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Abstract In this paper, we are interested in the survivable
network design problem (SNDP) for last mile commu-
nication networks called (L-SNDP). Given a connected,
weighted, undirected graph G = (V,E); a set of infrastruc-
ture nodes and a set of customers C including two customer
types where customers in the subset C1 require a single con-
nection (type-1) and customers in the subset C2 need to be
redundantly connected (type-2). The aim is to seek a sub-
graph of G with the smallest weight in which all customers
are connected to infrastructure nodes and the connections are
protected against failures. This is a NP-hard problem and it
has been solvedonlywith the objective ofminimizing the net-
work cost. In this paper, we introduce a new multi-objective
approach to solve L-SNDP called ML-SNDP. These objec-
tives are to minimize the network cost (total cost) and to
minimize the maximal amount of sharing links between
connections. Results of computational experiments reported
show the efficiency of our proposal.

Keywords Survivable network design · Multi-objective
genetic algorithm

1 Introduction

In the recent years, the increasingof communicationdemands
requires more extended networks. Moreover, the standard
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quality of services must be also higher than ever. In other
words, today, the customers such as companies, commercial
plazas, stock exchanges, IT centers, etc. require not only fast
but also reliable connections. The word “reliable” has many
meanings, but one of the most important meanings is the sur-
vival ability having at least one back-up connection. It means
that if the main connection is down, the network still works
fine.

Due to its advantages such as large capacity, small size,
light-weighted, security, optic cables have been used grad-
ually widely instead of coaxial one to satisfy customers’
requirements for fast connections. Besides, survivable net-
workdesignproblem (SNDP)was also considered to increase
reliability for connections.Up to now, SNDPhas gainedmore
and more interests and been solved for many different net-
work models.

In this paper, we consider the survivable design of the last
mile communication network (L-SNDP), which was stated
as a single objective problem by Nguyen et al. [20]. This
objective is to minimize the network cost. The authors uti-
lized available links for solving this problem. However, the
more links are utilized, the more connections are affected if
these link are failed. It causes a non-trivial risk in protecting
the network against failures. A proposedmethod to overcome
it will be presented in this paper.

This paper proposes a formulation of the SNDP in the
model of fault-tolerant multi-objectivity: minimizing net-
work cost; minimizing the maximal sharing coefficient.
The sharing coefficient is a parameter representing for the
required number of simultaneous connections. An edge with
a high sharing coefficient will have a higher failure risk. If
this edge fails, it will be a major influence on the whole
network. So, making a fault-tolerant network design has to
optimize the construction cost while ensuring the minimiz-
ing the sharing coefficient of all links. It is the goal which
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is interested by this research. In other words, we will solve
the survivable design of the lastmile communication network
with two objectives that are minimizing the network cost and
minimizing the maximum sharing coefficient. However, it
is impossible to satisfy these two objectives simultaneously
because they oppose against each other. The more sharing
edges be used in network, the more cost we can save and
reduce the total cost of the design. While sharing edges help
us save the total cost, they might contain potential problems
because if they fail, many clients who are using these edges
are influenced. Therefore, there is no completely optimal
solution for this multi-objective problem.We propose to find
acceptable solutions by applying a multi-objective method.

Firstly, L-SNDP is formulated as a multi-objective design
problem (ML-SNDP). Then, we propose a multi-objective
approach to solve it.We introduce two new versions ofmulti-
objective genetic algorithms based on NSGA-II. The first
one is a multi-objective genetic algorithm with a new indi-
vidual encoding (complete path encoding—CPE) scheme,
called CPE-NSGA-II. The second one is a multi-objective
genetic algorithm with the edge list encoding (ELE) scheme
proposed by Huynh et al. [25], called ELE-NSGA-II. We
carried out experiments on real-world instances, and then
compared the results with the single objective (cost) genetic
algorithm (GA-EDP) [25], and ELE-NSGA-II (cost value);
CPE-NSGA-II, ELE-NSGA-II, CPEL-NSGA-II and ELEL-
NSGA-II. To strengthen the design, we also employ a
memetic procedure during ecolution cycles. Our experi-
mental results showed the efficiency of the multi-objective
approach for solving ML-SNDP.

