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Abstract. We propose two projection algorithms for solving an equilibrium problem
where the bifunction is not required to be satisfied any monotone property. Under
assumptions on the continuity, convexity of the bifunction and the nonemptyness
of the solution set of the Minty equilibrium problem, we show that the sequences
generated by the proposed algorithms converge weakly and strongly to a solution of
the primal equilibrium problem respectively.
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1 Introduction

Let H be a Hilbert space with the inner product ⟨·, ·⟩ and associated norm ∥ · ∥.
Let Ω be an open convex subset in H containing a nonempty closed convex C, and
f : Ω× Ω → R be a bifunction satisfying f(x, x) = 0 for every x ∈ C. We consider
the following equilibrium problem (shortly EP(C, f)) in the sense of Blum, Muu and
Oettli [4, 21], which is to find x∗ ∈ C such that

f(x∗, y) ≥ 0, ∀y ∈ C,

and its associated equilibrium problem

Find u ∈ C such that f(y, u) ≤ 0, ∀y ∈ C. (1.1)

We call problem ( 1.1) as the Minty equilibrium problem (MEP(C, f) for short)
due to M. Castellani and M. Giuli [6]. By S and SM , we denote the solution
set of EP(C, f) and MEP(C, f) respectively. While we denote by ‘→’ the strong
convergence and by ‘⇀’ the weak convergence in the Hilbert space H.

Although problem EP(C, f) has a simple formulation, it includes, as special
cases, many important problems in applied mathematics: variational inequality
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problem, optimization problem, fixed point problem, saddle point problem, Nash
equilibrium problem in noncooperative game, and others; see, for example, [3, 4, 21,
15], and the references quoted therein. Solution methods for equilibrium problem
have been usually extended from those for variational inequality problem [12, 14,
26, 30] and other related problems; see, for instance, [9, 11, 17, 18, 20, 22, 25, 29].
Among them, the extragradient method which was introduced by Korpelevich [19]
for solving variational inequality problem and recently extended to equilibrium prob-
lem [1, 28] is an important method. However, in our best knowledge, to implement
this method, it always requires the solution set S of EP(C, f) is contained in the
solution set SM of MEP(C, f). This condition is guaranteed under the pseudomono-
tonicity assumption of bifunction f on C, that is, if x, y ∈ C, f(x, y) ≥ 0,
then f(y, x) ≤ 0. Therefore, if S is not contained in SM , then the existing ex-
tragradient method can not be applied for EP(C, f) directly. For instance, take
C = [−1, 1] × [−1, 1] ⊂ R2 and for each x = (x1, x2), y = (y1, y2) ∈ C, we define
bifunction f by the following formula

f(x, y) = |x1 + x2|(y1 − x1 + y2
2 − x2

2),

it is clear that S = {(−1, 0), (t,−t) : t ∈ [−1, 1]}; SM = {(−1, 0)}, and S ̸⊂ SM .

Note that, for each y ∈ C, by setting

L(y) = {u ∈ C : f(u, y) ≥ 0}, LM(y) = {v ∈ C : f(y, v) ≤ 0},
then we can verify that

S = ∩y∈CL(y), SM = ∩y∈CLM(y).

If f(·, y) is upper semicontinuous on C for each y ∈ C, then L(y) is closed
for every y ∈ C, hence S is a closed set. While if f(x, ·) is lower semicontinuous
and quasiconvex on C for each x ∈ C, then LM(y) is closed and convex for all
y ∈ C. Consequently, SM is a closed and convex set and the Minty equilibrium
problem reduces to a so-called convex feasibility problem [2]. If, in addition, the
constraint set C is compact or f satisfies some certain coercive conditions [18] then
S is nonempty [5, 13]. However, S is not necessary convex as the above example.

Remember that, if f(·, y) is upper semicontinuous on C for each y ∈ C and
f(x, ·) is convex for every x ∈ C, then we have SM ⊂ S; see, for example [16].

In this paper, we propose two projection algorithms for solving the equilib-
rium problem in a real Hilbert space without pseudomonotonicity assumption of
the bifunction, we assume that SM is nonempty instead. The first algorithm can be
considered as an extension of the one introduced by M. Ye and Y. He [33] for solving
nonmonotone variational inequality problem in the Euclidean space, and the second
one is a combination between the projection algorithm for solving the pseudomono-
tone equilibrium problem in the finite dimensional space in [10] and hybrid cutting
technique proposed by W. Takahashi et al. [27] (see also Y. Censor et al. [7]).
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The paper is organized as follows. The next section contains some preliminaries
on the metric projection and equilibrium problems. The third section is devoted
to presentation of a projection algorithm for EP(C, f) and its weak convergence.
A strong convergence algorithm for EP(C, f) is presented in section 4. The last
section, is devoted to present an application of the proposed algorithm for Nash-
Cournot equilibrium models of electricity markets and its implementation.

2 Preliminaries

In the rest of this paper, by PC we denote the metric projection operator on C, that
is

PC(x) ∈ C : ∥x− PC(x)∥ ≤ ∥y − x∥, ∀y ∈ C,

and d(., C) stands for the distance function to C, i.e.,

d(x, C) = inf{∥x− y∥ : y ∈ C}.

