
  

 

Abstract— This paper presents a systematic method to build 

the kinematic model and dynamic model of a nonholonomic 

wheeled mobile robot (WMR) with longitudinal and lateral slip, 

followed by the design of a control law using the input-output 

feedback linearization method to drive the mobile robot to 

track a given trajectory while longitudinal, and lateral slip 

exist. The asymptotical stability of the system is verified by 

solving second-order differential linear equations to find 

solutions for history time. Matlab-Simulink simulation results 

show the correctness and performances of the control law. 

I. INTRODUCTION 

The wheel mobile robot has been researched and applied at 
many places in the world in recent years. It would be an area 
attracting attention of many researchers from everywhere in 
the world. The reason why the wheeled mobile robot 
(WMR) is applied widely is that it could be able to work in 
an unlimited area, and especially able to implement tasks 
intelligently without any human action. Besides, it can 
replace people on dangerous tasks such as look for explosive 
materials, transport of goods in harmful environments, etc. 

A lot of researching effort for wheeled mobile robot focused 
on problems of motion control. In [1], [2], [3], [4] the 
controllers were designed taking account of nonholonomic 
kinematic model and dynamic model. In that situation, the 
absolute condition in which there is only pure rolling is 
always ensured. 

However, in many practical applications, the condition in 
which there are not any slips between wheels and floor is not 
always satisfied. That condition depends on many factors, 
namely a centrifugal force acting on WMR when it moves in 
a circular path, an external force acting on WMR when it 
collides with another object, the frictional force between 
floor and walls, etc.  Consequently, if we want motion 
control problem to be  solved, then in kinematic, dynamic 
models of WMR, we have to take account of slips. In [5], the 
authors develop a generalized kinematic model, including 
various slips such as lateral slip, longitudinal slips. In [6], a 
central force in the lateral direction of WMR is suggested to 
regulate the position of WMR when there is lateral slip. 
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For longitudinal slip, in [7], the coefficient of friction was 
modelled as a function of slip ratio. In [8], only longitudinal 
slip has been taken into account when an autonomous robot 
for agriculture was shown. Next, in [9], the authors have 
built a path-following problem when there are both 
longitudinal and lateral slips. After that, a motion controller 
was designed, which has taken into account longitudinal 
slip. For lateral slip, this controller bases on a lateral friction 
model. 

The contribution of this paper comprises: 

 Modeling a kinematic and dynamic model of a WMR 

which have incorporated both lateral and longitudinal 

slips. 

 Designing a control law using the input-output feedback 

linearization method for the WMR to track a desired 

trajectory in such a way that tracking errors converge on 

zeros asymptotically. 

This paper is organized as follows. Section 2 derives both 
kinematic and dynamic models which consider both 
longitudinal and lateral slip. Section 3 discusses how to 
design a control by using the input-output feedback 
linearization method to drive the WMR track to a desired 
trajectory in such a way that tracking errors converge on 
zeros asymptotically. Simulation results, performed by 
Matlab-Simulink are shown in Section 4. Finally, Section 5 
presents our conclusions. 

II. MODELLING 

A. Kinematic model 

Let us consider a nonholonomic WMR as Fig. 1. V,  is 
the linear and angular velocity of the WMR’s platform, 
respectively. When there are not any slips between the 
wheels and the floor, V and  are computed, respectively, as 
follows: 
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where ,R L  are the angular velocities of the right and left 

wheel, respectively; r is the radius of the wheels; b is a half 
of the distance between the two wheels. Consequently, the 
kinematic equations of the WMR can be expressed by: 

 cosMx V   

 sinMy V   
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Figure 1. Nonholonomic wheeled mobile robot. 

