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This paper investigated the geometry and aberration characteristics of conicoidal conformal domes. First, on the
basis of previous research, we got the expression that was suitable for describing the external surface of the con-
icoidal conformal dome. Based on the theory of differential geometry, this paper first proved that the Dupin index
line of a quadric surface was an ellipsoid and the radius of curvature had extreme values in the meridian plane and
sagittal plane. Then the uniform formulas of curvature which were suitable for ellipsoid, paraboloid, and hyper-
boloid were deduced in the meridian plane and sagittal plane, respectively. Meanwhile, the angle between the axis
of imaging systems and the surface normal was calculated. With the help of computers, the plots of curvature
differences and the angle in the case of different edge slopes, fineness ratios, and the locations of the rotational
center were obtained. Finally, we analyzed the Zernike polynomial coefficients of Z4, Z5, and Z8, which represent
defocus, astigmatism and coma, respectively for the model established in CODE V. The research indicates that the
dynamic ranges of defocus, astigmatism, and coma increase with the growing of edge slopes and fineness ratios,
but have little change with the variation of the rotational center positions. Moreover, the curves of Z5 and Z8 have
turning points, and the curves of curvature differences and angle difference are only similar to the curves of Z5 and
Z8 when the look angle changes after the turning point. For the look angle changing from zero to the turning
point, the curves of Z5 and Z8 change rapidly. This is mainly caused by the significant variations of the symmetry
of the conformal dome participating in imaging. Therefore, the aberrations with small scanning angles should be
given more attention when designing the conformal systems. © 2016 Optical Society of America

OCIS codes: (080.1005) Aberration expansions; (080.2468) First-order optics.
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1. INTRODUCTION

Missiles with infrared guided seekers have lots of advantages:
high resolution, long observation distance, and strong anti-
interference ability, etc. Generally, infrared guided seekers work
in the scanning mode, and the imaging system rotates around a
fixed point, which is called the rotational center. Traditional
optical domes have been a section of concentric spheres or
hemispheres. Although the domes have good imaging quality,
they produce large air drag [1]. Therefore, in order to reduce air
drag and improve missile performance, conformal optical tech-
nology is developed. Conformal domes are characterized as hav-
ing external surfaces that are first optimized for aerodynamics
requirements rather than optical systems. They typically take
the form of an ogive dome and blend smoothly with missiles.
The missile with a conformal dome can fly farther and faster
than that with a traditional dome [2,3]. In addition, conformal

domes make a great contribution to expand the field of regard
(FOR). However, the improved performance comes with some
design challenges. Because of losing point symmetry, different
parts of the conformal dome participate in imaging with a dif-
ferent look angle. This introduces lots of dynamic aberrations
into the system [4,5]. The dynamic aberrations mainly include
spherical aberration, coma, and astigmatism [6]. Therefore, an-
alyzing the characteristic of these aberrations is very important
to correct them.

The research of conformal technology mainly includes the
aero-optic and aerothermal analysis or the technologies of
correcting aberrations [4,7]. The methods of correcting
aberrations are the fixed corrector, the arch corrector, the
counter-rotating phase plates, and the deformable mirror,
etc. [4,5]. These correctors generally use complex surfaces,
which include quadric surfaces, aspheric surfaces, or freeform
surfaces. The freeform surfaces may be expressed by Zernike
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polynomials, XY-polynomials, or NURBS surfaces, etc [8,9].
In short, comparing with traditional optical systems, the con-
formal optical systems have great difficulty in design and manu-
facture [10,11]. Meanwhile, the conformal dome itself also has
the problem of design and manufacture. From the research pa-
pers of conformal domes, we know the conformal domes pri-
marily are conicoidal conformal domes. But the research mainly
focuses on ellipsoidal domes or paraboloidal domes, respec-
tively, and lack system analysis between them. Therefore, based
on the mathematical descriptions of conicoidal conformal
domes studied by previous researchers [6], this paper will study
the basic geometry and aberration characteristics of conicoidal
conformal domes systematically.

