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Abstract 

Carbon nanodots (C-dots) are promising substitutes for the present fluorescent nanomaterials of 

various applications due to their unique combination properties of intense photoluminescence 

(PL), low toxicity, and high aqueous solubility. However, the origin of the fascinating PL in C-

dots is still a matter of current debate. Due to their complex and uncontrollable structures, the 

contributions of surface chemicals and carbogenic-core to their PL are poorly understood. Here, 

a facile two-step method combining laser ablation and UV light irradiation has been developed, 

in which non-fluorescent C-dots are prepared by ablating graphite powder in water using 

nanosecond laser, and the PL intensities are enhanced by UV light irradiation in oxygen 

atmosphere. Using this strategy, we are able to control the size and the surface functional groups 

of C-dots independently. By detailed characterization and comparison of different C-dots, we 

find that the intense PL in C-dots is originated from abundant surface functional groups on its 

surface rather than its carbogenic-core. One kind of surface functional group forms a single 

surface state energy level and becomes an isolated emission center with specific carrier dynamics 

on the surface site of C-dots. The energy gap of each surface state exhibits carbogenic-core size 

independent and is characterized by distinct central energies, such as C=O group at 335 nm, and 

C-O group at 430 nm. 
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1. Introduction 

Carbon nanodots (C-dots) have attracted rapidly growing interest in recent years due to their 

unique combination properties of intense photoluminescence (PL), high photostability, high 

aqueous solubility, low toxicity, and excellent biocompatibility [1, 2]. Typically, C-dots have an 

sp2 or amorphous carbon core with size less than 10 nm, and a surface coated with oxygen-, 

nitrogen-, or sulfur-containing functional groups that imparting them with excellent water 

solubility. To date, C-dots with intense PL can be readily produced on a large scale by many 

approaches include laser ablation [3, 4], hydrothermal [5-7], ultrasound [8], and microwave-

assisted synthesis [9]. As a result, C-dots are promising substitutes for the present fluorescent 

nanomaterials of various applications, such as biological imaging [5, 6], drug delivery [10], 

sensors [11, 12], light-emitting devices [13-15], and lasers [16, 17]. Nonetheless, the origin of PL 

in C-dots is not clear to date, limiting the effective synthesis of C-dots material with desired 

brightness and working wavelength for practical applications. 

There have been several studies on the nature of the intense PL in C-dots. Some studies 

demonstrated the PL in C-dots was attributed to the emissions from both carbogenic-cores and 

surface functional groups, in which surface chemical modifications and changes in size also lead 

to changes in emission wavelength [18-21]. Nonetheless, recent reports have argued that the PL 

originates from surface functional groups only [22-24]. In accordance with the former proposed 

mechanism, several reports ascribed the PL red shift of C-dots to quantum confinement of 

carbogenic-core [25, 26]. However, the origin of this emission has been a matter of debate due 

to: (i) diversity of C-dots prepared by various approaches; (ii) uncertainty and complexity of 

chemical groups on the surface induced during synthesis process [24, 25]; (iii) difficulties to 

assess the influences of size and surface chemicals on the optical properties due to lack of means 
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for independent control of size and surface chemical [26, 27]; (iv) the emission spectra of C-dots 

are broad and lack of special properties for comparison [19, 28, 29].  

In this work, we try to shed light on the origin of the intense PL in C-dots and its relation to 

their structural properties. C-dots adopted here are synthesized using a facile two-step approach 

combining nanosecond laser ablation and UV light irradiation. Using this strategy, we are able to 

control the size and the surface functional groups of C-dots independently. By comparing the 

structures and optical properties of these C-dots, we reveal that the PL of C-dots originates from 

abundant surface functional groups on its surface rather than its carbogenic-core, where each 

kind of surface functional group may become an isolated and characteristic emission center with 

size-independent energy gap. 

2. Experimental 

C-dots were synthesized via nanosecond laser ablation of graphite powders in distilled water. 

