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Abstract - We investigate numerically and analytically the routing of a moderately confined discrete soliton
by using a weak oblique control beam in nonlinear waveguide arrays. Our simulations show that a weak control
beam can efficiently route a discrete soliton even when the input power of the weak control beam is less than
20% of the discrete soliton input power. The physical insight into the dragging of the discrete soliton toward
the control beam is provided for the first time. The influence of several important parameters such as the initial
phase of the weak control beam, peak amplitudes of discrete soliton and control beam, control beam width is
investigated in detail.

Index terms - waveguide arrays, discrete soliton, nonlinear fiber optics, optical switches, nonlinear optical
devices. c⃝ 2016 Optical Society of America

1. INTRODUCTION

Waveguide arrays (WAs) present a unique discrete pe-
riodic system to investigate many interesting photonic
phenomena such as discrete diffraction [1, 2], discrete
solitons (DSs) [1, 3–5], diffractive resonant radiation [6],
and supercontinuuum generation in both frequency and
wavenumber domains [7]. Recently, WAs have been ex-
ploited to simulate fundamental effects in nonrelativis-
tic quantum mechanics such as photonic Bloch oscilla-
tions [1, 8–11], and Zener tunneling [12]. Binary WAs
have also been intensively used to mimic relativistic phe-
nomena typical of quantum field theory, such as Zitter-
bewegung [13], Klein paradox [14], fermion pair produc-
tion [15], the Dirac equation in the linear regime [16],
and Dirac solitons in the nonlinear regime [17–19].
In applications, WAs may be useful for designing

signal-processing circuits, in particular optical switches.
One of first works on optical switching in WAs dates
back to 1994 [20] where the propagation of a moder-
ately confined discrete soliton (MCDS) extending over
five waveguides (and thus, its intensity is also moderate)
in the transverse direction was exploited. As shown in
Ref. [20], simply by controlling the initial phase differ-
ence between excited waveguides it is possible to change
the propagation angle of the whole soliton envelope and
reach every desirable output channel. Two other poten-
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tial schemes of controllable and steerable soliton-based
optical switching in nonlinear WAs are discussed for a
MCDS (also extending over five waveguides) in Ref. [21].
For the first scheme in Ref. [21] it is suggested that un-
stable soliton modes (soliton center is localized between
two neighboring waveguides) be used to achieve easily
steerable propagation of DSs. This is to avoid mode trap-
ping by the effective Peierls - Nabarro potential, which
always appears because of the system discreteness. The
other scheme proposed in Ref. [21] is based on control
of a MCDS with the help of a linear guided wave (or
defect mode) that can be excited in an inhomogeneous
array. Another interesting scheme to navigate a MCDS
on predefined tracks (even with sharp bends) in two-
dimensional WAs via interaction with a strongly con-
fined discrete soliton (also referred to as a blocker which
is intense and localized practically in just one waveg-
uide) is proposed in Ref. [22]. In the case of incoherent
interaction the blockers can block and route MCDSs in
2D networks, thus AND and NOT logic functions can be
realized, whereas in the case of coherent interaction the
time gating function can be achieved [22].
It is clear that in the regime of operation with MCDSs

as shown in Refs. [20–22], the discrete nature of WAs is
suppressed and the WA behaves as a bulk medium in
some aspects. As a result, MCDSs can propagate almost
unhindered and emerge in a predictable region of the ar-
ray. On the contrary, it is difficult to transversely steer
a blocker because it is trapped almost in a single waveg-
uide during propagation due to the Peierls - Nabarro
potential in WAs. However, a blocker still can be shifted
by a few waveguides in discrete steps via interaction with
a low-intensity, wide, tilted beam as shown numerically
in Ref. [23] and experimentally in Refs. [24, 25]. The in-
teraction between two DSs under normal incidence with
an initial phase difference can also lead to the shift of
DSs during propagation as investigated analytically and
numerically in Ref. [26], also numerically and experimen-
tally in Ref. [27]. Another approach to steer DSs in WAs
is proposed in Ref. [28] just by the longitudinal modula-
tion of the nonlinearity in WAs.
In this paper we propose a new scheme to route a