The research contents include: (1) investigate the uniform
formulas suitable for quadric surfaces, which include the radius
of curvature and the angle between the axis of imaging systems
and the surface normal, then calculate the radius of curvature
and the angle with different geometric parameters; (2) establish
the model of conicoidal conformal domes in optical design soft-
ware CODE V and research the Zernike aberrations under dif-
ferent conditions; (3) compare the geometric property of the
quadric surface with the Zernike aberrations of the conicoidal
conformal dome, then research the relations between them.

2. MATHEMATICAL DESCRIPTIONS OF
CONICOIDAL CONFORMAL DOMES

The optical dome has two surfaces: the external one and the
inner one. Generally, the external surface decides the type of
the optical dome, and the inner surface is used to correct aber-
rations [10]. The length L and the diameter D are the key
parameters to determine the shape and function of the dome.
As shown in Fig. 1, o 0 is the rotational center of the imaging
system. The fineness ratio F is defined as the ratio of L to D,
which primarily determines the aerodynamic drag. Generally,
the aerodynamic drag would reduce with the increasing of the
fineness ratio F .

For a conicoidal conformal dome, the external surface is a
quadric surface. There are several descriptions of a quadric sur-
face, and Fig. 2 is one of them. The vertex of the quadric surface
is located in the origin of the Cartesian coordinate system and
the z-axis is the symmetry axis.

Point P is located on the external surface of the conicoidal
conformal dome. The distance from point P to the z-axis can
be expressed by the following equation:

φ�z� � �2Rz − �k � 1�z2�1∕2: (1)

In Eq. (1), R is the radius of curvature of the vertex (or called
the base circle radius) and k is the conic constant. In order to
calculate the value of R and k, we subsequently differentiated
Eq. (1) and got the expressions of R and k as the following [6]:

k � φ2

z2
−
2φ

z
φ 0 − 1; (2)

R � φφ 0 � �k � 1�z; (3)

where φ 0 � dφ∕dz.
Because Eqs. (2) and (3) are valid for every point on the

surface, we take the point on the bottom edge and substitute
φ, z by the dome shape specifications (φ → D∕2, z → L) in
Eqs. (2) and (3), then rewrite the expressions of R and k as
follows:

k � D2

4L2
−
D
L
Se − 1; (4)

R � D2 � 4L2�k � 1�
8L

; (5)

where Se � φ 0jz�L is the edge slope.
Defining q as the slope coefficient and making Se � D∕qL,

then Eqs. (2) and (3) become

k � �q − 4�D2

4qL2
− 1; (6)

R � �q − 2�D2

4qL
: (7)

For an ellipsoidal dome, −1 < k < 0, so q > 4; when
q � 4, k � −1, the surface is a paraboloid. But if q � 2, it be-
comes a conic surface, so for a hyperboloid, 2 < q < 4. The
formulas of base circle radius and conic constant of conicoidal
conformal domes changing with slope coefficient q or edge
slope Se are shown in Table 1. It can be seen from Table 1
that if the length L and the bottom diameterD are determinate,
the edge slope Se will decide the surface type. When Se � 0,
the surface is an ellipsoid, then it changes to a paraboloid with

Fig. 1. Schematic diagram of a conformal optical dome.

Fig. 2. Model of a conicoidal conformal dome.

Table 1. Base Circle Radius and Conic Constant of a
Quadric Surface

Surface Type q Se

Conic
Constant (k)

Base Circle
Radius (R)

Ellipsoid q > 4 D
qL

�q−4�D2

4qL2 − 1 �q−2�D2

4qL

Paraboloid q � 4 D
qL −1 D2

8L

Hyperboloid 2 < q < 4 D
qL

�q−4�D2

4qL2 − 1 �q−2�D2

4qL
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Se growing toD∕4L. Keeping on growing of Se untilD∕2L, the
surface becomes a hyperboloid. Figure 3 is a plot for Se � 0,
Se � D∕8L, Se � D∕4L, Se � D∕3L, Se � D∕2L of the
dome specifications with L � 120 mm and D � 120 mm;
it shows the dome becomes cuspidal with the increasing of Se.