For example, if H = {y ∈ H : ⟨w, y − y0⟩ ≤ 0} for some w, y0 ∈ H, then

d(x, H) =

{
|⟨w,x−y0⟩|

∥w∥ if x /∈ H

0 if x ∈ H

The following well known results on the projection operator onto a closed convex
set will be used in the sequel.

Lemma 2.1 Suppose that C is a nonempty closed convex subset in H. Then

(a) PC(x) is singleton and well defined for every x;

(b) z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C;

(c) ∥PC(x)− PC(y)∥2 ≤ ∥x− y∥2 − ∥PC(x)− x + y − PC(y)∥2, ∀x, y ∈ C.

Definition 2.1 A bifunction φ : C×C → R is said to be jointly weakly continuous
on C×C if for all x, y ∈ C and {xk}, {yk} are two sequences in C converging weakly
to x and y respectively, then φ(xk, yk) converges to φ(x, y).

In the sequel, we need the following blanket assumptions

(A1) f(x, .) is convex on Ω for every x ∈ C;

(A2) f is jointly weakly continuous on Ω× Ω.
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For each z, x ∈ C, by ∂2f(z, x) we denote the subgradient of the convex function
f(z, .) at x, i.e.,

∂2f(z, x) := {w ∈ H : f(z, y) ≥ f(z, x) + ⟨w, y − x⟩, ∀y ∈ C}.
In particular,

∂2f(z, z) = {w ∈ H : f(z, y) ≥ ⟨w, y − z⟩, ∀y ∈ C}.
The next lemma can be considered as an infinite-dimensional version of Theorem
24.5 in [24]

Lemma 2.2 [31, Proposition 4.3] Let f : Ω × Ω → R be a function satisfying
conditions (A1) and (A2). Let x̄, ȳ ∈ Ω and {xk}, {yk} be two sequences in Ω
converging weakly to x̄, ȳ, respectively. Then, for any ϵ > 0, there exist η > 0 and
kϵ ∈ N such that

∂2f(xk, yk) ⊂ ∂2f(x̄, ȳ) +
ϵ

η
B,

for every k ≥ kϵ, where B denotes the closed unit ball in H.

Lemma 2.3 [20] Under assumptions (A1) and (A2), a point x∗ ∈ C is a solution
of EP(C, f) if and only if it is a solution to the equilibrium problem:

Find x∗ ∈ C : f(x∗, y) +
ρ

2
∥y − x∗∥2 ≥ 0, ∀y ∈ C. (AEP )

Lemma 2.4 [32] Let C be a nonempty closed convex subset of H. Let {xk} be a
sequence in H and u ∈ H. If any weak limit point of {xk} belongs to C and

∥xk − u∥ ≤ ∥u− PC(u)∥, ∀k.

Then xk → PC(u).

Lemma 2.5 Under assumptions (A1) and (A2), if {zk} ⊂ C is a sequence such
that {zk} converges strongly to z̄ and the sequence {wk}, with wk ∈ ∂2f(zk, zk),
converges weakly to w̄, then w̄ ∈ ∂2f(z̄, z̄).

Proof. Let wk ∈ ∂2f(zk, zk). Then

f(zk, y) ≥ f(zk, zk) + ⟨wk, y − zk⟩ = ⟨wk, y − zk⟩, ∀y ∈ C.

Taking the limit as k → ∞ on both sides of the above inequality, by the weak
continuity of f(., y) with respect to the first argument, we obtain

f(z̄, y) ≥ lim sup
k→∞

f(zk, y) ≥ lim
k→∞

⟨wk, y − zk⟩

= lim
k→∞

⟨wk, y − z̄⟩+ lim
k→∞

⟨wk, z̄ − zk⟩
= ⟨w̄, y − z̄⟩, ∀y ∈ C,

which, together with f(z̄, z̄) = 0, implies that w̄ ∈ ∂2f(z̄, z̄). 2
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Lemma 2.6 Suppose the bifunction f satisfies the assumptions (A1), (A2). If
{xk} ⊂ C is bounded, ρ > 0, and {yk} is a sequence such that

yk = arg min
{

f(xk, y) +
ρ

2
∥y − xk∥2 : y ∈ C

}
,

then {yk} is bounded.

Proof. Firstly, we show that if {xk} weakly converges to x∗, then {yk} is bounded.
Indeed,

yk = arg min
{

f(xk, y) +
ρ

2
∥y − xk∥2 : y ∈ C

}
,

and
f(xk, xk) +

ρ

2
∥xk − xk∥2 = 0,

therefore
f(xk, yk) +

ρ

2
∥yk − xk∥2 ≤ 0, ∀k.

In addition, for all wk ∈ ∂2f(xk, xk) we have

f(xk, yk) +
ρ

2
∥yk − xk∥2 ≥ ⟨wk, yk − xk⟩+

ρ

2
∥yk − xk∥2.

This implies −∥wk∥∥yk − xk∥+ ρ
2
∥yk − xk∥2 ≤ 0. Hence,

∥yk − xk∥ ≤ 2

ρ
∥wk∥, ∀k.

Because {xk} converges weakly to x∗ and wk ∈ ∂2f(xk, xk), by Lemma 2.2, the
sequence {wk} is bounded, combining with the boundedness of {xk}, we get {yk} is
also bounded.