MCDS via interaction with a weak control beam (CB)
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in WAs. In this scheme the MCDS is launched normally
into WAs, whereas the weak CB is launched obliquely
into WAs. As shown later in this paper, after the colli-
sion the MCDS will be strongly bent toward the CB. The
transverse velocity of the MCDS can be efficiently con-
trolled by several parameters such as the initial phase of
the weak CB, the peak amplitudes of the weak CB and
the MCDS, and the width of the weak CB.
The paper is organized as follows. In Section 2, we

provide the physical insight into the steering mechanism
of the MCDS after the collision with the weak CB. The
influence of the initial phase of the weak CB is also inves-
tigated. In Section 3, we study the influence of the initial
peak amplitudes of the CB and the MCDS, and also the
CB width on the steering of the MCDS. In Section 4,
we summarize our results and finish with concluding re-
marks.

2. THE THEORETICAL MODEL AND IN-
FLUENCE OF THE INPUT CENTRAL
WAVE NUMBER OF THE CONTROL
BEAM

Light propagation in a discrete, periodic array of Kerr
nonlinear waveguides can be described, in the CW
regime, by the following well-known dimensionless set
of ordinary differential equations [4, 5, 11]:

i
dan(z)

dz
+c[an+1(z)+an−1(z)]+ |an(z)|2an(z) = 0, (1)

where an is the electric field amplitude in the nth waveg-
uide, z is the dimensionless longitudinal spatial coordi-
nate with the scale z0 = 1/(γP0), c ≡ C/(γP0) is the
dimensionless normalized coupling coefficient resulting
from the field overlap between neighboring waveguides
with C being the physical coupling coefficient in units of
1/m, γ being the nonlinear coefficient of a single waveg-
uide in units of W−1/m, and P0 being the power scale
in units of W . Equations (1) have two conserved quan-
tities which are the total power P and the Hamiltonian
H [11, 20]:

P =
∑
n

|an|2, (2)

H = −
∑
n

[c(a∗nan+1 + ana
∗
n+1) + 0.5|an|4]. (3)

Note that due to the discreteness of the system the equa-
tion for momentum conservation does not exist. We will
come back to this curious point later.
For the new scheme proposed in this paper we will

launch a MCDS normally into the WA, whereas a weak
CB is initially tilted. Thus, the initial condition for nu-
merically integrating Eq. (1) is following:

an(z = 0) = Adssech
(n+ 15)Ads√

2c
+

Acbexp

[
− (n− 20)2

w2

]
exp[−ik0(n− 20)]exp(−iϕ),

(4)

where the first term with sech function in the right-hand
side represents the MCDS [6], the second term in the
form of a Gaussian beam represents the CB. In Eq. (4)
the parameter Ads is the peak amplitude of the input
MCDS which is also inversely proportional to the MCDS
width, Acb is the peak amplitude of the weak Gaussian
CB, k0 is the central transverse wave number of the input
CB which represents the initial phase difference between
the electric fields at waveguides where the CB is excited
(thus, k0 is directly related to the refraction angle of the
CB in the WA), parameter ϕ represents the initial phase
difference between the CB and the MCDS. It is clear
from the input condition in the form of Eq. (4) that the
centers of the input MCDS and CB are localized at two
waveguides with number n = -15 and n = 20, respec-
tively. The positions of these centers are not essential in
our analysis as long as they are far enough from each
other. Therefore, in this work we keep these center po-
sitions fixed. The 1/e width for amplitudes of the initial
CB is equal to 2w and also kept constant in our analysis.
In this paper, as a practical example we specify the

parameters for the WA as follows: the WA is formed
by identical conventional step-index fibers with cladding
made of fused silica and core made of silica with 1.8%
dopant GeO2. The core radius is 6 µm and the center-to-
center spacing between two adjacent cores d = 21 µm.
Recent advances in femtosecond-laser writing technolo-
gies for WAs of fused silica (see [29]) make the above-
proposed WA feasible. The wavelength used for calcu-
lation is λ = 1.55 µm. With this specific WA system
the nonlinear coefficient is calculated to be γ = 0.95
W−1/km, the physical coupling coefficient is calculated
to be C = 159 m−1, the power scale is chosen to be
P0 = 140 kW , and the length scale z0 = 1/(γP0) =
0.0075 m. The evolution of a MCDS and a CB along the
z-axis with the input condition in the form of Eq. (4)
according to Eq. (1) is shown in Fig. 1(a). The param-
eters used for Fig. 1(a) are as follows: the input central
wave number of the CB k0 = -0.75π, the peak ampli-
tude of the input MCDS Ads = 0.8, the peak amplitude
of the input CB Acb = 0.2, the width parameter of the
CB w =