Figure 4 is the plot of the conic constant k and base circle
radius R changing with the edge slope in different fineness
ratios F . The plot indicates that the conic constant k and base
circle radius R decrease linearly with the growing of the edge
slope Se , and they have smaller values for the dome with a
bigger fineness ratio.

3. GEOMETRIC CHARACTERISTIC OF QUADRIC
SURFACES

A. Radius of Curvature of a Quadric Surface
Comparing with spheres, the curvature of quadric surfaces is
different in each position. This will produce dynamic aberra-
tions, so we calculate the curvature of quadric surfaces to evalu-
ate the dynamic aberrations. In order to analyze the curvature
in different directions at any point along quadric surfaces, we
use vector functions expressing spatial curves and spatial
surfaces. A spatial surface can be expressed as ~r � ~r�u; v�,
and the expression of a spatial curve on the spatial surface is
~r � ~r�u; v� � ~r�u�t�; v�t�� � r�t�, where u, v, and t are free
variables. The tangent vector of a spatial curve is the differential
of ~r, and it can be expressed as ~r 0�t� � ~ru�du∕d t��
~rv�dv∕d t�, which indicates ~r 0�t�, ~ru, ~rv in the same plane.
The plane decided by ~ru and ~rv is defined as the tangent plane

of the spatial surface at one point on it, as shown in Fig. 5. The
vertical vector of the tangent plane is defined as the normal
vector of the surface, and the unit normal vector can be
expressed as

~n � ~ru × ~rv
j~ru × ~rvj

: (8)

For a point P on the surface, the normal section is the plane
decided by the tangent vector and the normal vector. The nor-
mal section line is defined as the intersecting line between the
surface and the normal section. Therefore, the curvature center
of the normal section line is located in the normal section.
Assuming kn is the curvature of the normal section line at
the point P, the Dupin index line is defined as the track of
N in the tangent plane, while the length of PN equalsffiffiffiffiffiffiffiffiffiffiffiffi

j1∕knj
p

, as shown in Fig. 6. If we can obtain the equation
of the Dupin index line, the curvature of the quadric surface
is known.

For a quadric surface, it can be expressed as follows:

~r � ~r�z; α� � fφ�z� cos α;φ�z� sin α; zg; (9)

where α is the rotation angle relative to the x − z plane.
Through calculating three basic values (Ls,Ms, and N s), the

equation of the Dupin index line can be deduced:

Ls � ~rzz · ~n � −
φ 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� φ 02p ; (10)

Ms � ~rzα · ~n � 0; (11)

N s � ~rαα · ~n � φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� φ 02p : (12)

From the theory of differential geometry, the equation of the
Dupin index line for the point on a quadric surface is given by

Fig. 3. Geometric graph of Se � 0, Se � D∕8L, Se � D∕4L,
Se � D∕3L, Se � D∕2L (D � 120 mm, L � 120 mm).

(a) (b)

Fig. 4. Conic constant k and base circle radius R changing with the
edge slope for different fineness ratios F �D � 120 mm�.

Fig. 5. Schematic diagram of the tangent plane and surface normal.

Fig. 6. Definition of the Dupin index line.
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Lsx2z � 2Msxzyα � N sy2α � �1; (13)

where xz and yα satisfy the relation of ~PN � xz~rz � yα~rα.
Because of φ > 0, φ 0 0 � −R2∕φ3 < 0, so Ls > 0, N s > 0.

Therefore, the equation of the Dupin index line of a quadric
surface is an ellipsoid, as expressed in Eq. (14):

−
φ 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� φ 02p x2z �

φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� φ 02p y2α � 1: (14)

Equation (14) indicates the radius of curvature has extreme
values in the direction of ~rz and ~rα, and the radius of curvature
in other orientations varies between them.

