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Abstract—In this paper, we consider a cognitive two-way relay
system with multiple relay nodes and multiple primary receivers
over Nakagami-m fading channels. Relay nodes process signal
following selective decode-and-forward (DF) relay technique. The
opportunistic relay selection is used to choose the best relay. We
derive the exact closed-form expression of the overall outage
probability over Nakagami-m fading channels. These analytical
results are exactly verified by Monte-Carlo simulation.

Index Terms—Two-way relaying, cognitive radio, multiple
receivers, decode-and-forward, Nakagami-m fading.

I. INTRODUCTION

Cognitive radio technique has emerged as a promising
solution in order to increase in system spectral efficiency [1].
In cognitive radio systems, secondary users (SUs) are allowed
to operate on the radio frequency spectrum that have been
licensed for primary users (PUs) as long as the communication
of primary networks are protected [2]. To avoid any interfer-
ence to primary networks, the transmit power of secondary
transmitters is usually limited resulting the secondary network
coverage relatively small. To increase the network coverage of
secondary networks, relaying and cooperative communications
are efficient solutions [2], [3].

To further improve the system spectral efficiency, two way
relaying has been considered for cognitive radio networks [4]–
[10]. In particular, Boris el. al. in [4] proposed two half-
duplex relaying protocols where a bidirectional connection
between two wireless terminals is established using one half-
duplex AF or DF relay that is able to mitigate the loss
in spectral efficiency due to the half-duplex operation of
the relays. Duy et. al. in [5] derived an exact formula of
outage probability for opportunity node selection DF two-
way relay communication systems. Paper [6] solved the best
relay node selection problem and simultaneously allocated
optimal power among secondary nodes. In [7], the authors
analyzed the performance of opportunity node selection two-
way relay communication systems having a primary receiver
and derived an exact expression of system outage probability
and average bit error rate probability over Rayleigh fading
channels. Considering primary transmitter effect on secondary
system in two-way relay network, Zhang et. al. [8] derived the
exact outage probability of the best relay node selection two-
way secondary communication systems. Considering two-way
relay systems having many primary transmitters and receivers,
in [9] and [10], the authors analyzed the performance of the
opportunity the best relay node selection AF (amplify-and-
forward) and DF two-way relay communication systems on

Rayleigh fading channel. However, it is assumed in [9], [10]
that the number of relay nodes should be greater than the
number of primary receivers making the results inapplicable
for the case of arbitrary number of relay nodes and primary
receivers.

In this paper, we study the outage probability of secondary
two way relaying networks with multiple relays and multiple
primary receivers . We also propose a new derivation approach,
which is valid for all cases of the number of secondary
relays and the number of primary receivers. Different with
all of the above-mentioned papers, the channel model under
consideration is Nakagami-m fading channels, which is well
known as a versatile statistical distribution used to model
a variety of fading environments covering Rayleigh fading
channels as a special case.

The rest of this paper is organized as follows. In Section II,
we introduce the system and channel model used in this paper.
Section III presents the detailed derivations of the outage
probability. Section IV will give the numerical results used
to examine the effects of the system and channel parameters,
followed by some conclusions in Section V.

II. SYSTEM MODEL
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Fig. 1. A cognitive two-way relay network with multiple primary receivers.

In the considered cognitive two-way relaying network, two
secondary sources are denoted as A and B, respectively. N
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secondary relays are denoted as Ri with i = 1, 2, . . . , N coex-
isting with a primary transmitter, denoted as PU− Tx, and L
primary receivers, denoted as PU− Rxk with k = 1, 2, . . . , L.
These mentioned nodes are illustrated in Fig. 1. In this model,
we assume that there is no direct link between node A and
node B due to the severe shadowing and channel pathloss.
Each node is equipped with single antenna and is assumed to
operate in a half-duplex mode.

Assuming that the channels amplitudes are flat-fading
Nakagami-m distributed, the fading channel gain, i.e., |hXY|2
with hXY representing the channel coefficient of the X → Y
link with X ∈ {A,B,Ri} and Y ∈ {A,B,Ri ,Pk}, is a random
variable having gamma distribution with parameters mXY and
ΩXY. As a result, the cumulative distribution function (CDF)
and probability density function (PDF) of |hXY|2 is can be
written respectively as

F|hXY|2(z) = 1− Γ (mXY, αXYz)

Γ (mXY)
, (1)

f|hXY|2 (z) =
αmXY

XY

Γ (mXY)
zmXY−1e−αXYz. (2)