√
80, the initial phase difference between the

MCDS and the CB ϕ = 0, the dimensionless coupling
coefficient between neighboring waveguides c = C/(γP0)
= 1.2, the WA length L = 100, the total number of
waveguides used in simulation N = 421. With this set
of parameters the ratio of the CB input power Pcb to
the MCDS input power Pds is calculated to be 0.181.
The portion of input energy localized in one, three, and
five central waveguides of the MCDS is 25.8%, 65.8%,
and 86.4%, respectively. As clearly seen from Fig. 1(a),
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Fig. 1. (Color online) (a,b,c) Propagation of a MCDS and
a weak CB in the (n, z) plane (a) and (k, z) plane (b,c).
The wave number domain k in (b) is folded within the
first Brillouin zone in the interval [−π, π], whereas the wave
number domain k in (c) is within the unfolded interval
[−1.46π, 0.54π]. The black solid horizontal line at the level
k = −0.1165π in (c) represents the evolution of the resulting
wave number of all beams. (d) The shift of the MCDS center
at the output (red curve with round markers) and the CB
refraction angle in the WA (solid blue curve) as functions of
the input wave number k0 of the CB. Parameters: the MCDS
peak amplitude Ads = 0.8, the CB peak amplitude Acb = 0.2,
the width parameter of the CB w =

√
80, the initial phase

difference between the MCDS and the CB ϕ = 0, the coupling
coefficient c = 1.2, the WA length L = 100. In (a,b,c) the in-
put central wave number of the CB k0 = -0.75π, whereas in
(d) this parameter is scanned in the interval [−π, 0].

the MCDS and CB are launched normally and obliquely
into the WA, respectively. After the collision between
them, the CB is split into two beams: the transmitted
and reflected beams, while the MCDS is bent toward
the reflected beam of the CB. The ratio of the output
power of the MCDS to its input power is calculated to
be 0.9956, i.e., practically all energy of the input MCDS
is conserved during the routing process. Note that before
and after the collision the structure of the MCDS is quite
stable and its trajectory after the collision is a straight
line (although oblique). This behavior of the MCDS af-
ter the collision is different from that of the ”blocker”
after the collision with the signal beam, because in the
latter case the blocker is just shifted discretely by just
a few waveguides during the collision, then it continues
to propagate parallel to the z-axis [24]. It is also clear
from Fig. 1(a) that the total momentum K of all beams
before and after the collision has different values. This
is possible because, as mentioned above, there is no con-
servation law for momentum in this system. The fact
that the soliton is dragged toward the CB is universal in
this system and is also observed during the interaction
between the ”blocker” and ”signal” as pointed out, for
instance, in Refs. [24, 25]. The conservation of momen-
tum is also broken when a soliton is dragged toward the
diffractive resonant radiation emitted from the soliton

itself in WAs [6]. This kind of anomalous recoil is due to
the discrete nature of WAs which leads to the folding of
the first Brillouin zone as explained both qualitatively
and quantitatively in Ref. [6] for the case of diffractive
resonant radiation emission. However, in the case of in-
teraction between the blocker and signal, to the best of
our knowledge, the dragging of the blocker to the signal
has not been given any physical explanation. Now it is
time for us to have a closer look at this phenomenon.
We first take the Fourier transform a(n, z) → ã(k, z),