Now we prove the Lemma 2.6. Suppose contradict that {yk} is unbounded, i.e.,
there exists an subsequence {yki} ⊆ {yk} such that limi→∞ ∥yki∥ = +∞. By the
boundedness of {xk}, it implies {xki} is also bounded, without loss of generality,
we may assume that {xki} converges weakly to some x∗. By the same argument as
above, we obtain {yki} is bounded, which contradicts. Therefore {yk} is bounded.
2

3 Weak convergence algorithm for EP(C, f)

Let F : C → H be an operator, by setting f(x, y) = ⟨F (x), y − x⟩, the equilibrium
problem EP(C, f) becomes the following variational inequality problem VIP(C,F ):

Find x∗ ∈ C such that ⟨F (x∗), y − x∗⟩ ≥ 0, ∀y ∈ C.
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In this case, the MEP(C, F ) reduces to the Minty variational inequality MEP(C,F ):

Find x∗ ∈ C such that ⟨F (y), x∗ − y⟩ ≤ 0, ∀y ∈ C.

To find a solution of nonmonotone variational inequality problem in the Eu-
clidean space Rn, M. Ye and Y. He proposed to use the following double projection
algorithm (see [33, Algorithm 2.1]):

Algorithm 1

Initialization. Choose x0 ∈ C, choose parameters η ∈ (0, 1), and ρ ∈ (0, 1).

Iteration k (k = 0, 1, 2, ...). Having xk do the following steps:

Step 1. Compute yk = PC(xk − F (xk)), r(xk) = xk − yk.

If r(xk) = 0, stop. Otherwise, go to Step 2.

Step 2. Find mk as the smallest nonnegative integer number m satisfying

⟨F (xk)− F (xk − ηmr(xk)), r(xk)⟩ ≤ ρ∥r(xk)∥2,

and compute zk = xk − ηkr(x
K), where ηk = ηm

k .

Step 3. Compute xk+1 = PC∩H̃k
(xk), where H̃k = ∩j=k

j=0Hj, with

Hj = {x ∈ Rn : ⟨F (zj), x− zj⟩ ≤ 0},

and go to Step 1 with k is replaced by k + 1.

They proved that if F is continuous on Rn then the sequence {xk} generated
by Algorithm 1 converges to a solution of VIP(C, F ) provided that the solution set
of MVIP(C,F ) is nonempty.

Note that Algorithm 1 can be considered as a modification of the one introduced
by M.V. Solodov and B.F. Svaiter for solving pseudomonotone variational inequality
problems [26]. Motivated by these works and recent paper [10], we now present the
first projection algorithm for solving nonmonotone equilibrium problem in Hilbert
space.

Algorithm 2

Initialization. Pick x0 ∈ C, choose parameters η ∈ (0, 1), ρ > 0 and C0 = C.

Iteration k (k = 0, 1, 2, ...). Having xk do the following steps:

Step 1. Solve the strongly convex program

min
{

f(xk, y) +
ρ

2
∥y − xk∥2 : y ∈ C

}
CP (xk)

to obtain its unique solution yk.
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If yk = xk, then stop. Otherwise, do Step 2.

Step 2. (Armijo linesearch rule) Find mk as the smallest positive integer number
m satisfying 




zk,m = (1− ηm)xk + ηmyk,

wk,m ∈ ∂2f(zk,m, zk,m),

⟨wk,m, xk − yk⟩ ≥ ρ
2
∥yk − xk∥2.

(3.1)

Step 3. Set ηk = ηmk , zk = zk,mk , wk = wk,mk . Take

Hk = {x ∈ H : ⟨wk, x− zk⟩ ≤ 0}, Ck+1 = Ck ∩Hk. (3.2)

Step 4. Compute xk+1 = PCk+1
(xk), and go to Step 1 with k is replaced by k+1.

Remark 3.1

• If yk = xk then xk is a solution to EP(C, f).

• wk ̸= 0, ∀k.

Now we are going to analyze the validity and convergence of the algorithm.

Lemma 3.1 If the solution set SM of the Minty equilibrium problem is nonempty.
Then the sequence {xk} generated by Algorithm 1 is well defined in the sense that,
at each iteration k, there exists an integer number m > 0 satisfying the inequality
in ( 3.1) for every wk,m ∈ ∂2f(zk,m, zk,m), Ck is nonempty closed convex, and

⟨wk, xk − zk⟩ ≥ ηkρ

2
∥xk − yk∥2. (3.3)

Proof. Firstly, we prove that at each iteration k there exists a positive integer
m0 such that

⟨wk,m0 , xk − yk⟩ ≥ ρ

2
∥yk − xk∥2, ∀ wk,m0 ∈ ∂2f(zk,m0 , zk,m0).

Indeed, suppose by contradiction that, for every positive integer m and zk,m =
(1− ηm)xk + ηmyk there exists wk,m ∈ ∂2f(zk,m, zk,m) such that

⟨wk,m, xk − yk⟩ <
ρ

2
∥yk − xk∥2.