where ,M Mx y  are coordinates of the midpoint, M, of the 

line segment joining the right and left wheel (see Fig. 1);  is 
the direction of the WMR. Therefore, the nonholonomic 
constraint equations of the WMR are expressed by: 

 cos sinR M Mr x y b       

 cos sinL M Mr x y b       

 sin cos 0M Mx y     

Alternatively, when longitudinal and lateral slips between 
the wheels and the floor exist, let us express the coordinates 
of lateral slip, longitudinal slip of the right and left wheel as 

, ,R L   , respectively. In this case, (1), (2) are rewritten as 

follows: 

 2 2V     


2 2

R L R Lr r

b b

   


 
   

where   is the linear velocity along the longitudinal 
direction of the WMR’s platform and is presented by: 


2 2

R L R Lr r    
    

In this context, the kinematic model of the WMR is 
expressed as follows: 

 cos sinMx      

 sin cosMy      

    

Supposing that , ,M Mx y , ,R L   are always measured 

exactly, according to the nonholonomic constraint equations 
of the WMR, the velocities of the slips can be represented as 
follows: 

 cos sinR R M Mr x y b          

 cos sinL L M Mr x y b          

 sin cosM Mx y      

B. Dynamic Model 

Without loss of generality, Let M be the center point of mass 
of the WMR’s platform, and mM is the mass of this platform, 
and  IM is the inertial moment of this platform about the 
vertical axis through the point M.  

The kinetic energy of this platform is computed as follows: 

  2 2 21 1

2 2
M M M M MK m x y I     

The kinetic energy of the right and left wheel is computed, 

respectively, as follows: 

  2 2 2 2 2 21 1 1

2 2 2
L W L L W L DK m r I I          

  2 2 2 2 2 21 1 1

2 2 2
R W R R W R DK m r I I          

where IW or ID respectively is an inertial moment of each 
wheel about its rotational axis and diameter axis. 

The total kinetic energy of the whole system is: 
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The potential energy of whole system always equals zero, so 

its Lagrange function is L K . 

Let  
T

, , , , , , ,M M R L R Lx y      q be the Lagrange 

coordinate vector, the kinematic constraint equation can be 

written as follows: 

   A q q 0  

where  A q  is the matrix associated with the kinematic 

constraints. Comparing (15), (16), (17) with (22),  A q  can 

be described as follows: 

 
cos sin 0 1 0 0

cos sin 0 0 1 0

sin cos 0 1 0 0 0 0

b r

b r

 
 

 

  
    
  

A q  

The Lagrange equation can be written in the following form: 

 Td L L

dt

  
   

  
u A λ

q q
 

 where  
T

1 2 3, ,  λ is the vector of Lagrange multipliers, 

u is the generalized forced vector. Solving this Lagrange 
equation, the dynamic equation of the whole system can be 
represented by: 

 T
1 2 3lat lonF   Mq N τ N N F A λ  

 
Figure 2. The output vector y 
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where

T

1

0 0 0 0 0 0 1 0
,

0 0 0 0 0 0 0 1
 

   
N  

T

2 0 0 010 0 0 0N ,

T

3

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
 

   
N  are input matrices,  

T
,R L τ  is 

the torque vector including torques at the rotational axis of 

the right and left wheels, Flat is a unknown force making 

lateral slip,  
T

,lon R LF FF  is a vector which includes 

unknown forces, FR and FL, making longitudinal slip at the 

right and left wheel, respectively, and M is an 88 diagonal 

positive definite inertia matrix and is represented as (26). 

It is easy to achieve the following equation: 

      1 2 3  q S q v S q S q γ  

where 
T

,R L    v , S1(q), S2(q), and S3(q) are matrices 

described as follows: 
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Next, taking the time derivative of equation (27) gives: 
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q S q v S q v S q

S q S γ S γ
 

Moreover, it is always true to write: 


     

   

T T
1 1 1

T T
1 2 1 3

, ,

, ,
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S q A q 0 S q N I

S q N 0 S q N 0
 

Hence, pre-multiplying the both sides of the equation (25) 

with  T
1S q  yields: 
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Also, it is obvious that 
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S q MS q 0