Now, we calculate the maximum and minimum radius of
curvature of a quadric surface. As the reason of rotational sym-
metry, we only need to analyze the point on the intersecting
line between the surface and the plane crossing the rotational
axis. For the point on the y − z plane along the surface, ~rz
and ~rα are the vectors in the meridian plane and sagittal plane,
respectively. Therefore, the radius of curvature has extreme val-
ues in the meridian plane and sagittal plane. Setting yα � 0 in
Eq. (14), we got PN �

ffiffiffiffiffiffiffiffiffiffi
1∕km

p
� xz j ~rz j �

ffiffiffiffiffiffiffiffiffi
1∕Ls

p
j ~rz j. So

the radius of curvature in the meridian plane Rm can be ex-
pressed as Eq. (15). The z-coordinate zm and the y-coordinate
ym of the curvature center in the meridian plane are expressed as
Eqs. (16) and (17), respectively:

Rm � 1

km
� j ~rz j2

Ls
� −

�1� φ 02�3∕2
φ 0 0 ; (15)

zm � z −
φ 0�1� φ 02�

φ 0 0 ; (16)

ym � φ� 1� φ 02

φ 0 0 : (17)

In the similar way, for the sagittal plane, setting xz � 0, we
got PN �

ffiffiffiffiffiffiffiffiffi
1∕ks

p
� yθj ~rθj �

ffiffiffiffiffiffiffiffiffiffiffi
1∕N s

p
j ~rθj. So the radius of

curvature in the sagittal plane Rs can be expressed as
Eq. (18). The z-coordinate zs and the y-coordinate ys of the
curvature center in the sagittal plane are expressed as Eqs. (19)
and (20), respectively:

Rs �
1

ks
� j ~rθj2

N s
� φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϕ 02

p
; (18)

zs � z � φφ 0; (19)

ys � 0: (20)

For a point P in the y − z plane on the surface, using
Eqs. (16) and (17), we can get the tracks of curvature centers
in the meridian plane for different surface types. Figure 7 is the
track of curvature centers in the meridian plane for Se � 0,
Se � D∕8L, Se � D∕4L, and Se � D∕3L, respectively,
(D � 120 mm, L � 120 mm). As can be seen from the fig-
ures, the curvature centers in the meridian plane keep away
from the vertex with the increasing of the edge slope.
Equation (20) indicates the curvature centers in the sagittal
plane are on the z-axis regardless of the surface type.

Using Eqs. (15) and (18), we can calculate the radius of
curvature in the meridian plane and the sagittal plane. It is
important to understand the dynamic aberrations. Figure 8

shows the radius of curvature in the meridian plane and the
sagittal plane changing with the z-coordinate at different edge
slopes when D � 120 mm, L � 120 mm. As shown in Fig. 8,
the meridian radius of curvature is larger than the sagittal radius
of curvature obviously. Figure 9 is the plot of the radius of cur-
vature in the meridian plane and the sagittal plane, respectively,
at different edge slopes in the same graph. It can be seen from
Fig. 9 that the meridian radius of curvature increases with the
growing of the edge slope rapidly, while the sagittal radius of
curvature has little difference.

(a) (b)

Fig. 7. Track of curvature centers in the meridian plane for
Se � 0, Se � D∕8L, Se � D∕4L, and Se � D∕3L (D � 120 mm,
L � 120 mm).

Fig. 8. Radius of curvature in the meridian plane and sagittal plane
for (a) Se � 0, (b) Se � D∕8L, (c) Se � D∕4L, (d) Se � D∕3L,
(D � 120 mm, L � 120 mm).

Fig. 9. Radius of curvature in the meridian plane and sagittal plane
for Se � 0, Se � D∕8L, Se � D∕4L, Se � D∕3L, (D � 120 mm,
L � 120 mm).
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B. Angle Between the Axis of Imaging Systems and
the Surface Normal
When imaging systems with conformal domes work in the
scanning mode for a seeker, the angle between the axis of
the imaging systems and the symmetry axis of the domes is
the look angle. Obviously, the maximum look angle is the
FOR. Figure 10 is the schematic diagram of a seeker with the
conformal dome and working in the scanning mode. In Fig. 10,
z0 is the distance from the dome vertex to the rotational center
of the imaging system. θ is the look angle and in is the angle
between the surface normal and the z-axis. The angle difference
between in and θ is Δθ, which is the angle between the axis of
the imaging system and the surface normal.