Since zk,m converges strongly to xk as m → ∞, by Lemma 2.2, the sequence
{wk,m}∞m=1 is bounded. Thus we may assume that wk,m converges weakly to w̄
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for some w̄. Taking the limit as m → ∞, from zk,m → xk and wk,m ⇀ w̄, by
Lemma 2.5, it follows that w̄ ∈ ∂2f(xk, xk) and

⟨w̄, xk − yk⟩ ≤ ρ

2
∥yk − xk∥2. (3.4)

Since w̄ ∈ ∂2f(xk, xk), we have

f(xk, yk) ≥ f(xk, xk) + ⟨w̄, yk − xk⟩ = ⟨w̄, yk − xk⟩.

Combining with ( 3.4) yields

f(xk, yk) +
ρ

2
∥yk − xk∥2 ≥ 0,

which contradicts to the fact that

f(xk, yk) +
ρ

2
∥yk − xk∥2 < 0.

Thus, the linesearch is well defined.
Now we show that Ck is nonempty. Indeed, by the assumption SM ̸= ∅, then for
each x∗ ∈ SM , we get f(y, x∗) ≤ 0, ∀y ∈ C, so f(zk, x∗) ≤ 0, ∀k.
From the convexity of f(zk, .) we have

f(zk, y) ≥ f(zk, zk) + ⟨wk, y − xk⟩, ∀y ∈ C.

Therefore,
0 ≥ f(zk, x∗) ≥ ⟨wk, x∗ − xk⟩,

i.e., x∗ ∈ Ck, ∀k.
Since

⟨wk, xk − zk⟩ = ηk⟨wk, xk − yk⟩.
Combining with the linesearch rule ( 3.1), we get

⟨wk, xk − zk⟩ ≥ ηkρ

2
∥y2 − xk∥2,

as desired.

2

Now we are in the position to prove the convergence of the proposed algorithm.

Theorem 3.1 Suppose that the solution set SM of MEP(C, f) is nonempty. Then
under assumptions (A1), (A2), the sequence {xk} generated by Algorithm 1 con-
verges weakly to a solution x∗ of EP(C, f).
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Proof. Firstly, we show that any weak accumulation point x̄ of the sequence {xk}
belongs to Ck for all k. Indeed, assume that {xkj} ⊂ {xk}, xkj ⇀ x̄ as j → ∞,
and there exists k0 such that x̄ ̸∈ Ck0 . Then by the closedness and convexity
of Ck0 , this implies Ck0 is also weakly closed, so there exists kj0 > k0 such that
xkj ̸∈ Ck0 for all kj ≥ kj0 , especially xkj0 ̸∈ Ck0 . This contradicts to the fact that
xkj0 ∈ Ckj0

−1 ⊂ ... ⊂ Ck0+1 ⊂ Ck0 . Therefore x̄ ∈ Ck, ∀k, or x̄ ∈ ∩∞k=0Ck. Since
Ck ⊂ Hk, ∀k, we also get x̄ ∈ ∩∞k=0Hk. By Lemma 3.1, SM ⊂ ∩∞k=0Ck, it implies
that ∩∞k=0Ck is nonempty.

Now, take any x̄ ∈ ∩∞k=0Ck, from Step 4, xk+1 = PCk+1
(xk) and Lemma 2.1, we

have

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2 − ∥xk+1 − xk∥2

≤ ∥xk − x̄∥2 − d2(xk, Hk), ∀k.
(3.5)

Hence, {∥xk+1 − x̄∥2} is a nonincreasingly convergent sequence. Thus, {xk} is
bounded and from ( 3.5) it implies that

lim
k→∞

∥xk+1 − xk∥ = 0. (3.6)

Combining this fact with Lemma 2.6, we deduce that {yk}, {zk}, {wk} are also
bounded.
Next, we show that {xk} converges weakly to some point x∗ ∈ ∩∞k=0Ck. Indeed, if
x̄ and x∗ are two weak accumulation points of {xk}, then there exist {xki} ⊂ {xk},
{xkj} ⊂ {xk} such that xki ⇀ x̄; xkj ⇀ x∗, by the above argument, we have x̄, x∗ ∈
∩∞k=0Ck. From ( 3.5) it yields limk→∞ ∥xk − x̄∥2 = α and limk→∞ ∥xk − x∗∥2 = β.
We have

α = lim
k→∞

∥xk − x̄∥2 = lim
j→∞

∥xkj − x̄∥2

= lim
j→∞

(∥xkj − x∗∥2 + 2⟨xkj − x∗, x∗ − x̄⟩+ ∥x∗ − x̄∥2)

= lim
j→∞

(∥xkj − x∗∥2 + ∥x∗ − x̄∥2)

= lim
k→∞

(∥xk − x∗∥2 + ∥x∗ − x̄∥2)

= lim
k→∞

(∥xk − x̄∥2 + 2∥x∗ − x̄∥2)

= α + 2∥x∗ − x̄∥2.

Hence, ∥x∗ − x̄∥ = 0, or {xk} converges weakly to x∗.
Now, we have only to show that x∗ solves EP(C, f).
Indeed, because {wk} is bounded, there exists L > 0 such that ∥wk∥ ≤ L, ∀k.
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Combining with ( 3.3) we get

∥xk+1 − xk∥ = d(xk, Ck) ≥ d(xk, Hk) =
|⟨wk, xk − zk⟩|

∥wk∥
≥ L−1ηkρ

2
∥xk − yk∥2.