The rest of this paper is organized as follows. In Sect. 2, we
introduce problem formulation forML-SNDP.Relatedworks
is presented in Sect. 3. Section 4 describes the proposed algo-
rithms for solvingML-SNDP. The details of our experiments
and the computational results are given in Sect. 5. Section 6
presents conclusion and future works.

2 Problem formulation

Weconsider the problemof augmenting an existing infrastruc-
ture network by additional links (and switches) in order to
connect potential customer nodes. There are two types of
customers. In type-1, a standard, single link connection is
sufficient, while type-2 customers require more reliable con-
nections, ensuring connectivity even when a single link or
routing node fails.

Before theML-SNDP problem can be formally stated, we
need some definitions relating to connection constraints.

The infrastructure network includes infrastructure nodes
and links. All links belong to the infrastructure network can
be used without any costs. Customer nodes represent the
customers in our network. The set of customer nodes C is

partitioned into two subsets C1 and C2, (C1 ∪ C2 = C and
C1 ∩ C2 = ∅), the following conditions specify how cus-
tomer nodes are connected:

– Simple connection: a customer node k fromC1 is feasibly
connected if there exists a path from node k to infrastruc-
ture nodes.

– Redundant connection: a customer node k from C2 is
feasibly connected if there exists two edge-disjoint paths
from node k to infrastructure nodes.

Definition of the sharing coefficient:
Given graph G = (V, E), connection r is a path from a
source node to a destination node, for any e ∈ E, having:

fe(r) =
{
1 if e ∈ r
0 if e /∈ r

(1)

The sharing coefficient of edge e is defined as se and calcu-
lated by:

se =
N∑
i=1

fe(ri ) (2)

where N is the number of connection requires satisfyingML-
SNDP (N = |C |).
ML-SNDP can be formulated as following:
Input

– A connected, weighted, undirected graph G = (V, E) in
which V is a set of vertex representing network nodes,
the set of edges E = {e|e = (u, v)} with u, v ∈ V .

– GraphG1 (V1, E1) ⊂ G represents the infrastructure net-
work with w (e) = 0,∀e ∈ E1 in which w(e) is weight
of edge e.

– A set of customer nodes C (C ⊂ V and C ∩ V1 = ∅)
is partitioned into subsets C1, C2 (C1 ∪ C2 = C and
C1 ∩ C2 = ∅) representing sets of type-1 and type-2
customer nodes.

Constraints

– All customer nodes are connected to the infrastructure
network G1.

– Each customer node in C2 has two disjoint-edge paths to
G1

Objectives:

f1 = totalCost
(
G ′) → min

f2 = max
(
sei

) → min
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Fig. 1 An example of
acceptable solution for
ML-SNDP

with

G ′(V ′, E ′) ⊂ G

totalCost (G ′) =
∑
e∈E ′

w(e)

where w(e) is weight of edge e. In which sei is the sharing
coefficient of edge
Output

– A sub-graph G′ of G in which all customer nodes are
connected to the infra-structure network.

Figure 1 illustrates an example of a survivable design of the
last mile communication network. This network is repre-
sented by the set V of vertices labeled 1 to 14 and the set
E of dash edges, in which the infrastructure network G1
includes 3 nodes (12, 13, 14) and the links among them.
The node 1, a type-1 customer, can connect to G1 by the
path: 1 → 11 → 12. Similarly, the other type-1 customer
nodes (node 2, node 3) connect to G1 by the path: 2 →
11 → 12 and 3 → 13 respectively. Each of the type-2 cus-
tomers (node 4, node 5) connects to G1 by two disjoint-edge
paths: {4 → 8 → 14, 4 → 7 → 6 → 11 → 12} for node 4
and {5 → 13, 5 → 10 → 13} for node 5. The infrastruc-
ture network G1 along with the set of nodes {V − {9}} and
the set of solid edges, construct a sub-graph of the graph (V,
E) which is an acceptable solution. In this solution, the link
between node 1 and node 11 is used three times so its sharing
coefficient is 3.

This problem is known to be NP-hard for |C1| > 0 and
|C2| > 0 [1]. Therefore, with its multi-objective version,
ML-SNDP, we propose a multi-objective genetic method to
solve.

3 Related work

Over the years, many researchworks have been published for
SNDP.We can find an overview of SNDP as well as methods
for solving it in [1]. According to this survey, SNDP can
be approached by two ways: exact methods and heuristic
methods.