S q MS q 0 S q MS q 0
 

Substituting (31) into (30) results in: 
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S q MS q v S q MS q

S q MS q γ τ

 

Rewriting equation (32) yields: 

   mv b zγ τ  

where    
T 11 12
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III. DESIGNING CONTROL LAW 

A. Problem statement 

Let D(xD,yD) be a target which is moving with a invariable 
linear velocity, VD, along an orientation D which is either 
variable or constant. Thus, the motion equation of the point 
D can be written as follows: 
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Figure 3. Scheme of control system for a nonholonomic wheeled mobile robot when there are slips. 
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The requirement of this control problem is to control the 
WMR so that point P has to track point D with tracking 
errors converge on zero asymptotically (Fig. 2). 

B. Describing the input- output relationship 

In order to describe the input-output relationship of this 
system, an output vector of the whole system is presented in 
the following form: 
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Taking the derivative with respect to time of (35) yields:  
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Taking the time derivative of equation (36) again results in: 
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where f is a non-linear component which will be determined 

lately,   ,
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  Hence, it yields: ,    and .     

In (37), f is a vector depending on the trajectory of target D. 
If D moves on a line with linear velocity VD and orientation 
D, then f is replaced by fL as follows: 
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Conversely, if D(xD,yD) moves with an invariable linear 

velocity VD along a circular path as follows: 

    
2 2 2

D O D Ox x y y R     

then f is replaced by fC as follows: 
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In other words, it can be rewritten (37) as follows: 

   y hv f  

where 
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h  

If  y1 > 0, then h is always an invertible matrix. 

With torque vector τ  considered as the input vector, 

combining (33) with (41), we achieve: 

  1     y hm τ b zγ f  

C. Design the input- output feedback linearization control 

law 

We define the tracking error vector as   
T

1 2,x xx =  

desired y y  where desiredy  is the desired vector of vector 

y. 

To choose a control law using the input-output feedback 
linearization method, we propose a scheme of the whole 
system as Fig. 3, and the torque vector is computed as 
follows: 

  1
desired D P      τ b zγ mh f y K x K x  

where KP, KD are diagonal, constant, positive definite 

matrices and are chosen arbitrarily as follows: 


1 1
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Substituting (44) into (43) results in: 

 D P  x K x K x 0  

We can write (46) more details as follows: 
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The characteristics equations of (47) in frequency domain 

are written by: 
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where s is the Laplace operator, a11, a12, a21, a22 are solutions 

of (48) and described as follows: 

2
1 1 1

11,12

4
,

2

D D PK K K
a

  


2
2 2 2

21,22

4
,

2

D D PK K K
a

  
  

Next, we solve (47) for time history t: 

For x1(t), either   11 12
1 11 12

a t a t
x t z e z e   if 11 12a a or 

  11 11
1 11 12

a t a tx t z e z te   if 11 12a a .  

For x2(t), either   21 22
2 21 22

a t a tx t z e z e   if 21 22a a or 

  21 21
2 21 22

a t a tx t z e z te   if 21 22a a . 

where z11, z12 z21, and z22 are constant parameters which 

depend on initial conditions. 

Since ,D PK K  are chosen as above, the real parts of all 

11 12 21 22, , ,a a a a  are negative values, Therefore, both x1(t) 

and x2(t) converge on zero asymptotically i.e. x 0 . 

Consequently, y  ydesired. Otherwise, y1 C and  y2 0. 
Point P (see Fig. 2) in turn tracking the target (point D) 
asymptotically. This would lead to that the requirement of 
the control problem stated above is satisfied. 

Remark: Due to nonholonomic constraints, the WMR can 
not move to approach to the target along its lateral direction. 
So, when y1 = 0, particularly point D (target) belongs to the 
line joining the center of the wheels (Fig. 2), it is impossible 
to control the WMR to approach to the target. 