(3.7)

From ( 3.6) and ( 3.7), we obtain

lim
k→∞

ηk∥xk − yk∥2 = 0. (3.8)

We now consider two distinct cases:

Case 1. lim supk→∞ ηk > 0. Then there exists η̄ > 0 and a subsequence {ηki
} ⊂

{ηk} such that ηki
> η̄, ∀i, and by ( 3.8), one has

lim
i→∞

∥xki − yki∥ = 0. (3.9)

Since xk ⇀ x∗ and ( 3.9), it implies that yki ⇀ x∗ as i →∞.
By definition of yki :

yki = arg min{f(xki , y) +
ρ

2
∥y − xki∥2 : y ∈ C},

we have
0 ∈ ∂2f(xki , yki) + ρ(yki − xki) + NC(yki),

so there exists vki ∈ ∂2f(xki , yki) such that

⟨vki , y − yki⟩+ ρ⟨yki − xki , y − yki⟩ ≥ 0, ∀y ∈ C.

Combining with

f(xki , y)− f(xki , yki) ≥ ⟨vki , y − yki⟩, ∀y ∈ C,

yields
f(xki , y)− f(xki , yki) + ρ⟨yki − xki , y − yki⟩ ≥ 0, ∀y ∈ C. (3.10)

In addition,
⟨yki − xki , y − yki⟩ ≤ ∥yki − xki∥∥y − yki∥,

we receive from ( 3.10) that

f(xki , y)− f(xki , yki) + ρ∥yki − xki∥∥y − yki∥ ≥ 0. (3.11)

Letting i → ∞, by jointly weak continuity of f and ( 3.9), we obtain in the limit
that

f(x∗, y)− f(x∗, x∗) ≥ 0.
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Hence
f(x∗, y) ≥ 0, ∀y ∈ C,

which means that x∗ is a solution of EP(C, f).

Case 2. limk→∞ ηk = 0.
In this case, from the boundedness of {yk}, it deduces that there exists {yki} ⊂ {yk}
such that yki ⇀ ȳ as i →∞.
Replacing y by xki in ( 3.10) we get

f(xki , yki) + ρ∥yki − xki∥2 ≤ 0. (3.12)

In the other hand, by the Armijo linesearch rule ( 3.1), for mki
− 1, there exists

wki,mki
−1 ∈ ∂2f(zki,mki

−1, zki,mki
−1) such that

⟨wki,mki
−1, xki − yki⟩ <

ρ

2
∥yki − xki∥2. (3.13)

By the convexity of f(zki,mki
−1, . ) we get

f(zki,mki
−1, yki) ≥ f(zki,mki

−1, zki,mki
−1) + ⟨wki,mki

−1, yki − zki,mki
−1⟩

= (1− ηki,mki
−1)⟨wki,mki

−1, yki − xki⟩
≥ −(1− ηki,mki

−1)
ρ

2
∥yki − xki∥2,

where the last inequality deduces from ( 3.13). Combining with ( 3.12) we get

f(zki,mki
−1, yki) ≥ −(1−ηki,mki

−1)
ρ

2
∥yki−xki∥2 ≥ 1

2
(1−ηki,mki

−1)f(xki , yki). (3.14)

According to the algorithm, zki,mki
−1 = (1−ηmki

−1)xki +ηmki
−1yki , ηki,mki

−1 → 0 and
xki converges weakly to x∗, yki converges weakly to ȳ, it implies that zki,mki

−1 ⇀ x∗

as i →∞. Beside that {∥yki −xki∥2} is bounded, without loss of generality, we may
assume that limi→+∞ ∥yki − xki∥2 exists. Hence, we get in the limit ( 3.14) that

f(x∗, ȳ) ≥ −ρ

2
lim

i→+∞
∥yki − xki∥2 ≥ 1

2
f(x∗, ȳ). (3.15)

Therefore, f(x∗, ȳ) = 0 and limi→+∞ ∥yki−xki∥2 = 0. By the Case 1, it is immediate
that x∗ is a solution of EP(C, f). 2

4 Strong convergence algorithm for EP(C, f)

Let T : C → C be a nonexpansive mapping i.e., ∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C
such that Fix(T ) = {u ∈ C : Tu = u} ̸= ∅. For obtaining a fixed point of mapping
T , Takahashi et al. [27] introduced the following iterative method, known as the

11



shrinking projection method:

Algorithm 3

Initialization. Pick x0 = xg ∈ C, choose parameters α ∈ [0, 1), {αk} ⊂ [0, α]
and set C0 = C.

Iteration k (k = 0, 1, 2, ...). Having xk do the following steps:

Step 1. Compute
yk = αkx

k + (1− αk)Txk,

Ck+1 = {x ∈ Ck : ∥x− uk∥ ≤ ∥x− xk∥}.
Step 2. Compute xk+1 = PCk+1

(xg), and go to Step 1 with k is replaced by k+1.

They proved that {xk} generated by Algorithm 3 converges strongly to x∗ =
PFix(T )(x

g). In spired by Algorithm 3 and recent works [7, 10], we now present the
following algorithm for solving EP(C, f).

