µ(κ+1) =
1

N

I1(θ
(κ))

I0(θ(κ))

N∑

i=1

zi +
1

N

N∑

i=1

(1 − zi)xi (6)

(
σ2

)(κ+1)
=

[
I2(θ

(κ))

I0(θ(κ))
− 2µ(κ) I1(θ

(κ))

I0(θ(κ))
+

(
µ2

)(κ)
]

1

N

N∑

i=1

zi

+
1

N

N∑

i=1

(1− zi)
(

xi − µ(κ)
)2

. (7)

delivers unbiased and efficient parameter estimates. Where

binary variable zi indicates whether an observation is clipped

(zi = 1) or not (zi = 0), and

Ij(θ
(κ)) =

∫ c

−∞

yjN
(

y; θ(κ)
)

dy (8)

Further, for updating parameters of emission probability

density function, incremental parameter update is available

which reduces the computational cost dramatically. With EM

algorithm, the incremental update of parameters can be derived

analytically, assuming that w.l.g the first K test statistics is

number of observable data. Eq. 6 and 7 can be re-written as

µ(κ+1) =
N −K

N

I1(θ
(κ))

I0(θ(κ))
+

1

N

K∑

i=1

xi (9)

(
σ2

)(κ+1)
=

N −K

N

[
I2(θ

(κ))

I0(θ(κ))
− 2µ(κ) I1(θ

(κ))

I0(θ(κ))
+

(
µ2

)(κ)
]

+
1

N

(
K∑

i=1

x2
i − 2µ(κ)

K∑

i=1

xi +Mµ2(κ)

)

.

(10)

Eq. 9 and Eq. 10 indicate that for incremental update, it is only

necessary to store the summation of observable data
∑K

i=1 xi,

summation of square of observable data
∑K

i=1 x
2
i , number

of observable data K and number of total measurements N .

When there are some new RSSI measurements available, using

the estimated parameters of the previous estimation procedure

as the initial values and using incremental update formulas, the

required time to produce next estimated noise power is much

less than the necessary time to estimate noise power from

scratch. Incremental update method allows HMM parameter

updating during the operation of the CRN with reasonable

processing period.

IV. TREATMENT OF SENSORED DATA FOR LIKELIHOOD

COMPUTATION

During state estimation we need to compute the likelihood

p(xt|st) of an observation xt for an hypothesized channel

status st. To account for censored data this is carried out as

follows

p(xt|st) =

{
N (xt; µ̂st , σ̂

2
st
), if x > c

I0(µ̂st , σ̂
2
st
), if x = c

. (11)

Here, (µ̂st , σ̂
2
st
) are the estimated parameters of the state st.

I0(µ̂st , σ̂
2
st
) is computed using Eq. 8.

It is noted that censored data can be used to compute

likelihood using this procedure instead of ignoring them in

case of regular likelihood computation. As a consequence, it

improves the state estimation performance.

V. SIMULATION RESULTS

In this section we are going to evaluate the effectiveness of

the proposed method for spectrum sensing in cognitive radio

network. Because real data is not available, we will consider

artificially generated data only.

In order to validate our proposed method and examine the

accuracy of the Forward algorithm, a typical case is consid-

ered. To compare with the proposal in [6], the simulation setup

is produced in the same ways as described there. Assuming

that in training period, the channel utilization percentage is

70%, employing this information, we define the transition

matrix as follows

A =

(
0.7 0.3
0.7 0.3

)

(12)

The initial probability for each state of the HMM must

satisfy the following equation:

π0 + π1 = 1 (13)

In this simulation, we also employ the knowledge of channel

utilization to define the initial probabilities: π0 = 0.7 for busy

channel and π1 = 0.3 for free channel.

These transition matrix and initial probabilities are fixed

during the simulation process. Simulation procedure has 4
steps as follows:

• Step 1: Use the initial probabilities and transition matrix,

generate the Markov state sequence of length L = 100,

resulting in a path s1, s2, · · · , s100.

• Step 2: Generate data y1, y2, · · · , y100 using the simulated

path s1, s2, · · · , s100. The generated data y1:100 is then

censored with the censoring threshold c = −120 dBm

which is the minimum observable RSSI of the receiver.

The censored data is denoted as x1, x2, · · · , x100, where

xi = max(yi, c).
• Step 3: Apply the Forward algorithm detailed in Sec-

tion II to the data x1, x2, · · · , x100 to predict the under-

lying path as ŝ1, ŝ2, · · · , ŝ100.

• Step 4: Prediction accuracy (PA) is computed by

PA =
#{1 ≤ k ≤ 100 : ŝk = sk}

100
∗ 100 (14)

Step 1 to 4 are repeated for 100 times. The performance of

the proposed methods are shown in Fig. 2, Fig. 3 and Fig. 4

Fig. 2 and Fig. 3 show the percentage of estimation accuracy

when employing regular ML method and EM method, respec-

tively, for parameter estimation of the emission probability

density functions of the HMM. Fig. 4 shows the comparison

of the performance of spectrum sensing between 2 approaches.

As can be seen in Fig. 4, the proposed method obviously
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Fig. 2. Percentage of accuracy when employing regular ML method for HMM
parameter estimation (ML approach).
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Fig. 3. Percentage of accuracy when employing EM method for HMM
parameter estimation and treating of censored data when computing likelihood
(EM approach).

outperforms the other by the mean of channel status estimation

accuracy. The observed improvement is approximately 3%. It

must be noted that the simulation was performed for the case

of very low SNR. In case of high SNR, the performance of the

proposed method is in the same order with the conventional

energy detection based method.

VI. CONCLUSIONS

In this paper, HMM based method was employed to estimate

channel status of a CRN. As far as we acknowledge, the previ-

ous research have not considered the censored data during the

procedure of HMM parameter estimation in the training phase

and likelihood computation in the classification (channel status

estimation) phase. Therefore, this paper tried to address such

the censoring problem by employing EM algorithm for HMM

parameter estimation. Further, the likelihood computation pro-

cedure also took into account the problem of censored data.

Simulation results demonstrate that the proposed method is

able to produce reasonable channel status estimation accuracy

in case of very low SNR. Performance of proposed method

was compared with another HMM based method, considerable

EM approach

ML approach
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14

Fig. 4. Performance comparison between EM approach (proposed method)
and ML approach.

improvement of classification result was observed. It can be

also concluded that HMM based spectrum sensing is the

promising approach for the CRN system where SRN is pretty

low.
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