Each transmission period between node A and node B is
divided in three phases, where the transmit powers of all
secondary transmitters are properly adjusted, i.e., below the
peak interference constraint at primary receivers denoted as
Ĩp, to protect the communication of the primary network.
Considering the maximum power of secondary transmitters
(P̃m), the transmit power of node A, node B and relay Ri are
respectively given as

PA = min

P̃m, Ĩp

max
k=1,2,...,L

|hAPk |
2

 , (3)

PB = min

P̃m, Ĩp

max
k=1,2,...,L

|hBPk |
2

 , (4)

PRi = min

P̃m, Ĩp

max
k=1,2,...,L

|hRiPk |
2

 . (5)

In the first phase, node A transmits its data to all relay
nodes. Then, node B broadcasts its data to relay nodes in the
second phase. The instantaneous signal-to-noise ratios (SNR)
received at the ith relay node in the first and second phase are
respectively written as

γARi = |hARi |
2

min

Pm, Ip

max
k=1,2,...,L

|hAPk |
2

 , (6)

γBRi = |hBRi |
2

min

Pm, Ip

max
k=1,2,...,L

|hBPk |
2

 . (7)

where Pm = P̃m/N0, Ip = Ĩp/N0 and the additive white
Gaussian noise at secondary receivers have the common dis-
tribution CN (0, N0) (circularly symmetric complex Gaussian
variables with zero mean and variance N0).

At the end of the second phase, all relays will decode the
received signals from A and B using selective decode-and-
forward. Denoting RA and RB as the set of successfully
decoding relays from A and B, respectively, we can write the
set of relays both successfully decoding relays from A and B
as R = RA ∩RB.

In the third phase, only the best relay among R will
broadcast the encoded signal towards A and B. Denoting Ri∗

as the selected relay, we have [8]:

i∗ = arg max
i=1,2,...,n

γRi , (8)

where n is the cardinality of R, i.e., n = |R| and

γRi = min (γRiA, γRiB) . (9)

In (9), γRiA and γRiB are of the form as follows:

γRiA = |hRiA|
2

min

Pm, Ip

max
k=1,2,...,L

|hRiPk |
2

 , (10)

γRiB = |hRiB|
2

min

Pm, Ip

max
k=1,2,...,L

|hRiPk |
2

 . (11)

Making use the fact that γRi are independent each other, we
can write γRi∗ as

γRi∗ = max
i=1,...,n

γRi . (12)

III. PERFORMANCE ANALYSIS

In this section, we will derive the closed-form expression for
the system outage probability over Nakagami-m fading chan-
nels. Recalling that the number of successful decoding nodes
in the first phase is a discrete random number, the probability
of the event |RA| = nA with nA ∈ {0, 1, 2, . . . , N} is as
follows:

Pr(|RA| = nA) (13)

=

(
N

nA

)
Pr

[
∩

i∈RA

(γARi≥γth) , ∩
i/∈RA

(γARi<γth)

]
.

All related channels are assumed to be independent, then

Pr(|RA| = nA) (14)

=

(
N

nA

)[
1− FγARi

(γth)
]nA
[
FγARi

(γth)
]N−nA

,

where γth is the outage SNR threshold and FγARi
(γ) denotes

the CDF of γARi .
Similar to the first phase, we have Pr(|RB| = nB) for the

second phase as

Pr(|RB| =nB)

=

(
N

nB

)
Pr

[
∩

i∈RB

(γBRi ≥ γth) , ∩
i/∈RB

(γBRi < γth)

]
=

(
N

nB

)[
1− FγBRi

(γth)
]nB
[
FγBRi

(γth)
]N−nB

.

(15)
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At the end of the second phase, the selected relay is chosen
from the intersection of two sets RA and RB, i.e., R = RA∩
RA, contains all of relays that are success in decoding in the
first and the second phase. Then, we have n ≤ nA, n ≤ nB

and n = |R|. For ease of presentation and with no loss of
generality, it is assumed that

RA = {R1, R2, . . . , Rn, Rn+1, . . . , Rn+tA} , (16)
RB = {R1, R2, . . . , Rn, Rn+tA+1, . . . , Rn+tA+tB} , (17)
R = {R1, R2, . . . , Rn} , (18)

where 0 ≤ tA ≤ N − n and 0 ≤ tB ≤ N − n− tA.
For the given combination of (n, tA, tB), we shall have(

N
n

)(
N−n
tA

)(
N−n−tA

tB

)
instances having n relay nodes decoding

successfully both from node A and node B with tA nodes
only decoding from node A successfully and tB nodes only
decoding from node B successfully. Based on the theorem of
total probability, we have

OP =
N∑
n=0

Pr (|R| = n) Pr (γRi∗ < γth). (19)

The following theorem will provide the closed-form expres-
sion of OP.