then from Fig. 1(a) we will obtain Fig. 1(b) which shows
the evolution of the spectrum ã in the (k, z) plain where
k is the wave number (or spatial frequency). Due to the
discrete nature of WAs the wave number k in Fig. 1(b) is
naturally emerged within the first Brillouin zone in the
interval [−π, π]. Note that at the input the central wave
number of the MCDS and the CB must be equal to 0
(normal incidence), and k0 = -0.75 (oblique incidence),
respectively. After the collision, as shown in Fig. 1(a), the
transmitted beam of the CB propagates under the same
direction as the input CB, thus in the (k, z) plain the cen-
tral wave number of the transmitted must be also equal
to k0, see Fig. 1(b). The spectrum of the MCDS after col-
lision is slightly shifted to the positive part of k, whereas
the spectrum of the reflected beam of the CB is around
k = 0.66π. However, one can see from Fig. 1(b) that the
spectrum of the reflected beam occurs in this region is
due to the folding effect of the first Brillouin zone. In the
unfolded wave number domain −1.46π ≤ k ≤ 0.54π, as
shown in Fig. 1(c), the spectrum of the reflected beam
will be around k = −π − (1 − 0.66)π = −1.34π. As a
result, if the momentum conservation law is held true in
Fig. 1(c), after the collision the spectrum of the MCDS
must be shifted to the positive part of k, leading to the
bend of the MCDS toward the reflected beam of the CB
in Fig. 1(a). Apparently, the conservation law for the to-
tal momentum K in Fig. 1(a) and 1(b) is broken, but
seems to be held true in Fig. 1(c). Indeed, it is the case
as shown below. In order to do that, we just need to
calculate the evolution of the total resulting momentum
K for all beams in Fig. 1(c) during propagation along z-
axis. The problem is reduced to the standard technique
of calculating the coordinates of the center of mass in me-
chanics. Thus, the position of the resulting wave number
at each value of z is as follows:

K(z) =

∫ 0.54π

−1.46π
k|ã(k, z)|2dk∫ 0.54π

−1.46π
|ã(k, z)|2dk

, (5)

where the denominator and numerator can be inter-
preted as the mass and the moment, respectively, of one
object with uniform density in mechanics which is con-
fined between the curve |ã(k)|2 and the k-axis in the in-
terval −1.46π ≤ k ≤ 0.54π. This resulting wave number
for the case in Fig. 1(c) is calculated to be K ≃ −0.115π
[black solid horizontal line in Fig. 1(c)] and is practically
constant during propagation. Unlike Eq. (2) and Eq. (3)
which one can always use to calculate the total power P
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and HamiltonianH, one can only use Eq. (5) to calculate
the resulting wave number K under the condition that
the spectra of all beams before and after the collision
do not significantly overlap at the upper and lower lim-
its of the unfolded wave number domain k. We want to
emphasize that although the difference of the upper and
lower limits of two integrals in Eq. (5) is always equal to
2π, the specific values of these two limits must be found
for each individual case. In the case of Fig. 1(b) and 1(c)
the criteria for choosing the unfolded wave number are
as follows: (i) the spectrum of the reflected beam of the
CB is connected to the spectrum of the input CB, (ii)
and at the same time the spectrum of the MCDS re-
mains intact. Therefore, the upper limit of the unfolded
wave number domain must be located between the spec-
trum of the MCDS and the spectrum of the reflected
beam of the CB in Fig. 1(b), thus this upper limit must
be around 0.5π. In Fig. 1(c), as mentioned above, we
choose the unfolded wave number domain k ∈ [-1.46π,
0.54π] and the resulting wave number K is calculated to
be around -0.115π. If the unfolded wave number domain
is slightly changed such that the two above-mentioned
criteria are met, for instance k ∈ [-1.5π, 0.5π], then K is
also calculated to be around -0.115π and conserved dur-
ing propagation. Note that in the case of Fig. 1 the total
number of waveguides N = 421, thus the grid for the
wave number domain in Fig. 1(b) and 1(c) is very fine
with the step being equal to 2π/N and the wave number
domain there can be treated as quasicontinuous. In this
case, the integration in Eq. (5) makes sense. However, if
N is not large enough, then the grid for the wave num-
ber domain can be rough, and in that case one should
use the summation instead of the integration in Eq. (5).
Note also that the dragging mechanism of the MCDS to-
ward the reflected beam of the CB explained above can
be applied for the case of interaction between a blocker
and a signal beam.
As shown in Fig. 1(a), because the transmitted and