Typically, 20 mg of carbon powders, with a mean size of 400 nm, was dispersed into 50 ml 

distilled water via ultrasonication. Next, the suspension was put into a glass beaker for laser 

irradiation. The laser beam (Q-switched Nd: YAG laser, central wavelength: 1064 nm, pulse 

duration: 10 ns, and repetition rate: 10 Hz) was focused into suspension by 100 mm lens for 

about 2 h. The average pulse energy was ranging from 0.5 to 15 mJ/pulse for fabrication of 

different size C-dots. During the laser irradiation, a magnetic stirrer was used to prevent 

gravitational settling of the suspended powders. Centrifugation was used to separate larger 

carbon nanoparticles and the pristine C-dots were obtained from the supernatant. After that, the 

pristine C-dots solution was bubbled with O2 and irradiated by a hand UV lamp (365 nm) for 

different times. 
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Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images of the 

C-dots were obtained via a high resolution transmission electron microscopy (model JEM-

ARM200F). Through image analysis, the average diameter and size distribution was determined 

for ~1000 C-dots. A U-3010 spectrophotometer (Hitachi) was employed to measure the 

absorption spectra of the samples. The Fourier transform infrared (FTIR) spectroscopy was 

performed on a VERTEX 70 (Bruker) using KBr pellet method. X-ray photoelectron 

spectroscopy (XPS) experiments were carried out on AXIS ULtrabld (Kratos) X-ray 

photoelectron spectrometer. The PL characterizations including emission spectra, excitation 

spectra, fluorescence lifetimes, and time-resolved PL spectra were recorded using FLS920 

spectrometer (Edinburgh). For the fluorescence lifetimes and time-resolved PL measurements, 

picosecond pulsed LEDs (central wavelength: 273, 343 nm, pulse duration: <850 ps, repetition 

rate: 10 MHz) were used as excitation sources.  

3. Results and discussion 

To independent control of the carbogenic-core size and surface functional groups, C-dots 

were synthesis by a two-step process, as shown in Fig. 1. First, pristine non-fluorescent C-dots 

were synthesized via nanosecond laser ablation of graphite powders in distilled water with 

different laser-pulse energies. When nanosecond pulses inject into the suspension, C-dots with 

size of several nanometers can be produced through laser-induced melting and evaporation of 

graphite powders [30]. The C-dots sizes can be well controlled by adjusting laser-pulse energy. 

In general, the mean size of C-dots progressively decreased with increases in laser-pulse energy 

[31]. Second, the C-dots were photo-oxidized by UV light irradiation of C-dots solution with 

bubble of O2. Under UV light irradiation, O2 can absorb photons to generate strongly oxidizing 

singlet oxygen and ozone, while photoexcited C-dots are highly active as electron donors. As a 
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result, the surfaces of C-dots are oxidized [32]. The oxidation degree of C-dots might be 

controlled by adjusting irradiation time while the carbogenic-core size basically remains 

unchanged.  

 

Fig. 1. Schematic illustration of the synthesis process of C-dots. First, pristine C-dots were 

synthesis via nanosecond laser ablation of graphite powders in distilled water with different 

laser-pulse energies. Second, the C-dots were photo-oxidized by UV light (365 nm) irradiation 

with bubble of O2 for different times. 

Fig. 2a shows the TEM image of the pristine C-dots synthesized by laser ablation of graphite 

powders in distilled water at average pulse energy of 5 mJ/pulse. The pristine C-dots have small 

size distribution in the range of 1-2.5 nm with a mean diameter of 1.7 nm (Fig. 2b). HRTEM 

images of the pristine C-dots (Fig. 2c,d) show well-resolved crystal lattice fringes with a spacing 

of 0.21 nm which is very close to the (100) facet of graphite carbon [27]. Although the 

carbogenic-core structures of pristine C-dots are similar with C-dots prepared by other methods 

[33-35], there are basically no detectable fluorescence from the pristine C-dots. The PL spectra 

of distilled water dispersed with pristine C-dots present only Raman scattering of water 
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(Supporting Information, Fig. S1). This indicates that laser ablation of graphite powders in water 

can fabricates pristine C-dots with well carbogenic-core structures and no PL emission.   