In general, exact approaches for solving L-SNDP are
based onmixed linear integer programming.Wagner et al. [2]
modeled this problem as an integer linear program (ILP) by
means of an extendedmulti-commodity network flow (MCF)
formulation. Then they used ILP-solver CPLEX [6] (http://
www.ilog.com) to give optimal solutions for theirmodel. The
largest in-stance that they could solve has 190 total nodes, 377
edges but only 6 customer nodes. With instances up to 2804
nodes, 3082 edges and 12 customer nodes, their approach
could solve with a final gap of about 7%. However, it is
unsuitable to use this method for larger instances and/or in
particular instances with larger number of customer nodes.

Alsowith exact approach,Wagner et al. [7] gave a different
formulation for L-SNDP that based on directed connectiv-
ity constraints. By using a branch-and-cut algorithm, their
method could find proven optimal solutions for instances
with only 190 nodes, 377 edges, and 13 customer nodes.

Liubíc et al. [9] presented an exact method for the PCSTP
(price-collectingSteiner tree problem) basedondirected con-
nection cuts. Other successful mathematical programming
solutions were based approaches including a relax-and-cut
byDaCunha et al. [10] and a cutting planemethod byLucena
et al. [11]. However, being deterministic and exhaustive in
nature, these approaches could only be used to solve small
problem instances (e.g. sparse graphs with number of cus-
tomers less than 15).

With ambition to solve larger instances, many researchers
proposed heuristic algorithms. Busics and Raidl [8]. used
meta-heuristic approaches such as local search and simu-
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lated annealing, variable neighborhood descent and variable
neighborhood search. This approach has solved and obtained
some significant improvements for some problem instances.
Leitner (2008) formulated it as an abstract integer linear
program and applied Lagrangian decomposition to obtain
relatively tight lower bounds as well as feasible solutions.
Furthermore, hybrids of a variable neighborhood search and
a GRASP are applicable to larger problem instances. Canuto
et al. [12] described an effective multi-start local search
approach based on perturbation of the nodes prizes, where
path relining and variable neighborhood search are used
to further improve the obtained solutions. Uchoa [14] has
described experiments to reduce the number of nodes and
edges that need to be considered in an instance of the PCSTP.
Chapovska and Punnen [13] discussed complexity of meth-
ods for several variants of the PCSTP. Leitner and Raidl [3]
used mixed integer programming and hybrid optimization
methods to solve this problem. Both approaches are able to
derive proven optimal solutions or high quality solutionswith
small optimality gaps for mediums sized instances within
reasonable time.

The most recently, Nguyen et al. [20] solved SNDP in
the design of the last mile communication network by using
heuristic algorithms and gave better results than the other and
can apply for larger problem.

Other related problems are the various variants of the
SNDP. They can be found in [1,15,16].

Up to now, there have not any research solving this prob-
lemwith amulti-objective approach, though this is a potential
approach in general network design as indicated in our ear-
lier work [25] Note that using MOEAs for design problems
has been a popular topic in [26,27].

This paper proposes SNDP in the model of fault-tolerant
multi-objectivity:minimize network cost;minimize themax-
imal sharing coefficient. This is a NP-hard problem. We use
a multi-objective genetic algorithm in order to solve it. The
proposed approach is expected to give good results that sat-
isfy both objectives.

4 Proposed methodology

We propose a genetic-based approach to solve ML-SNDP.
We applied the non-dominated sortingmechanism ofNSGA-
II to rank solutions. As a result, there are different versions
of MOEAs proposed:

CPE-NSGA-II: genetic algorithm which uses CPE.
ELE-NSGA-II: genetic algorithm which uses ELE.
In order to enhance performance of the algorithms, we

employ memetic procedure in two versions.
CPEL-NSGA-II: genetic algorithm which uses CPE and

Local Search.

ELEL-NSGA-II: genetic algorithm which uses ELE and
Local Search.

4.1 Genetic algorithm with complete path encoding

4.1.1 Individual representation

In CPE, an individual consists of |C| chromosomes. Chromo-
some i represents a solution for a customer ci’s connection
demand by a list of nodes in the path from ci to the infrastruc-
ture network.