Because of estimating risk of a case in which y1 converges 
on zero. We have prevented y1 from converging on 0 in such 
a way that y1 is forced to come into a constant C > 0. 
Therefore, our control law performs three tasks 
simultaneously. Those three tasks consist of: 

 Ensuring matrix h in (44) is always invertible. 
 Compensating slips comprising lateral slip, longitudinal 

slip of the right wheel, and longitudinal slip of the left 
wheel. 

 Controlling the WMR tracking to a moving target with 
errors converge on zeros. 

IV. SIMULATION 

The whole control system is simulated with parameters 

described in TABLE I. Also, C = 0.3 m (see Fig. 2), 

4 0

0 4P D

 
    

K K can be selected. 

Next, the simulation is performed in two cases: 

A. Case 1: The target D(xD, yD) moves with linear velocity 

VD = 2 m/s in a straight line which has a direction angle D = 

/6.  

B. Case 2:  The target, D(xD, yD), moves in a circular path 

as follows: 

   
2 2 23 3 3x y     

with a linear velocity VD = 0.9 m/s.  

Without loss of generality, we suppose that lateral slip, 

longitudinal slips in both the cases are presented as Fig. 4. 
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Figue 4. Slips in both Case 1 and Case 2. 
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Figure 5. Desired and actual trajectory of point P in Case 1. 

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

time (s)

O
u

tp
u

ts
 (

m
)

 

 

y
1

y
2

 
Figure 6. The Outputs in Case 1. 

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

time (s)

tr
a

c
k
in

g
 e

rr
o

rs
 (

m
)

 

 

error x
1

error x
2

 
Figure 7. Errors x = y - ydesired in Case 1. 
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Figure 8. Torques at axes of wheels in Case 1. 
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Figure 9. Actual and desired trajectory of point P in Case 2. 
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Figure 10. the outputs y in Case 2. 

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

time (s)

tr
a

c
k
in

g
 e

rr
o

rs
 (

m
)

 

 

error x
1

error x
2

 
Figure 11. tracking errors x = y - ydesired in Case 2. 

0 5 10
-5

0

5

10

15

time (s)

to
rq

u
e

 a
t 

ri
g

h
t 

w
h

e
e

l 
(N

.m
)

 

 

0 5 10
-5

0

5

10

15

time (s)

to
rq

u
e

 a
t 

le
ft

 w
h

e
e

l 
(N

.m
)

 

 

torque at right wheel torque at left wheel

 
Figure 12. Torques at the right and left wheel in Case 2. 

Figures including 5, 7, 9, and 11 show the correctness and 
the performance of the control law in both cases. In Figures 
6, 10, y1  C when t  . Otherwise, y1 > 0 with t > 0, so 
matrix h in (45) is always invertible. Fig.8 and Fig.12 
express the torques in both cases which are always finite and 
smooth. Consequently, the control law described by (44) and 
the scheme as Fig.3 is feasible. 

V. CONCLUSION 

This paper proposes a systematic method to build kinematic, 

dynamic models to model the motion of a nonholonomic 

wheeled mobile robot when there are slips including lateral 

slip, longitudinal slip of the right wheel, and longitudinal 

slip of the left wheel. Next, a control law is suggested to 

control the WMR track to a target moving with a desired 

trajectory. The control law is designed with the input-output 

feedback linearization method, which makes the tracking 

errors converge on zero asymptotically. 

 

TABLE I. SYMBOLS AND QUANTITY 

Symbol Quantity Value 

r Radius of wheel 0.098 (m) 

b Half of the distance between two wheels 0.2 (m) 

IM 
The inertial moment of platform about the 

vertical axis through point M (center of mass) 
0.02 (kg.m2) 

IW The inertial moment of wheel about the 

rotational axis 

0.003 

(kg.m2) 

ID The inertial moment of each wheel about its 

diameter axis 

0.005 

(kg.m2) 

mM Mass of platform 22 kg 

mW Mass of each wheel 2 kg 
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