 

Fig. 2. (a) TEM image, (b) size distribution, and (c, d) HRTEM images of pristine C-dots 

synthesized by laser ablation of graphite powders in distilled water at average pulse energy of 5 

mJ/pulse. 

To study the effect of surface chemicals on the PL properties of C-dots, the pristine C-dots 

were further photo-oxidized by UV light irradiation. The PL intensities of the C-dots are 

significantly enhanced and the maximum photoluminescence quantum yield (PLQY) can reach 

2.1% (360 nm excitation) after several hours UV light irradiation (fluorescence images as Fig. 

S2). Although the PLQY is still low, the enhancement of PL intensity provides an important 

evidence for study of their PL mechanism. Fig. 3a-c show the PL spectra of C-dots after 1, 2, and 

4 h irradiation, respectively. Unlike many other reported C-dots exhibiting full-color or single 

fluorescence-peak emissions [24, 26], all PL emissions of our samples exhibit two obviously 

fluorescence peaks, centered at 335 and 430 nm, and the fluorescence peaks do not shift when 

different excitation wavelengths were applied. The fluorescence peaks at 335 and 430 nm are 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 8

alternately dominant when excitation wavelength changes. The energy shifts of optimal 

excitation wavelength and corresponding fluorescence peak are 0.73 and 0.56 eV for the peaks at 

335 and 430 nm, respectively. These phenomena suggest the fluorescence peaks are originated 

from two independent emission centers in the C-dots. Two fluorescence peak intensities increase 

dramatically with irradiation time and reach maximum after 2 h irradiation. Further irradiation, 

however, decreased fluorescence and the intensity declines to half its maximum value after 7 h 

irradiation (Fig. S3). The dependence of fluorescence intensity of the C-dots on irradiation time 

might be attributed to massive oxidation of the surface of C-dots [32].    

 

Fig. 3. (a, b, c) The PL spectra of the C-dots after 1, 2, and 4 h irradiation of UV light, 

respectively. (d) UV-vis absorption spectra of pristine C-dots, C-dots after 2 h, and C-dots after 4 
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h UV light irradiation (dotted lines); photoluminescence excitation (PLE) spectra of the C-dots 

after 2 h UV light irradiation detected at 335 and 430 nm (solid lines). 

The PL enhancement of C-dots after photo-oxidation might be attributed to the emission 

from new-created functional groups on the surface. First, TEM and HRTEM images of C-dots 

after UV light irradiation (Fig. S4) show no evident difference compared with that of initial 

pristine C-dots. The mean sizes of C-dots basically remain unchanged after UV light irradiation, 

i.e. 1.7 nm. Thus, the effect of carbogenic-core structure on PL enhancement can be excluded. 

Second, there are two new bands in UV-vis absorption spectra of the C-dots after UV light 

irradiation (Fig. 3d), indicating new surface groups have been created [24, 27]. One is located at 

around 280 nm, which is attributed to n-π* transition of C=O bonds [20]. The other is subtle and 

centered about 355 nm with a tail, which is assigned according to previously reports [33, 36]. 

Due to the overlapping with the absorption of carbon backbones, the absorption bands seem 

weak and subtle. However, these absorption bands could be identified by subtracting the 

background absorption of pristine C-dots (Fig. S5). These absorption bands are also evident in 

photoluminescence excitation (PLE) spectra (Fig. 3d). The PLE spectra of the fluorescence peaks 

at 335 and 430 nm exhibit strong exciting bands centered around 280 and 355 nm, respectively. 

The results suggest that the fluorescence peaks at 335 and 430 nm are originated from two new-

created functional groups on the surface of C-dots. 