Each customer in C1 requires only one path to the
infrastructure network, so the corresponding chromosome
has only a gene. In addition, each chromosome correspond-
ing to a customer in C2 has two genes that represent two
disjoint-edge paths, one of which is the working path and the
other is the backup path.

Figure 2 depicts an individual representation with |C| = 5,
labeled from 1 to 5, in which number 1, 2 and 3 represent
C1 = {c11, c12, c13}; number 4 and 5 represent C2 = {c21,
c22}. The bold numbers 12, 13 and 14 represent nodes in
the infrastructure network. Customer c-21 belongs to C2. It
has two genes. The first one is {4, 7, 6, 11, 12} representing
the path from c21 to the infrastructure as follows: 4 → 7 →
6 → 11 → 12, called working path, denoted by Wc21; the
other one is {4, 8, 14} giving us the path 4 → 8 → 14, we
call Bc21. These two paths are disjoint-edge. It is the same
as the type-2 customer type-2 c22.

4.2 Initial population

We propose a procedure to find a solution randomly.

Algorithm 1: findRandSolution
Input:

Undirected graph G = (V, E)
A set of infrastructure nodes J
A set of client nodes C which is partitioned into 2 sub-

sets C1, C2 corresponding to each client type.
Output:

A set of paths S which satisfies all client requirements.
Begin
1. while (|C| > 0)
2. c = randomSelect(C);
3. if (c  C1) 
4. p = findPathDijkstra(c, G);
5. S = S  p 
6. reweight(G, p, cost);
7. if (c  C2) 
8. <p1, p2> = findPathType2(c, G);
9. S = S {p1, p2} 
10. reweight(G, p1, c);
11. reweight(G, p2, c);
12. endwhile
13. reset(G);
14. return S;
End
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Fig. 2 An example of individual represented by CPE

randomSelect(C) randomly selects a client from C and also
removes it from C.
findPathDijkstra(c, G) find the shortest path from C to
infrastructure nodes of G by Dijkstra algorithm.
reweight(G, p, cost) reweight the cost for all edges that appear
in the path p. There are two ways to reweight the cost:

Set it to be 0 (encourages next clients use this path that
leads to reduce the total cost)

Set its value to be equal to the edge which has maximal
cost (avoid using these edgesmultiple times to reduce sharing
edges).
findPathType2(c,G)find the twodisjoint-edgepaths for client
type 2c by two methods:
Method 1: finds the first path p1 by findPathDijkstra(c, G),
removes all edge on the found path and reuse findPathDijk-
stra(c, G) again to find the second path p2.
Method 2: finds the disjoint-edge shortest pair by applying
Suurballe algorithm [23].

By combining the ways to randomSelect, reweight and
findPathType2 we can reach multiple ways to find a random
solution. To build the initial population we use the findRand-
Solution method to find unique solutions.

4.2.1 Crossover operator

Use path crossover to create new individuals. The main idea
is that: choose two individuals in the current population ran-
domly and initialize a random binary string X having |C| bits.
If Xi is 0, copy chromosome ci of the parent 1 and the parent
2 to child 1 and child 2 respectively. If Xi is 1, do inversely.
After the children are created, check if it is unique or not.

Figure 3 depicts path crossover operator. Parent P copies
its chromosome C11, C22 and C2n to child 1 as the
corresponding bits on the string X are 0. The remaining chro-
mosomes of parent P are copied to child 2. Inversely, parent
P′ copies its chromosome C11′, C22′ and C2n′ to child 2, its
remaining chromosomes are copied to child 1.

4.2.2 Mutation operator

Choose an individual and its chromosome randomly, remove
all edges in the corresponding path from the input graph, then
find a new path and replace the chosen chromosome.

String X
c11 0 c11’ c11 c11’
c12 1 c12’ c12’ c12
... ... ... ... ...

c1m 1 c1m’ c1m’ c1m
Wc21 Bc21 1 Wc21’ Bc21’ Wc21’ Bc21’ Wc21 Bc21
Wc22 Bc22 0 Wc22’ Bc22’ Wc22 Bc22 Wc22’ Bc22’

... ... ... ... ... ... ... ... ...
Wc2n Bc2n 0 Wc2n’ Bc2n’ Wc2n Bc2n Wc2n’ Bc2n’

Parent P X Parent P’ Child 1 Child 2

Fig. 3 Path crossover operator

For type-1 customers, we find a new shortest path to the
terminal nodes. For type-2 customers, find a newpair of paths
to the terminal nodes using edge disjoint shortest pair algo-
rithm.