reflected beams of the CB are weak, these linear waves
gradually spread in space due to diffraction. Meanwhile,
the MCDS, as a nonlinear localized soliton, propagates
under the same direction after collision without any dis-
tortion of its shape. If the WA length is much longer than
L = 100 used in Fig. 1, then our simulations show that
these two trends are also observed. Namely, the transmit-
ted and reflected beams of the CB continue to broaden
in space during propagation, whereas the MCDS contin-
ues to maintain its shape and propagation direction. As
a result, for longer WA length the main features of Fig.
1(b) after collision remain unchanged.
At the output in Fig. 1(a) the center of the MCDS

is shifted by ∆n0 = 47 waveguides as compared to the
center of the input MCDS. In what follows we show that
the shift of the MCDS center can be efficiently controlled
by different ways. In Fig. 1(d) we plot the MCDS center
shift ∆n0 (red curve with round markers) and the CB
refraction angle α in the WA in units of degrees (solid
blue curve) as functions of the central input wave num-

ber k0 of the CB in the interval −π ≤ k0 ≤ 0 (half
a period). Except for the change in k0, all other pa-
rameters in Fig. 1(d) are the same as in Fig. 1(a). The
CB refraction angle in the WA before the collision with
the MCDS is the propagation angle of the CB formed
by the CB with the z-axis, and can be defined as α =
atan[(d/z0)v], where v = -2csin(k0) is the transverse ve-
locity of the CB in the WA (see Ref. [11], pages 12-
13). As clearly shown in Fig. 1(d) when k0 is within the
interval −0.5π ≤ k0 ≤ 0 the routing of the MCDS is
not efficient, because the center of the MCDS can be
shifted only by less than 6 waveguides. However, the
MCDS center shift ∆n0 quickly rises when k0 gradually
decreases in the interval −0.75π ≤ k0 ≤ −0.5π, reaching
the maximum shift ∆n0 = 47 when k0 = −0.75π. If k0
decreases further down to −π, the MCDS center shift
quickly decreases from 47 waveguides down to 0 waveg-
uides. This is due to the fact that the CB refraction
angle in the WA will decrease to zero when k0 decreases
from −0.75π down to −π, leading to the decrease in in-
teraction between the CB and MCDS. In the interval
−2π ≤ k0 ≤ −π the CB propagates in the downward
direction from the very beginning, thus it cannot collide
with the MCDS. Note that with the input central wave
number k0 = −0.5π the CB will undergo the diffraction-
less propagating [11]. This value of k0 = −0.5π is used
in Refs. [24, 25] to discretely shift the intense blocker.
However, in our work, using this value of k0 = −0.5π for
the CB will be inefficient in routing the MCDS.

3. INFLUENCE OF THE BEAMS PEAK AM-
PLITUDES AND THE CONTROL BEAM
WIDTH

In this Section we investigate the influence of several im-
portant parameters on the routing of the MCDS. First,
we want to investigate the role of the peak amplitude Acb

of the input CB. Figure 2(a) shows the propagation of a
MCDS and a CB. All parameters used in Fig. 2(a) are
exactly the same as in Fig. 1(a) with the only exception
that the input peak amplitude of the CB Acb = 0.32 in
Fig. 2(a) instead of Acb = 0.2 in Fig. 1(a). Thus, the CB
input power in Fig. 2(a) is 2.56 times larger than that
value in Fig. 1(a), and the ratio of input powers Pcb/Pds

= 0.4634 now in Fig. 2(a) instead of the ratio value 0.181
in Fig. 1(a). As a result, the more intense CB in Fig. 2(a)
is capable of routing the MCDS by ∆n0 = 86 waveguides
at the output as compared to just 47 waveguides in Fig.
1(a).
In Fig. 2(b) we plot the dependence of the MCDS cen-

ter shift ∆n0 at the output (red curve with round mark-
ers) and the ratio of the CB input power to the MCDS
input power (solid blue curve) as functions of the peak
amplitude Acb of the CB. As clearly shown in Fig. 2(b),
when Acb is still small (Acb < 0.35, which means the CB
is also still weak as compared to MCDS: Pcb/Pds < 0.55)
the MCDS center shift ∆n0 quickly rises with the in-
crease in Acb. However, the saturation for ∆n0 is ob-
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Fig. 2. (Color online) (a) Propagation of a MCDS and a
CB when the CB peak amplitude Acb = 0.32 (the CB width
parameter is fixed at the value w =