The expression of angle difference Δθ is given by Eq. (21):

Δθ � in − θ � arctan
1

φ 0 − arctan
φ

z0 − z
: (21)

Assuming Δθ � 0, we can get the position of the point that
the axis of the imaging system overlaps the surface normal. The
z-axis coordinate of the point on the surface is

zjΔθ�0 �
R − z0
k

: (22)

From the differential of Eq. (21), we can get the position of
the point that the angle difference Δθ has extreme values.
The z-axis coordinate of the point satisfies Eq. (23), which
is a univariate cubic equation when k and z0 satisfy k ≠ −1
and z0 ≠ R∕�k � 1�:

az3 � bz2 � cz � d � 0: (23)

The expressions of coefficients a, b, c, and d are
8><
>:

a � k�k � 1�R − k�k � 1�2z0
b � −kR2 � 3k�k � 1�Rz0
c � −R3 − �3k − 1�R2z0
d � R3z0 − R2z20

: (24)

From Eq. (21), we get the plot of the angle difference
Δθ varying with the look angle θ for different edge slope Se
when D � 120 mm, L � 120 mm, z0 � 80 mm, as shown in
Fig. 11. The plot also gives the position of extreme values. It can
be seen from Fig. 11 that the surface with a smaller edge slope has
a smaller angle difference when the look angle is less than nearly
50°.Meanwhile, the max angle difference increases with the aug-
ment of the edge slope, and it appears in lower look angle.
Therefore, the dome with a lower edge slope benefits reducing
the angle difference for decided length L and diameter D.

In the same way, we also get the graph of the angle difference
varying with the look angle at different fineness ratios using
Eq. (21). As can be seen from Fig. 12, the fineness ratio has
an effect on the angle difference varying with the look angle
similar to the edge slope. The angle difference increases with
the augment of the fineness ratio.

C. Effect of Edge Slopes, Fineness Ratios, and the
Position of the Rotational Center of the Imaging
System
Comparing with the sphere domes, a seeker with the conformal
dome and working in the scanning mode can choose a flexible
position of the rotational center of the imaging system.
Therefore, the edge slope, fineness ratio, and the position of
the rotational center of the imaging system are three factors that
may affect the aberrations introduced by the conformal dome
except the thickness and refractive index. Based on the earlier
research, we study the difference of curvature radius and
angle difference in the case of different edge slopes, fineness
ratios, and the positions of rotational centers subsequently.
Figures 13 and 14 are the plots of the difference of curvature

Fig. 10. Schematic diagram of a seeker with the conformal dome
working in scanning mode.

Fig. 11. Angle difference varying with the look angle for different
edge slopes when D � 120 mm, L � 120 mm, z0 � 80 mm.

Fig. 12. Angle difference varying with the look angle for different
fineness ratios with (a)Se � 0, (b) Se � D∕8L, (c) Se � D∕4L,
(d) Se � D∕3L when D � 120 mm, z0 � 100 mm.
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radius varying with the look angle for different edge slopes Se ,
the distances z0, and the fineness ratios.

The fineness ratios of Figs. 13 and 14 are 1 and 1.5, respec-
tively. The figures illustrate that the absolute value of the differ-
ence of curvature radius increases with the growing of the look
angle. The absolute value of the difference of curvature radius
also augments with the growing of the edge slope and the dis-
tance z0 for the same fineness ratio of the conformal dome. It is
predicted by the reason that the larger value of z0 corresponds
to the wide range of the dome for the same look angle.
Therefore, to reduce the difference of curvature radius, we
should make the location of the rotational center nearly the
vertex of the dome as far as possible under the construction
permitting. Comparing Figs. 13 and 14, we can know that
in different fineness ratios, the absolute value of the difference

of curvature radius has larger value for the dome with a bigger
fineness ratio.