Mutate method : mutate
Input:

Undirected graph G = (V, E)
A solution S

Output: another solution X
begin
1. c = randomSelectClient(S);
2. removeEdgesRandomly(G, c);
3. X = findRandSolution(G)
4. reset(G)
5. return X 
end

4.2.3 Local search operator

Mutate method using localsearch : mutatels
Input:

Undirected graph G = (V, E)
A solution S

Output: another solution X
begin
1. X = S
2. T = mutate(G, S)
3. ncount = 0
3. while (ncount < 10)
4. if T.cost < X.cost
5. X = T
6. ncount = 0
6. else
7. ncount++
8. T = mutate(G, S)
9. reset(G);
10. return X;
end

4.3 Genetic algorithm with edge list encoding

Edge list encoding (ELE) is the method proposed by Huynh
and Duong [22]. In this encoding scheme, an individual is
represented by an edge list which contains all edges used by
connections satisfying all customers’ requirements.

Initial population: usefindRandSolution procedure to gen-
erate the initial population. This procedure creates a graph
G′ using all edges and vertexes of G. Then we set a random
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Table 1 Problem instances

Data set |V| |E| |C1| |C2|

ClgSExtra-I2-08.ist 190 377 8 7

ClgSExtra-I2-11.ist 190 377 11 6

ClgSExtra-I2-12.ist 190 377 9 7

ClgSExtra-I3-07.ist 190 377 6 6

ClgMExtra-08.ist 1757 3877 5 3

ClgMExtra-I2-01.ist 1523 3290 8 4

ClgMExtra-I2-04.ist 1523 3290 10 4

ClgMExtra-I2-11.ist 1523 3290 10 4

ClgN1ExtraI1-07.ist 3867 8477 5 8

ClgN1ExtraI1-10.ist 3867 8477 3 9

ClgN1ExtraI1-12.ist 3867 8477 4 8

ClgN1ExtraI1-19.ist 3867 8477 4 8

weight for each edge of G′. Finally, apply H-EDP algorithm
on G′, we find one new solution.

Crossover operator: from two individuals, a new graph is
created containing two parent’s edges, which we call merged
graph. Then we find two possible solutions from this graph.
The first one is found by applying H-EDP algorithm on
merged graph. We get the other individual by using Find-
RandSolution procedure as present above on the merged
graph.

Mutation operator: randomly remove some edges which
are used by selected solution from the inputted graph, and
use H-EDP to find new solution.

5 Computational results

5.1 Problem instances

The problem instances used in our experiments are the real-
world instances which can be found at https://www.ads.tuw
ien.ac.at/people/mleitner/sndp/sndpinstances.tar.gz.The real-
world instances are data from a German city and are used
in [3–5], [18–20]. These instances also used by Huynh and
Duong [22]. Their sizes are reported in Table 1.

5.2 System setting and parameters

We experimented four multi-objective genetic algorithms for
solving ML-SNDP: CPE-NSGA-II, ELE-NSGA-II, CPEL-
NSGA-II and ELEL-NSGA-II. The results found by these
algorithms are compared with each other and with the single
objective (cost) genetic algorithm (GA-EDP) [22].

In the experiments, the system was run ten times with
different random seeds for each problem instance with para-
meters: number of individuals: 500, number of generations:
100, crossover probability: 50% mutate probability: 20%.

Fig. 4 The non-dominated solutions obtained byCPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set ClgSExtra-
I2-08.ist

All the programs were ran on a machine with Intel Core
i5 2500K @4.5GHz, 8GB RAM @2133MHz, Windows
7 Ultimate. CPE-NSGA-II implemented in C++ language,
ELE-NSGA-II implemented in Java language.

5.3 Computational results

5.3.1 The effect of representation schemes

Considering the effect of the different encoding schemes,
we compare the result of CPE-NSGA-II, ELE-NSGA-II,
CPEL-NSGA-II and ELEL-NSGA-II in the same computing
environment. In order to do this,we recorded the comparison-
solutions found by each algorithm and make comparision on
these solutions.