√
80). (b) Dependence of

the MCDS center shift (red curve with round markers) and
the input power ratio Pcb/Pds (solid blue curve) as functions
of the CB peak amplitude Acb. (c) Dependence of the MCDS
center shift (red curve with round markers) and the input
power ratio Pcb/Pds (solid blue curve) as functions of the CB
width parameter w (the CB peak amplitude is fixed at the
value Acb = 0.2). (d) Dependence of the MCDS center shift
as a function of the input power ratio Pcb/Pds for two cases:
blue solid curve - when Acb varies and w is fixed; red curve
with round markers - when w varies and Acb is fixed. Except
for changes in Acb and w, all other parameters are the same
as in Fig. 1(a).

served if Acb is increased further. This is understand-
able, because our simulations (not shown here) reveal
that when the peak amplitude Acb of the input CB is
too large (while keeping the CB width constant), the
CB will quickly spread out even before the collision with
the MCDS. Thus, the interaction between the MCDS
and the CB is not very efficient.
We now investigate the influence of the CB width pa-

rameter w on the routing of the MCDS. In Fig. 2(c) we
plot the dependence of the MCDS center shift ∆n0 at
the output (red curve with round markers) and the in-
put power ratio Pcb/Pds (solid blue curve) as functions of
the CB width parameter w while fixing Acb = 0.2 and all
other parameters as in Fig. 1(a). Obviously, in this case,
the input power Pcb of the CB is a linear function of its
width parameter w (blue straight line in Fig. 2(c)). As
clearly shown in Fig. 2(c), the MCDS center shift ∆n0

also quickly rises when w is increased.
In Fig. 2(d) we plot the dependence of the MCDS cen-

ter shift ∆n0 at the output as a function of the input
power ratio Pcb/Pds for two cases: when w varies, but
Acb is fixed to be equal to 0.2 (red curve with round
markers); and when Acb varies, but w is fixed to be equal
to

√
80 (blue solid curve). All other parameters in Fig.

2(d) are the same as in Fig. 1(a). As clearly shown in Fig.
2(d), even when Pcb/Pds < 0.2 the weak CB still can ef-
ficiently route the MCDS by up to about 50 waveguides

at the output of a WA with length L = 100. The MCDS
center shift ∆n0 can be even much more significant if
the WA length is increased. Figure 2(d) also reveals that
if the CB is weak (while the input power of the MCDS
is fixed), then the MCDS center shift ∆n0 at the output
mainly depends on the input power Pcb of the CB in a
proportional manner, but only slightly depends on the
way how to obtain that value Pcb (whether by varying
the input amplitude Acb or width parameter w of the
CB).
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Fig. 3. (Color online) (a,b,c) Propagation of a MCDS and
a CB when the MCDS peak amplitude Ads = 0.2, 1.12, and
1.3, respectively. (d) Dependence of the MCDS center shift
∆n0 (red curve with round markers) and the input power ra-
tio Pcb/Pds (solid blue curve) as functions of the MCDS peak
amplitude Ads. Except for changes in Ads all other parame-
ters are the same as in Fig. 1(a).

Now we analyze in detail the influence of the peak
amplitude Ads of the input MCDS in its routing pro-
cess. In Fig. 3(a), (b), and (c) we show the propagation
of a MCDS and a CB when the input peak amplitude of
the MCDS Ads = 0.2, 1.12, and 1.3, respectively, with
all other parameters being the same as in Fig. 1(a). In
Fig. 3(a) the input peak amplitude of the MCDS is low
(Ads = 0.2), thus, the MCDS width is large. As a result
the CB and MCDS in Fig. 3(a) practically operate in the
linear regime and propagate though each other with min-
imum influence from the other beam. On the contrary,
in Fig. 3(b) the input peak amplitude of the MCDS is
high (Ads = 1.12), which means almost all of energy of
the input MCDS is trapped in just a few waveguides. To
be more specific, the portion of input energy localized
in one, three, and five central waveguides of the MCDS
is 36.2%, 80.7%, and 95.2%, respectively. As a result,
in Fig. 3(b), due to the combination of the discreteness
and strong nonlinearity, the weak CB is only able to shift
the MCDS by just a few waveguides during interaction
between them. Note that in Fig. 3(b) after the inter-
action the MCDS practically propagates parallel to the
z-axis. This scenario is somewhat similar to the routing
of a blocker by a diffractionless signal beam reported in
Refs. [24, 25]. If we increase the peak amplitude of the
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input MCDS further to the value Ads = 1.3 (and thus,
its spatial localization is even more enhanced) as in Fig.
3(c), then the weak CB cannot shift the MCDS at all dur-
ing their collision. In Fig. 3(d) we plot the dependence
of the MCDS center shift ∆n0 at the output (red curve
with round markers) and the input power ratio Pcb/Pds