Theorem 1: Over Nakagami-m fading channels, the system
outage probability is expressed under a closed-form expression
as

OP =
N∑
n=0

N−n∑
tA=0

N−n−tA∑
tB=0

(
N

n

)(
N − n
tA

)(
N − n− tA

tB

)
×
[
1− FγARi

(γth)
]n+tA[

FγARi
(γth)

]N−n−tA
×
[
1− FγBRi

(γth)
]n+tB[

FγBRi
(γth)

]N−n−tB
×
[
FγRi (γth)

]n
, (20)

where FγARi
(γ), FγBRi

(γ), and FγRi (γth) are given as (21),
(22), and (23), shown at the top of the next page.

Proof: To obtain OP, we need to calculate FγARi
(γth),

FγBRi
(γth), and FγRi (γth). We first consider FγARi

(γ), which
can be written as

FγARi
(γ) = Pr (γARi < γ)

= Pr

|hARi |
2

min

Pm, Ip

max
k=1,2,...,L

|hAPk |
2

<γ
 , (24)

For notational simplicity, we introduce Xai = |hARi |
2, Xia =

|hRiA|
2, Xak = max

k=1,2,...,L
|hAPk |

2, Xip = max
k=1,2,...,L

|hRiPk |
2,

ε =
Ip
Pm , the CDF of γARi can be rewritten as

FγARi
(γ) = Pr

(
Xai <

γ

Pm
, Xak < ε

)
+ Pr

(
Xai <

γXak

Ip
, Xak > ε

)
. (25)

It is noted that Xak is the maximum of L i.i.d. gamma random
variables. The following corollary will be useful in deriving
the CDF and PDF of γARi .

Corollary 1: Let Z be the maximum of L i.i.d. gamma
random variables Zi, (i = 1, 2, . . . , L) with parameters mz

and αz . The CDF and PDF of the random variable Z are
respectively given by

FZ (z) =
L∑
u=0

(
L

u

)
(−1)

u
∑

l1,l2,...,lmz≥0
l1+l2+···+lmz=u

u!

l1!l2! . . . lmz !

×
mz−1∏
w=0

(
αw
z

w!

)lw+1

z l̃ze−αzuz, (26)

fZ (z) =
L−1∑
u=0

(
L− 1

u

)
(−1)

u
∑

l1,l2,...,lmz≥0
l1+l2+···+lmz=u

u!

l1!l2! . . . lmz !

×
mz−1∏
w=0

(
αw
z

w!

)lw+1

zmz+l̃z−1e−(u+1)αzz, (27)

where l̃z =
mz−1∑
w=0

wlw+1,
(
n
k

) ∆
= n!

k!(n−k)! , and 0 ≤ k ≤ n.

Proof: See [11].
From (24) and utilizing Corollary 1, we have

FγARi
=FXai

(
γ

Pm

)
FXak (ε) (28)

+

∞∫
ε

γ
Ip
xak∫

0

fXai

(
γxak
Ip

)
fXak (xak) dxaidxak

=FXai

(
γ

Pm

)
FXak (ε) + 1− FXak (ε)

−
∞∫
ε

Γ

(
mai,

αaiγxak/Ip
Γ (mai)

)
fXak (xak) dxak. (29)

Using [12, Eq. (8.352.2)] to expand the incomplete Gamma
function as a finite sum, the integral in (29) is computed as
∞∫
ε

Γ

(
mai,

αaiγxak/Ip
Γ (mai)

)
fXak (xak) dxak

=

∞∫
ε

(mai − 1)!
1

Γ (mai)
e−αaiγxak/Ip

mai−1∑
s1=0

(αaiγxak/Ip)
s1

s1!

×
L−1∑
u1=0

(
L− 1

u1

)
(−1)

u1
∑

l1,l2,...,lmak≥0
l1+l2+···+lmak=u1

u1!

l1!l2! . . . lmak !

×
mak−1∏
w1=0

(
αw1

ak

w1!

)lw1+1 Lαmakak

Γ (mak)
xmak+l̃ak−1
ak e−(u1+1)αakxakdxak.

(30)

where l̃ak =
mak−1∑
w1=0

w1lw1+1.

With the help of [12, eq. 3.351.211] and making use the fact
that γARi and γBRi take the same form, the CDF of γARi and
γBRi are derived as (21) and (22), respectively, shown at the
top of the next page, where Xbk = max

k=1,2,...,L
|hBPk |

2,l̃bk =

mbk−1∑
w2=0

w2lw2+1.
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FγARi
(γ) = FXai

(
γ

Pm

)
FXak (ε) + 1− FXak (ε) −

L−1∑
u1=0

(
L− 1

u1

)
(−1)

u1
∑

l1,l2,...,lmak≥0
l1+l2+···+lmak=u1

u1!

l1!l2! . . . lmak !