The figures below represent the final optimal Pareto
boundaries for test sets. The vertical axis represents sharing
coefficient, and horizontal axis represents total cost value.

Figures 4, 5, 6 and 7 shows objective values of the
two-objective of individual found by CPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II after 100
generations on four test sets: ClgSExtra-I2-08, ClgSExtra-
I2-11, ClgSExtra-I2-12 and ClgSExtra-I3-07. The spread of
pareto set indicate that we cannot optimize both two objec-
tives. If we use less sharing edge on design, we must pay
more extra cost, and reversely.

In comparing two algorithms we used, ELE-NSGA-II
showed a bit more effective on total cost objective while
CPE-NSGA-II showedmore effective on sharing coefficient.
However, with the same sharing coefficient, we pay less cost
for CPE-NSGA-II than ELE-NSGA-II, the result of two sets
ClgSExtra-I2-11 and ClgSExtra-I3-07 is a clear proof. Algo-
rithms which intensified by localsearch, show more efficient
results than others.

Figures 8, 9, 10 and 11 show the objective values of the
two-objective of individual found by CPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II after 100
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Fig. 5 The non-dominated solutions obtained byCPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set ClgSExtra-
I2-11.ist

Fig. 6 The non-dominated solutions obtained byCPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set ClgSExtra-
I2-12.ist

Fig. 7 The non-dominated solutions obtained byCPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set ClgSExtra-
I3-07.ist

generations on four test sets: ClgMExtra-08, ClgMExtra-I2-
01, ClgMExtra-I2-04 and ClgMExtra-I2-11.

CPE-NSGA-II showed more effective than ELE-NSGA-
II for both objective, but in the last test, the set ELE found less
cost solution than CPE-SNGA2. In all four testing sets, total
cost of CPE-NSGA-II show very far better than ELE-NSGA-
II, especially when lower sharing coefficient (Figs. 12, 13,
14, 15).

Fig. 8 The non-dominated solutions obtained byCPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set ClgMExtra-
08.ist

Fig. 9 The non-dominated solutions obtained byCPE-NSGA-II, ELE-
NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set ClgMExtra-
I2-01.ist

Fig. 10 The non-dominated solutions obtained by CPE-NSGA-II,
ELE-NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set
ClgMExtra-I2-04.ist

To have a better view about the effect of two approaches,
we use another metric to compare the result of CPE-NSGA-
II, ELE-NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II.
Two set coverage (SC) is an effective way to estimate how
much a population better than another [24]. This metric is
easy to calculate and provides a relative comparison based
upon dominance numbers between populations. The SC
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Fig. 11 The non-dominated solutions obtained by CPE-NSGA-II,
ELE-NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set
ClgMExtra-I2-11.ist

Fig. 12 The non-dominated solutions obtained by CPE-NSGA-II,
ELE-NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set
ClgN1ExtraI1-07.ist

Fig. 13 The non-dominated solutions obtained by CPE-NSGA-II,
ELE-NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set
ClgN1ExtraI1-10.ist

between the last populations of CPE-NSGA-II (PCPE) and
ELE-NSGA-II (PELE) are shown in Table 2.

Except set ClgSExtra-I2-12, almost individuals of CPE-
NSGA-II can dominate an individual of ELE-NSGA-II.
CPE-NSGA-II can give us better solutions than ELE-NSGA-
II.

Fig. 14 The non-dominated solutions compared by CPE-NSGA-
II, ELE-NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set
ClgN1ExtraI1-12.ist

Fig. 15 The non-dominated solutions compared by CPE-NSGA-
II, ELE-NSGA-II, CPEL-NSGA-II and ELEL-NSGA-II on test set
ClgN1ExtraI1-19.ist

Table 2 Set coverage results

Set SC (PCPE/PELE) SC (PELE/PCPE)

ClgSExtra-I2-08.ist 0.878 0.000

ClgSExtra-I2-11.ist 0.956 0.070

ClgSExtra-I2-12.ist 0.170 0.070

ClgSExtra-I3-07.ist 1.000 0.000

ClgMExtra-08.ist 1.000 0.000

ClgMExtra-I2-01.ist 1.000 0.000

ClgMExtra-I2-04.ist 1.000 0.000

ClgMExtra-I2-11.ist 1.000 0.000

ClgN1ExtraI1-07.ist 1.000 0.000

ClgN1ExtraI1-10.ist 1.000 0.000

ClgN1ExtraI1-12.ist 1.000 0.000

ClgN1ExtraI1-19.ist 1.000 0.000

5.3.2 The evolution of CPE-NSGA-II

On this experiment, we focus on the evolution of CPE-
NSGA-II algorithm, especially how the populations evolve
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Fig. 16 The initial population of ClgSExtra-I2-11.ist