The chemical compositions and structures of these C-dots are further investigated using FTIR 

and XPS analysis. The FTIR spectra shown in Fig. 4a reveal that all C-dots show similar 

intensity of stretching vibration of O-H bond at 3420 cm-1. However, compared with pristine C-

dots, new vibration bands of C=O double bond  at 1630 cm-1 and C-O bond at 1045 cm-1 were 

observed in the C-dots after UV light irradiation. The results reveal that two new functional 
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groups are created on C-dots after UV light irradiation while the original surface group, i.e. O-H 

bond, remains unchanged.  

 

Fig. 4. (a) FTIR spectra of pristine C-dots, C-dots after 2 h, and C-dots after 4 h UV light 

irradiation. (b, c, d) High-resolution C 1s XPS spectra of pristine C-dots, C-dots after 2 h, and C-

dots after 4 h UV light irradiation, respectively. 

More information about the differences in surface functional groups of C-dots before and 

after UV light irradiation is further provided by XPS analysis. The XPS survey spectra (Fig. S6) 

show that only carbon (C 1s, 285 eV) and oxygen (O 1s, 533 eV) elements were contained in 

these C-dots and the intensity of O 1s peak gradually increases with increasing irradiation time. 

The high-resolution C 1s spectrum of pristine C-dots (Fig. 4b) shows two peaks: a strong peak at 

284.6 eV corresponds to C=C bond, and the other is subtle at 286.0 eV ascribed to C-O  bond 
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[35]. The content of C=C bond is 96.4% and that of C-O bond is 3.6%. This indicates that the 

pristine C-dots possess graphitic carbogenic-core with very few surface functional groups on the 

surface. As comparisons, the C 1s spectra of C-dots after 2 and 4 h UV light irradiation can be 

deconvoluted into three surface contents, that is, C=C at 284.5 eV, C-O at 286.0 eV, and C=O at 

287.9 eV (Fig. 4c,d). The contents of both C-O and C=O groups significant increase with 

irradiation time (Table S1) and the content of C-O group can reaches ~60% after 4 h irradiation. 

The results indicate C-O and C=O groups with large quantity are created after UV light 

irradiation. The fact that only two types of functional groups form after UV light irradiation is 

also supported by the appearance of only C-O and C=O groups in their high-resolution O 1s 

spectra (Fig. S7). Furthermore, the content ratio between C-O and C=O groups in C-dots after 2 

h irradiation is 3.1 and increases to 4.8 for C-dots after 4 h irradiation, which is consistent with 

the increase of their fluorescence peak intensity ratio at 430 and 335 nm. Thus, we suggest that 

the strong fluorescence peaks at 335 and 430 nm in C-dots after UV light irradiation are 

originated from C=O and C-O groups, respectively. 

Results enumerated above prove that the intense fluorescence in C-dots is originated from 

abundant surface functional groups on its surface, rather than originating from its carbogenic-

core. One kind of surface functional group forms a surface state energy level and becomes an 

isolated emission center [22]. Each of the surface states is likely distributed in energy; however, 

these distributions are characterized by distinct central energies, such as C=O group at 335 nm, 

and C-O group at 430 nm. This conclusion is supported by the similar fluorescence peak position 

of C-dots at different reports, in which different synthesis methods were applied [27, 37]. 

Because of their distinct energy distribution, each of the surface states can be excited with a 

specific range of wavelengths such as 260-300 nm for C=O group, and 300-380 nm for C-O 
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group. The surface states are in turn excited and the dominant emission alternates when the 

excitation wavelength changes. Subsequently, C-dots with abundant surface functional groups 

might exhibit excitation-dependence and full-color emission  [27]. Furthermore, C-dots with 

lager quantity of surface functional groups and less surface defects, a stronger PL can be 

expected. As the C-dots presented here, the fluorescence peak intensities basically increase with 

contents of C-O and C=O groups. For C-dots with longer irradiation times (> 2 h), the increase 

of oxidation degree accompany with increasing surface defects (nonradiative states) due to 

photocorrosion [32], subsequently  decreasing PL intensity [22]. 