The plot of the angle difference varying with the look angle
for different edge slopes Se , the distance z0, and the fineness
ratios are shown in Figs. 15 and 16. The fineness ratios of
Figs. 15 and 16 are 1 and 1.5, respectively. The figures indicate
that the angle difference increases at first then decreases with
the augment of the look angle. The max value of the angle dif-
ference becomes larger with the increasing of the edge slope Se ,
and the corresponding look angle is reduced. In addition, the
position of the rotational center has weak impact on the angle
difference for the same fineness ratio. Comparing Figs. 15
and 16, it can be seen that the angle difference has larger value
for the dome with a bigger fineness ratio.

Fig. 13. Difference of curvature radius varying with the look angle
for different edge slopes Se with (a) z0 � 40 mm, (b) z0 � 60 mm,
(c) z0 � 80 mm, (d) z0 � 100 mm when D � 120 mm,
L � 120 mm.

Fig. 14. Difference of curvature radius varying with the look angle
for different edge slopes Se with (a) z0 � 60 mm, (b) z0 � 90 mm,
(c) z0 � 120 mm, (d) z0 � 150 mm when D � 120 mm,
L � 180 mm.

Fig. 15. Angle difference varying with the look angle for different
edge slopes Se with (a) z0 � 40 mm, (b) z0 � 60 mm, (c) z0 �
80 mm, (d) z0 � 100 mm when D � 120 mm, L � 120 mm.

Fig. 16. Angle difference varying with the look angle for different
edge slopes Se with (a) z0 � 60 mm, (b) z0 � 90 mm, (c) z0 �
120 mm, (d) z0 � 150 mm when D � 120 mm, L � 180 mm.
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4. ZERNIKE ABERRATIONS OF CONICOIDAL
CONFORMAL DOMES

The wave aberration is a method used to describe the aberra-
tions of optical systems, and it is defined as the optical path
difference between the ideal wavefront and the real wavefront.
Through expanding the wave aberration function W �ρ;ϕ� in
terms of a complete set of Zernike polynomials, which are
orthogonal over a unit circle, we can get the coefficients of
Zernike polynomials [12]. Every term of Zernike polynomials
has explicit physical meaning, so the coefficients of Zernike
polynomials reflect the value of corresponding aberrations
[13,14]. There are two common numbering schemes, the stan-
dard Zernike polynomials and the fringe Zernike polynomials.
The fringe Zernike polynomials have a maximum of 37 terms,
which are a subset of the standard Zernike polynomials but
arrange in a different order [15]. The first nine terms of the
fringe Zernike polynomials and their corresponding aberrations
are shown in Table 2.

Because the optical dome is not a complete optical system,
we join a perfect lens in the optical design software CODE V.
The perfect lens allows us to investigate dome characteristics
without having to discuss properties of imaging systems [12].
Parameters of the model established are shown in Table 3. The
dome has the same thickness in the top and bottom, and the
inner and outer surfaces have the same edge slope. Previous
research indicates the main aberrations of conformal domes
are defocus, astigmatism, and coma. Therefore, we will system-
atically study the Zernike polynomials coefficients of Z4,
Z5, and Z8, which represent defocus, astigmatism, and coma,
respectively.

A. Aberration of Defocus (Z4)
The Zernike polynomial coefficient of Z4 represents defocus,
and it reflects the size of defocus. Figures 17 and 18 are plots of
the coefficient of Z4 for different edge slopes with the rota-
tional center of imaging systems locating different positions
when the fineness ratio equals 1 and 1.5.