Fig. 17 The final population of ClgSExtra-I2-11.ist

Fig. 18 The initial population of ClgMExtra-I2-04.ist

throughout generations and howquickly they reach the stable
state?

Average runtime:

Fig. 19 The final population of ClgMExtra-I2-04.ist

Fig. 20 The initial population of ClgN1ExtraI1-10.ist

Fig. 21 The final population of ClgN1ExtraI1-10.ist

On small data sets: 414s
On medium data sets: 10,526s
On large data sets: 39,794s
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Fig. 22 Comparisons between the best costs found by CPE-NSGA-II, ELE-NSGA-II, CPEL-NSGA-II, ELEL-NSGA-II and GA-EDP

Fig. 23 Comparisons between the best max sharing coefficient found by CPE-NSGA-II, ELE-NSGA-II, CPEL-NSGA-II, ELEL-NSGA-II and
GA-EDP

The evolution process:
On small data sets, the population evolves quickly to stable
state after about 60 generations (Figs. 16, 17).

On medium data sets, the population evolves quickly to
stable state after about 80 generations (Figs. 18, 19).

On large data sets, the population evolves quickly to stable
state after about 170 generations (Figs. 20, 21).

5.3.3 The effect of multi-objectivity

The motivation for us is that, network design problem is
popular in addressing a single objective, but in fact, we usu-
ally have to deal with two objectives. So, in any case, we
have to take into account multi-objectivity when designing
a network. So the focus is more on problem formulation
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and adjusting a multi-objective evolutionary algorithm for
it. Hence there is a need to compare the results between this
and the single objective approach.

Figure 22 shows the comparison between the best costs
found by CPE-NSGA-II, ELE-NSGA-II and GA-EDP [22].

The cost found by GA-EDP is the best on almost
problem instances compare to CPE-NSGA-II, ELE-NSGA-
II, CPEL-NSGA-II and ELEL-NSGA-II. The reason that
CPE-NSGA-II, ELE-NSGA-II, CPEL-NSGA-II and ELEL-
NSGA-II have to chase two objectives at the same time, they
could not focus on total cost more than GA-EDP. In the small
test sets like ClgSExtra-series, ELE-NSGA-II shows the bet-
ter cost than CPE-NSGA-II. When we increased the size
of test sets, ELE-NSGA-II lose its cost advantage compare
with CPE-NSGA-II. The total costs of CPE-NSGA-II are
better and better than ELE-NSGA-II when the sets become
larger. However, in the set ClgMExtra-I2-11, ELE-NSGA-
II shows the best result, better than GA-EDP. This can be
explained by the factor of mutation in the genetic algorithm
(Fig. 23).

Although ELE-NSGA2-II based on GA-EDPwhich is the
most cost-effective, it shows in effective on large test setswith
the worst cost and longest run time. CPE-NSGA-II shows the
best stability algorithm for both the two objectives and run
time. Compares with the result of GA-EDP, CPE-NSGA-
II’s best cost result is slightly different in some requires but
ELE-NSGA-II’ best cost result is very different.

6 Conclusion

In this paper, we proposed the multi-objective genetic algo-
rithm for solving ML-SNDP. We experimented on 12 real
world instances. With each data set, we run 10 times to
take the best solutions. The results show that our proposed
approaches are effective. We found that a good network
design has not only has minimal cost, but also to be able
to minimize risks such as failure on edges (links), on nodes.
The failure on nodes rarely occurs because each node usu-
ally has many servers, when one is failed, the others can do
instead. The failure on edges (links) is more complicated and
difficult to control as well as guarantee reliable. When fail-
ures occur, it is difficult to determine the failed point to repair
in the short time.

In the future, we will add a new objective, constructing a
model allowing quantifying survivable coefficient of edges,
nodes that can help to find better network design solutions.
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