Algorithm 4

Initialization. Pick x0 = xg ∈ C, choose parameters η ∈ (0, 1), ρ > 0 and set
B0 = C.

At each iteration k (k = 0, 1, 2, ...). Having xk do the following steps:

Step 1. Solve the strongly convex program

min
{

f(xk, y) +
ρ

2
∥y − xk∥2 : y ∈ C

}
CP (xk)

to obtain its unique solution yk.

If yk = xk, then stop. Otherwise, do Step 2.

Step 2. (Armijo linesearch rule) Find mk as the smallest positive integer number
m satisfying 




zk,m = (1− ηm)xk + ηmyk,

wk,m ∈ ∂2f(zk,m, zk,m),

⟨wk,m, xk − yk⟩ ≥ ρ
2
∥yk − xk∥2.

(4.1)

Set ηk = ηmk , zk = zk,mk , wk = wk,mk .

Step 3. Define

Hk = {x ∈ H : ⟨wk, x− zk⟩ ≤ 0}, Ck = C ∩Hk, (4.2)

and take uk = PCk
(xk), and go to Step 4.

Step 4. Compute
xk+1 = PBk+1

(xg),

12



where Bk+1 = {x ∈ Bk : ∥x− uk∥ ≤ ∥x− xk∥}, and go to Step 1 with k is replaced
by k + 1.

The following theorem establishes the strong convergence of the proposed algo-
rithm.

Theorem 4.1 Suppose that the set SM is nonempty. Then under assumptions
(A1), (A2), the sequence {xk}, {uk} generated by Algorithm 2 converge strongly to
a solution x∗ of EP(C, f).

Proof. Firstly, we observe that SM ⊂ ∩∞k=0Ck ⊂ ∩∞k=0Bk.

Indeed, take x̄ ∈ SM , i.e., f(y, x̄) ≤ 0, ∀y ∈ C, especially f(zk, x̄) ≤ 0, ∀k.
Since f(zk, .) is convex on C, we have

f(zk, x̄) ≥ f(zk, zk) + ⟨wk, x̄− zk⟩,

so
⟨wk, x̄− zk⟩ ≤ 0, ∀k.

Thus, x̄ ∈ Hk, ∀k, therefore x̄ ∈ Ck, ∀k. Hence, SM ⊂ ∩∞k=0Ck.
From Step 3, uk = PCk

(xk), it implies that

∥x− uk∥2 ≤ ∥x− xk∥2 − ∥xk − uk∥2, ∀x ∈ Ck.

Consequently,
∥x− uk∥ ≤ ∥x− xk∥, ∀x ∈ ∩∞k=0Ck, ∀k. (4.3)

Thus, ∩∞k=0Ck ⊂ ∩∞k=0Bk.
By definition of xk: xk = PBk

(xg), we have

∥xk − xg∥ ≤ ∥x− xg∥, ∀x ∈ Bk, (4.4)

so,
∥xk − xg∥ ≤ ∥x̄− xg∥, ∀k, ∀x̄ ∈ ∩∞k=0Bk. (4.5)

Therefore, {xk} is bounded. Take into account with Lemma 2.2 yields {wk} is
bounded. Combining with ( 4.3) we get {uk} is also bounded.
In addition, xk+1 ∈ Bk+1 and Bk+1 ⊂ Bk, we get from ( 4.4) that

∥xk − xg∥ ≤ ∥xk+1 − xg∥, ∀k, (4.6)

combining this fact with the boundedness of {xk}, we receive

lim
k→∞

∥xk − xg∥ = α ≥ 0. (4.7)
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Next, we show that {xk} is asymptotically regular, that is ∥xk+1 − xk∥ → 0 as
k →∞. Indeed, we have

∥xk+1 − xk∥2 = ∥xk+1 − xg + xg − xk∥2

= ∥xk+1 − xk∥2 + ∥xg − xk∥2 + 2⟨xk+1 − xg, xg − xk⟩
= ∥xk+1 − xk∥2 + ∥xg − xk∥2 + 2⟨xk+1 − xk, xg − xk⟩ − 2∥xg − xk∥2

≤ ∥xk+1 − xg∥2 − ∥xk − xg∥2,

where the last inequality follows from the fact that xk = PBk
(xg) and xk+1 ∈ Bk,

then ⟨xk+1 − xk, xg − xk⟩ ≤ 0.
By ( 4.7), we obtain

lim
k→∞

∥xk+1 − xk∥ = 0. (4.8)

Because xk+1 ∈ Bk+1, one has

∥xk − uk∥ ≤ ∥xk − xk+1∥+ ∥xk+1 − uk∥
≤ 2∥xk − xk+1∥

Take into account with ( 4.8) we get

lim
k→∞

∥uk − xk∥ = 0. (4.9)

Next, we show that {xk}, {uk} converge strongly to x∗ = P∩∞k=0Bk
(xg).