To study the effect of carbogenic-core size to the PL properties of C-dots, experiments of 

pristine C-dots with different sizes were carried out. The pristine C-dots with mean sizes of 1.1, 

3.6, and 5.5 nm were also synthesized by using different laser powers (TEM images shown in 

Fig. S8). All of these C-dots are similar with the pristine C-dots discussed above that exhibit no 

detectable PL. After 2 h UV light irradiation, the strong fluorescence peaks centered at 335 and 

430 nm are also observed. The fluorescence peak positions at 335 and 430 nm basically remain 

unchanged with variation of C-dots size (Fig. S9). The results indicate that the emission centers 

from surface functional groups in C-dots are size independent. 

To explore the carrier dynamics in C-dots, the time-resolved PL spectra and fluorescence 

lifetime of the C-dots after 2 h UV light irradiation were monitored. The time-resolved PL 

spectra of the C-dots at 273 nm excitation are shown in Fig. 5a. The PL maximum does shift on 

time scales from 0.1 to 4 ns, which is similar with the maximum of steady-state PL (at 335 nm). 

The temporal evolution of the PL further confirms that each surface functional group is 

responsible for one fluorescence emission peak. Furthermore, the evident dual-emission, 

centered around 335 and 430 nm, in the time-resolved and steady state PL spectra of C-dots at 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13

short-wavelength excitations suggests that these surface states are isolated without effective 

relaxation between the surface sites [19]. 

 

Fig. 5. (a) Time-resolved PL spectra of C-dots after 2 h UV light irradiation at 273 nm 

excitation. (b) PL dynamics of C-dots after 2 h UV light irradiation at detected wavelengths of 

335, 430 nm with 273 and 343 nm excitations, respectively. 

The PL dynamics of C-dots detected around the fluorescence peaks are monitored with 

excitation wavelengths of 273 and 343 nm, as shown in Fig. S10. All the fluorescence transients 

are well fitted with double-exponential functions; the best-fit parameters are listed in Table S2. 

The PL dynamics exhibit two distinct relaxation time scales, fast (0.8-1.7 ns) and slow (4-10 ns) 

decays, for both of excitation wavelengths. Both of fast and slow components progressively 

lengthen with increasing emission wavelengths and average lifetimes increase, which is similar 

with C-dots in previous reports [19, 38]. We previously assigned the fast and slow decays to 
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direct excitation-recombination of carriers on the surface states and a relaxation of carriers from 

carbogenic-core onto the surface states, respectively [37]. The conclusions are also suitable for 

the PL dynamics demonstrated here that the decays at 273 and 343 nm excitations correspond to 

carrier dynamics of the surface states created by C=O and C-O groups, respectively. The slow 

decays show significant different for each excitations (4-6 ns and 9-10 ns for 273 and 343 nm 

excitations, respectively), while there is similar fast decays with relaxation time around 0.8-1.7 

ns for both excitations (Fig. 5b, Table S2). Previous study on surface-related emission in 

semiconductor quantum dots suggested that the poor overlap of carrier wave functions on surface 

sites prolong radiative lifetime [39]. Thus, the deference in slow decays might be attributed to 

the different overlap degrees of photogenerated electron from carbogenic-core and hole wave 

functions in these surface functional groups.  

4. Conclusions 

In summary, a facile method to independent control of the carbogenic-core size and surface 

chemicals has been developed for PL mechanism study of C-dots. Detailed characterizations 

proved that the strong fluorescence in C-dots is originated from abundant surface functional 

groups on its surface, rather than originating from its carbogenic-core. One kind of surface 

functional group may forms a surface state energy level and becomes an isolated emission center 

with specific carrier dynamics on the surface site of C-dots. The energy gap of each surface state 

exhibits carbogenic-core size independent and is characterized by distinct central energies, such 

as C=O group at 335 nm, and C-O group at 430 nm.  
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