×
mak−1∏
w1=0

(
αw1

ak

w1!

)lw1+1 Lαmakak

Γ (mak)

mai−1∑
s1=0

(αaiγ/Ip)
s1

s1!
×

Γ
(
mak + l̃ak + s1, ((u1 + 1)αak + αaiγ/Ip) ε

)
[(u1 + 1)αak + αaiγ/Ip](

mak+l̃ak+s1)
. (21)

FγBRi
(γ) = FXbi

(
γ

Pm

)
FXbk (ε) + 1− FXbk (ε) −

L−1∑
u2=0

(
L− 1

u2

)
(−1)

u2
∑

l1,l2,...,lmbk≥0
l1+l2+···+lmbk=u2

u2!

l1!l2! . . . lmbk !

×
mbk−1∏
w2=0

(
αw2

bk

w2!

)lw2+1 Lαmbkbk

Γ (mbk)

mbi−1∑
s2=0

(αbiγ/Ip)
s2

s2!
×

Γ
(
mbk + l̃bk + s2, ((u2 + 1)αbk + αbiγ/Ip) ε

)
[(u2 + 1)αbk + αbiγ/Ip](

mbk+l̃bk+s2)
. (22)

FγRi (γ) = 1−
Γ
(
mia,

αiaγ
Pm

)
Γ (mia)

Γ
(
mib,

αibγ
Pm

)
Γ (mib)

(
1− Γ (mip, αipε)

Γ (mip)

)L
−
mia−1∑
wa=0

(αiaγ/Ip)

wa!

wa mib−1∑
wb=0

(αibγ/Ip)

wb!

wb L−1∑
u3=0

(
L− 1

u3

)

× (−1)
u3

∑
l1,l2,...,lm

ip
≥0

l1+l2+···+lmip=u3

u3!

l1!l2! . . . lmip !

mip−1∏
w3=0

(
αw3
ip

w3!

)lw3+1 Lα
mip
ip

Γ (mip)
×

Γ
(

wa + wb + l̃ip +mip,
(
αia+αib

Ip
γ + (u3 + 1)αip

)
ε
)

[(αia + αib) γ/Ip + (u3 + 1)αip]
(wa+wb+l̃ip+mip)

.

(23)

Having FγARi
(γ) and FγBRi

(γ) at hands, we are now in a
position to derive the CDF of γRi (γ) = min(γRiA, γRiB). It
is noted that γRiA and γRiB are correlated due to the common
random variable Xip. Using the conditional probability, we can
write the CDF of γRi as follows:

FγRi (γ) =

∞∫
0

FγRi (γ|Xip)fXip (xip) dxip. (31)

where FγRi (γ|Xip) is given by

FγRi (γ|Xip)=1− Pr (γRiA > γ|Xip) Pr (γRiB > γ|Xip)

=1−
[
1−FγRiA (γ|Xip)

] [
1−FγRiB (γ|Xip)

]
.

(32)

From (10) and (11), we easily find out

FγRiA (γ|Xip) =

 FXia

(
γ
Pm

)
, for Xip < ε

FXia

(
γ
Ip
Xip

)
, for Xip > ε

(33)

and

FγRiB (γ|Xip) =

 FXib

(
γ
Pm

)
, for Xip < ε

FXib

(
γ
Ip
Xip

)
, for Xip > ε

(34)

leading to (32) being of the form as

FγRi (γ) =

ε∫
0

FγRi (γ|Xip)fXip (xip) dxip︸ ︷︷ ︸
I1

+

∞∫
ε

FγRi (γ|Xip)fXip (xip) dxip︸ ︷︷ ︸
I2

. (35)

To obtain FγRi (γ), we need to derive I1 and I2. We first
consider I1, which is computed as

I1 =

ε∫
0

[
1−
[
1−FXia

(
γ

Pm

)][
1−FXib

(
γ

Pm

)]]
fXip (xip) dxip

=

ε∫
0

fXip (xip) dxip (36)

− Γ (mia, αiaγ/Pm)

Γ (mia)

Γ (mib, αibγ/Pm)

Γ (mib)

[
1− Γ (mip, αipε)

Γ (mip)

]L
.
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For I2, we have

I2 =

∞∫
ε

(
1− Γ (mia, αiaγxip/Ip)

Γ (mia)

Γ (mib, αibγxip/Ip)

Γ (mib)

)
× fXip (xip) dxip

=

∞∫
ε

fXip (xip) dxip

−
∞∫
ε

mia−1∑
wa=0

(αiaγ/Ip)

wa!

wa mib−1∑
wb=0

(αibγ/Ip)

wb!

wb

×
L−1∑
u3=0

(
L− 1

u3

)
(−1)

u3
∑

l1,l2,...,lm
ip
≥0

l1+l2+···+lmip=u3

u3!

l1!l2! . . . lmip !