Indeed, we observe that any weak accumulation point x̄ of the sequence {xk} belongs
to Bk for all k. By contradiction, if {xkj} ⊂ {xk}, xkj ⇀ x̄ as j → ∞, and there
exists k0 such that x̄ ̸∈ Bk0 . Then, by the closedness and convexity of Bk0 , it implies
that Bk0 is also weakly closed, so xkj ̸∈ Bk0 for all kj ≥ kj0 , for some kj0 > k0,
especially xkj0 ̸∈ Bk0 . This contradicts to the fact that xkj0 ∈ Bkj0

−1 ⊂ ... ⊂
Bk0+1 ⊂ Bk0 . Therefore, x̄ ∈ Bk, ∀k, or x̄ ∈ ∩∞k=0Bk. Now, we set x∗ = P∩∞k=0Bk

(xg).
From ( 4.5) one has,

∥xk − xg∥ ≤ ∥x∗ − xg∥, ∀k. (4.10)

It is immediate from Lemma 2.4 that xk converges strongly to x∗. Combining with
( 4.9) we have uk also converges strongly to x∗.
To finish the proof, we need showing that x∗ solves EP(C, f).
Since {wk} is bounded, then there exists L > 0 such that ∥wk∥ ≤ L, ∀k. Combining
with uk = PCk

(xk) we get

∥uk − xk∥ = d(xk, Ck) ≥ d(xk, Hk) =
|⟨wk, xk − zk⟩|

∥wk∥
≥ L−1ηkρ

2
∥xk − yk∥2.

(4.11)
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From ( 4.9) and ( 4.11), we obtain

lim
k→∞

ηk∥xk − yk∥2 = 0. (4.12)

We now consider two distinct cases:

Case 1. lim supk→∞ ηk > 0.
Then there exists η̄ > 0 and a subsequence {ηki

} ⊂ {ηk} such that ηki
> η̄, ∀i, and

from ( 4.12), one has
lim
i→∞

∥xki − yki∥ = 0. (4.13)

Remember that xk → x∗ and ( 4.13), it implies that yki → x∗ as i →∞.
By definition of yki we have

f(xki , y) +
ρ

2
∥y − xki∥2 ≥ f(xki , yki) +

ρ

2
∥yki − xki∥2, ∀y ∈ C. (4.14)

Letting i → ∞, by jointly weak continuity of f and xki → x∗, yki → x∗, we obtain
in the limit that

f(x∗, y) +
ρ

2
∥y − x∗∥2 ≥ 0.

By Lemma 2.3, we conclude that

f(x∗, y) ≥ 0, ∀y ∈ C.

Therefore, x∗ is a solution of EP(C, f).

Case 2. limk→∞ ηk = 0.
From the boundedness of {yk}, it deduces that there exists {yki} ⊂ {yk} such that
yki ⇀ ȳ as i →∞.
Replacing y by xki in ( 3.10) we get

f(xki , yki) + ρ∥yki − xki∥2 ≤ 0. (4.15)

In the other hand, by the Armijo linesearch rule ( 4.1), for mki
− 1, there exists

wki,mki
−1 ∈ ∂2f(zki,mki

−1, zki,mki
−1) such that

⟨wki,mki
−1, xki − yki⟩ <

ρ

2
∥yki − xki∥2 (4.16)

and by the convexity of f(zki,mki
−1, . ) we get

f(zki,mki
−1, yki) ≥ f(zki,mki

−1, zki,mki
−1) + ⟨wki,mki

−1, yki − zki,mki
−1⟩

= (1− ηki,mki
−1)⟨wki,mki

−1, yki − xki⟩
≥ −(1− ηki,mki

−1)
ρ

2
∥yki − xki∥2,
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where the last inequality deduces from ( 4.16). Combining with ( 4.15) we get

f(zki,mki
−1, yki) ≥ −(1−ηki,mki

−1)
ρ

2
∥yki−xki∥2 ≥ 1

2
(1−ηki,mki

−1)f(xki , yki). (4.17)

According to the algorithm, we have zki,mki
−1 = (1−ηmki

−1)xki+ηmki
−1yki , ηki,mki

−1 →
0 and xki converges strongly to x∗, yki converges weakly to ȳ, it implies that
zki,mki

−1 → x∗ as i → ∞. Beside that {∥yki − xki∥2} is bounded, without loss
of generality, we may assume that limi→+∞ ∥yki − xki∥2 exists. Hence, we get in the
limit ( 4.17) that

f(x∗, ȳ) ≥ −ρ

2
lim

i→+∞
∥yki − xki∥2 ≥ 1

2
f(x∗, ȳ).

Therefore, f(x∗, ȳ) = 0 and limi→+∞ ∥yki − xki∥2 = 0. By the Case 1, it is
immediate that x∗ is a solution of EP(C, f). 2

5 Numerical examples

In this section, we applied the algorithm 1 for solving an equilibrium problem arising
in Nash-Cournot oligopolistic electricity market equilibrium model. This model has
been investigated in some research papers, for instance, [8, 23]. To test the proposed
algorithm, we take the example in [23]. In this example, there are nc companies,
each company i may possess Ii generating units. Let ng be number of all generating
units and x be the vector whose entry xi stands for the power generating by unit i.
Following [8, 23] we suppose that the price p is a decreasing affine function of the σ
with σ =

∑ng

i=1 xi, that is

p(x) = 378.4− 2
ng∑

i=1

xi = p(σ).