The figures show that the Zernike polynomial coefficient of
Z4 decreases to the minimum value first then increases, and the
minimum value gets smaller for the domes with larger edge
slopes. This indicates that the changing range of defocus will
increase with the growing of edge slopes. Meanwhile, the posi-
tion of the rotational center has little effect of the minimum

Table 2. Zernike Aberration Polynomial

Term Zernike Polynomial Aberration Type

Z1 1 Piston
Z2 ρ cos�ϕ� Distortion-Tilt (y-axis)
Z3 ρ sin�ϕ� Distortion-Tilt (x-axis)
Z4 2ρ2 − 1 Defocus-Field curvature
Z5 ρ2 cos�2ϕ� Astigmatism, Primary

(axis at 0° or 90°)
Z6 ρ2 sin�2ϕ� Astigmatism, Primary

(axis at �45°)
Z7 �3ρ3 − 2ρ� cos�ϕ� Coma, Primary (x-axis)
Z8 �3ρ3 − 2ρ� sin�ϕ� Coma, Primary (y-axis)
Z9 6ρ4 − 6ρ2 � 1 Spherical Aberration, Primary

Table 3. Parameters of the Model Established

Parameters of Model Design Value

Materials of the dome ZnS
Wavelength 4 μm
Thickness of the dome 3 mm
Bottom diameter D 120 mm
Length of the dome L 120 mm, 180 mm
Edge slope Se 0, D∕8L, D∕4L, D∕3L
Field of regard (FOR) �50°
Entrance pupil diameter D0 30 mm
Focal length f 0 60 mm

Fig. 17. Coefficient of Z4 for different edge slopes Se with
(a) z0 � 40 mm, (b) z0 � 60 mm, (c) z0 � 80 mm, (d) z0 �
100 mm when D � 120 mm, L � 120 mm.

Fig. 18. Coefficient of Z4 for different edge slopes Se with
(a) z0 � 60 mm, (b) z0 � 90 mm, (c) z0 � 120 mm, (d) z0 �
180 mm when D � 120 mm, L � 180 mm.
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value, but it affects the look angle corresponding to the mini-
mum value. The look angle corresponding to the minimum
diminishes with the rotational center far away from the vertex
of the dome and this causes the changing of defocus rapidly.
Comparing Fig. 17 with Fig. 18, it can be seen that the chang-
ing range of defocus augments for the dome with a bigger fine-
ness ratio. Therefore, the edge slope and the fineness ratio
mainly affect the value of defocus, while the position of rota-
tional centers will impact the changing rate of defocus.

B. Aberration of Astigmatism (Z5)
The Zernike polynomial coefficient of Z5 represents astigma-
tism, which is mainly affected by the large differences curva-
tures in the meridian plane and sagittal plane [5]. Figures 19
and 20 are plots of the coefficient of Z5 for different edge slopes
with the rotational center of imaging systems locating different
positions when the fineness ratio equals 1 and 1.5.

The curves of astigmatism have an intersection point with
the line of Z5 � 0, and the intersection point can be seen as a
turning point. The curves of astigmatism are divided into two
sections. In the first stage, where the look angle changes from
zero to the turning point, the coefficient of Z5 increases at first
and then descends to zero. In the second stage, where the look
angle changes after the turning point, the coefficient of Z5 al-
most diminishes with the growing of the look angle. The fig-
ures show that the coefficient of Z5 has a larger maximum value
in the first stage and a smaller minimum value in the second
stage for the dome with larger edge slopes. This means the dy-
namic aberration of astigmatism introduced by the dome in-
creases with the growing of edge slopes. Meanwhile, the
positions of rotational centers have little effect on the extreme
value of the coefficient of Z5. But the turning point appears in
the lower look angle when the rotational center is far away from
the vertex of the dome. Comparing Fig. 19 with Fig. 20, it can
be seen that the increasing of fineness ratios will aggravate the
dynamic aberration of astigmatism. By the reason that astigma-
tism is mainly affected by the large differences curvatures, we

will compare Figs. 19 and 20 with Figs. 13 and 14 in the fol-
lowing. The plots of these figures are obtained in the same con-
dition. In Figs. 13 and 14, the curves decline with the growing
of the look angle. This is similar with the curves in the second
stage of Figs. 19 and 20. The difference is Figs. 19 and 20 exist
the first stage in which the aberration of astigmatism changes
sharply. It is not unexpected by the reason that the aberration of
astigmatism gets from a imaging system with the entrance pupil
diameter of 30 mm while the difference of curvature radius gets
from a point on the surface. When the scanning angle of
imaging systems changes nearby 0°, the symmetry of the con-
formal dome participating in imaging comes about significant
variations.