×
mip−1∏
w3=0

(
αw3
ip

w3!

)lw3+1 Lα
mip
ip

Γ (mip)
x

wa+wb+mip+l̃ip−1
ip

× e−((αia+αib)γ/Ip+(u3+1)αip)xipdxip, (37)

where l̃ip =
mip−1∑
w3=0

w3lw3+1.

Observing I1 and I2, we note that
ε∫
0

fXip (xip) dxip +

∞∫
ε

fXip (xip) dxip = 1. In addition, using the identity [12,

Eq. (8.352.2)] for the second integral in (37), after tedious
manipulations, we obtain the closed form expression for
FγRi (γ) as in (23), which also completes the proof.

IV. NUMERICAL RESULTS

The purpose of this section is to verify the proposed deriva-
tion approach and to study the performance of the system
under consideration. For the network model, it is assumed that
all nodes are located on a 2D plane and the distance between
the two source terminals are normalized by one. Without loss
of generality, we set coordinates of all nodes as follows:
A(0,0), B(1,0), PU− Rxk(0.5,1), and Ri(0.5, 0) ∀i. Taking
into account the channel path loss, we adopt αXY = d−ηXY ,
where dXY is the physical distance between node X and Y
and η is the path loss exponent. For illustrative purpose, we
set η = 3 and γth = 1.

Fig. 2 presents the secondary system outage probability in
three different cases with Pm = 10 dB, i.e., Case 1: N = L =
1, mia = 1,mib = 2, mip = 1,map = 3,mbp = 1; Case 2:
N = L = 2, mia = 2, mib = 2, mip = 2, map = 2,mbp =
1; and Case 3: N = L = 3, mia = 1,mib = 3, mip =
1,map = 2, mbp = 3. It can be seen that the analysis results
are in excellent agreement with the simulation results confirm
the correctness of the derivation approach. Among three cases,
Case 2 outperforms Case 3, which, in turns, outperforms Case
1, showing that the system outage probability depends not only
the number of secondary relays but also the number of primary
receivers.

In Fig. 3, we study the effect of number of relays on the
system performance by plotting the system outage probability
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Fig. 2. System outage probability versus Ip.

0 2 4 6 8 10 12 14 16 18 20

10−2

10−1

100

N = 1

N = 2

N = 3

L = 3

Ip [dB]

O
ut

ag
e

pr
ob

ab
ili

ty

analysis
simulation

Fig. 3. Effect of the number of relay nodes on the system outage performance.

as a function of Ip. We fix the channel and network parameters,
i.e., L = 3, mia = 1,mib = 2, mip = 1,map = 3,mbp = 1,
Pm=10 dB while varying the number of relays from 1 to 3, i.e.,
N = 1→ 3. It can be seen that increasing the number relays
will improve the system outage probability significantly. In
addition, there exists the irreducible outage probability at high
regime of Ip due to the constraint of Pm. As one would expect,
the irreducible outage probability becomes smaller since the
number relays increases.

In Fig. 4, the effect of Pm is investigated by increasing
Pm from 5 dB to 10 dB. We consider two cases of network
models including N = L = 2 and N = L = 3. As
expected, we can see that increasing Pm will make the
system outage probability floor smaller. Stated another way,
the system outage probability just depend on the Pm at high
regimes of Ip. This observation is also repeated in Fig. 5,
where we plot the system outage probability versus Ip by
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Fig. 4. Effect of Pm on the system outage probability.
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Fig. 5. Effect of the number of primary receiver on the system outage
probability.

varying L and fixing N . Fig. 5 shows that for a fixed number
of L, diminishing gain is obtained as the number of relays
increases. Also, we can see that the system outage probability
does not depend on the number of relays at high SNRs.

V. CONCLUSION

In this paper, we have studied the outage performance of
cognitive two-way DF relay network with multiple primary
receivers and multiple relay nodes over Nakagami-m channels
is investigated. The obtained results consider the results in [10]
as a special case. Numerical results showed that the system
outage probability of secondary networks depends not only
on the number of relays but also on the number of primary
receivers and the maximum transmit power at secondary
transmitters.
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