Then the profit made by company i is given by

fi(x) = p(σ)
∑

j∈Ii

xj −
∑

j∈Ii

cj(xj),

where cj(xj) is the cost for generating xj. As in [23] we suppose that the cost cj(xj)
is given by

cj(xj) := max{c0
j(xj), c

1
j(xj)}

with

c0
j(xj) :=

α0
j

2
x2

j + β0
j xj + γ0

j , c1
j(xj) := α1

jxj +
β1

j

β1
j + 1

γ
−1/β1

j

j (xj)
(β1

j +1)/β1
j ,
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where αk
j , β

k
j , γk

j (k = 0, 1) are given parameters.

Let xmin
j and xmax

j be the lower and upper bounds for the power generating by
the unit j. Then the strategy set of the model takes the form

C := {x = (x1, ..., x
ng

)T : xmin
j ≤ xj ≤ xmax

j , ∀j}.

By setting qi := (qi
1, ..., q

i
ng)T with

qi
j =

{
1 if j ∈ Ii

0 if j ̸∈ Ii

,

and define

A := 2
nc∑

i=1

(1− qi)(qi)T , B := 2
nc∑

i=1

qi(qi)T , (5.1)

a := −387.4
nc∑

i=1

qi, and c(x) :=
ng∑

j=1

cj(xj). (5.2)

Then the oligopolistic equilibrium model under consideration can be formulated by
the following equilibrium problem EP(C, f) (see [23, Page 155])

Find x∗ ∈ C : f(x∗, y) = [(A + B)x∗ + By + a]T (y− x∗) + c(y)− c(x∗) ≥ 0, ∀y ∈ C.

The authors in [23] pointed out that f(x, y) + f(y, x) = −(y − x)T A(y − x), and A
is not positive semidefinite, the bifunction f is nonmonotone, nonsmooth, so they
could not apply their algorithms proposed in [23] for the EP(C, f) directly.

We test Algorithm 1 for this problem with corresponds to the first model in [8]
where nc = 3, and the parameters are given in the following tables

Com. Gen. xg
min xg

max xc
min xc

max

1 1 0 80 0 80

2 2 0 80 0 130

2 3 0 50 0 130

3 4 0 55 0 125

3 5 0 30 0 125

3 6 0 40 0 125

Table 1: The lower and upper bounds of the power generation of the generating units
and companies.

We implement Algorithm 1 in Matlab R2013a running on a Desktop with In-
tel(R) Core(TM) 2Duo CPU E8400 3GHz with 3GB Ram. To terminate the Al-

gorithm, we use the stopping criteria ∥xk+1−xk∥
max{1,∥xk∥} ≤ ϵ with a tolerance ϵ = 10−4.
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Gen. α0
j β0

j γ0
j α1

j β1
j γ1

j

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000

2 0.0350 1.75 0.00 1.7500 1.0000 28.5714

3 0.1250 1.00 0.00 1.0000 1.0000 8.0000

4 0.0116 3.25 0.00 3.2500 1.0000 86.2069

5 0.0500 3.00 0.00 3.0000 1.0000 20.0000

6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

Table 2: The parameters of the generating unit cost functions.

Iter(k) ρ xk
1 xk

2 xk
3 xk

4 xk
5 xk

6 Cpu(s)

0 0.1 0 0 0 0 0 0

92 46.6488 32.1488 15.0054 21.8164 12.4822 12.4831 15.1789

0 0.5 0 0 0 0 0 0

165 46.6528 32.1421 15.0053 21.6056 12.5865 12.5864 25.6466

0 0.9 0 0 0 0 0 0

209 46.6574 32.1488 15.0039 21.7068 12.5350 12.5350 28.8134

0 0.1 30 20 10 15 10 10

71 46.6484 32.1311 15.0017 21.7730 12.5104 12.5107 11.1385

0 0.5 30 20 10 15 10 10

117 46.6526 32.1274 15.0169 21.6004 12.5889 12.5890 17.3161

0 0.9 30 20 10 15 10 10

151 46.6572 32.1407 15.0114 21.6973 12.5395 12.5395 20.2489

Table 3: Results computed with some starting points and regularized parameters

The computation results are reported in Table 3 with some starting points and
regularized parameters.

Conclusion. We have introduced two projection algorithms for finding a solution
of a nonmonotone equilibrium problem in a real Hilbert space. The weak and strong
convergence of the proposed algorithms are obtained. We then have applied a pro-
posed algorithm for a Nash-Cournot oligopolistic equilibrium model of electricity
market. Some computation results are reported.

Acknowledgements. The authors would like to thank the referees for their helpful
comments and remarks which helped them very much in revising the paper. This research
was supported by Basic Science Research Program through the National Research Founda-

18



tion of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2A10008908).
The first author is supported by NAFOSTED, under the project 101.01-2014-24.

References

[1] P.N. Anh, L.T.H. An, The subgradient extragradient method extended to equi-
librium problems, Optimization 64 (2015) 225-248.

[2] H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex
feasibility problems, SIAM Rev. 38 (1996) 367-426.

[3] G. Bigi, M. Castellani, M. Pappalardo, and M. Passacantando, Existence and
solution methods for equilibria, Eur. J. Oper. Res. 227 (2013) 1-11.

[4] E. Blum, W. Oettli, From optimization and variational inequalities to equilib-
rium problems, Math. Student. 63 (1994) 127-149.
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