C. Aberration of Coma (Z8)
The Zernike polynomial coefficient of Z8 represents coma,
which is mainly affected by the angle between the axis of
the imaging system and the surface normal [5]. Figures 21
and 22 are plots of the coefficient of Z8. Similar to the curves
of astigmatism, the curves of coma also have an intersection
point with the line of Z8 � 0. The curves of coma are divided
into two sections by the turning point. Different from the
curves of Z5, in the first stage, the coefficient of Z8 descends
at first and then increases to zero. While in the second stage, the
coefficient of Z8 increases at first and then diminishes with the
growing of the look angle. The figures show that the dynamic
aberration of coma introduced by the dome increases with the
growing of the edge slopes. Meanwhile, the positions of rota-
tional centers also have little effect on the extreme value of the
coefficient of Z8 but affect the position of the turning point.
Comparing Fig. 21 with Fig. 22, it can be seen that the increas-
ing of fineness ratios will aggravate the dynamic aberration of
coma. Comparing with Figs. 15 and 16, which are the plots of
the angle between the axis of the imaging system and the sur-
face normal, the curves of Z8 in the second stage of Figs. 21
and 22 have similar rules with the plots in Figs. 15 and 16.

Fig. 19. Coefficient of Z5 for different edge slopes Se with
(a) z0 � 40 mm, (b) z0 � 60 mm, (c) z0 � 80 mm, (d) z0 �
100 mm when D � 120 mm, L � 120 mm.

Fig. 20. Coefficient of Z5 for different edge slopes Se with
(a) z0 � 60 mm, (b) z0 � 90 mm, (c) z0 � 120 mm, (d) z0 �
180 mm when D � 120 mm, L � 180 mm.
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Figures 21 and 22 also have a stage in which the aberration of
coma changes rapidly. As analyzed before, it is caused by the
significant variations of symmetry of the conformal dome par-
ticipating in imaging.

5. CONCLUSION

This paper investigated the geometric characteristics of quadric
surfaces and the Zernike aberrations of conicoidal conformal
domes. As indicated by previous researchers, for a quadric sur-
face with decided bottom diameter and length, the edge slope
determines the surface type (ellipsoid, paraboloid, or hyperbol-
oid). Based on this, this paper first proved that the Dupin index

line of a quadric surface is an ellipsoid and the radius of cur-
vature has extreme values in the meridian plane and sagittal
plane. Then the uniform formulas of curvature that were suit-
able for ellipsoid, paraboloid, and hyperboloid were deduced.
The Zernike aberrations of defocus, astigmatism, and coma for
the dome with different edge slopes, fineness ratios, and posi-
tions of the rotational centers are analyzed systematically. The
research indicates that the dynamic ranges of defocus, astigma-
tism, and coma increase with the growing of edge slopes and
fineness ratios, but have little change with the variation of the
rotational center positions. The positions of rotational centers
mainly impact the changing rate of defocus. The curves of Z5
and Z8 have turning points, the positions of which are mainly
affected by the positions of rotational centers. The turning
points divide the curves into two sections. In the first section,
the curves change rapidly. It is by the reason that the symmetry
of the conformal dome participating in imaging comes about
significant variations. While in the second section, the curves
change smoothly. Comparing with the curves of curvature
differences and the angle between the axis of the imaging sys-
tem and the surface normal, the curves in the second sections of
Z5 and Z8 are similar to them, respectively. These verify astig-
matism is affected mainly by the curvature difference and the
angle difference mainly affects coma. In addition, due to the
existence of first sections, the interval of scanning angles should
be smaller in the lower scanning angle when designing the
conformal systems.
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