(solid blue curve) as functions of the peak amplitude Ads

of the input MCDS while fixing all other parameters as
in Fig. 1(a). Because the input power Pds of the MCDS
is directly proportional to its peak amplitude Ads at the
input, therefore, when the input power Pcb of the CB is
fixed the ratio Pcb/Pds is inversely proportional to Ads

as shown by the solid blue curve in Fig. 3(d). The bell
shape of the red curve with round markers in Fig. 3(d) is
now understandable. When Ads < 0.4, two beams prac-
tically operate in the linear regime and almost do not
change their propagation directions, therefore, the wide
and weak DS is shifted by just a few waveguides and ∆n0

is negligible as illustrated in Fig. 3(a). When Ads > 1.12,
the narrow and intense DS is trapped in several waveg-
uides due to the combination of strong nonlinearity and
discreteness, therefore, ∆n0 is also negligible as illus-
trated in Fig. 3(b) and (c). In the intermediate regime
when 0.4 < Ads < 1.12, the MCDS is strongly routed by
the weak CB with ∆n0 reaching its peak if Ads ≃ 0.8 as
illustrated in Fig. 1(a).
In the rest of this work we discuss the influence of

the initial phase difference ϕ between the DS and the
CB in Eq. (4) in the routing of the DS. It is well-known
that the interaction of two spatial solitons which ini-
tially propagate parallel to each other in WAs depends
strongly on their initial phase difference [18, 26, 27]. In
the case of interaction between a blocker (launched nor-
mally into WAs) with an oblique signal beam one can
control the shift of the blocker within a range of just
few waveguides by varying the initial phase difference
between them [23,24]. Our simulations also confirm that
∆n0 can be varied within a range of just few waveguides
by changing the initial phase difference ϕ between a weak
CB and an intense DS [when Ads >1.1 as the case in Fig.
3(b)]. The variation of ∆n0 can be even larger up to 10
waveguides if a strong CB (e.g., Acb = 0.6) is used to
route the MCDS in Fig. 1. However, our simulations re-
veal that the initial phase difference ϕ practically does
not play any significant role in the routing of a MCDS,
or a weak DS by a weak oblique CB. For instance, in Fig.
1(a) and 3(a) if we change the value of ϕ while fixing all
other parameters, then ∆n0 will not be different. It is
easy to understand why ϕ does not play any role at all
in routing a weak DS by a weak CB, because these two
beams are in the linear regime and propagate indepen-
dently of each other [see Fig. 3(a)]. However, the reasons
why ϕ has some influence on routing a strong blocker,
but does not have any significant role in routing a MCDS
by a weak oblique CB as shown in Fig. 1(a) are still open
to discussion.

4. SUMMARY

In conclusion, we demonstrate numerically that a weak
control beam can efficiently route a moderately confined
discrete soliton in waveguide arrays with Kerr nonlin-
earity even when the ratio of the control beam input
power to that of the discrete soliton is less than 20%.
The dragging of the discrete soliton toward the control
beam is well-known in literatures, but the physical mech-
anism behind this effect is only provided for the first time
in this work, to the best of our knowledge. The initial
phase of the CB is an essential parameter in this routing
process and it turns out that the optimal value of this
initial phase for enhancing the routing should be around
−0.75π instead of −0.5π as often used in other works for
diffractionless propagation of the CB. When the input
power of the CB increases, the center shift of the MCDS
at the output also increases and only slightly depends on
the way how to reach that input power of the CB.
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