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Highlight 

• New numerical results of mechanical behaviors of FG plates in high temperature are presented. 

• A finite element model based on a new third-order shear deformation plate theory is developed. 

• Not all FGMs possess similar mechanical behaviors and performance in high temperature. 

• Similar behaviors of natural frequencies in high temperature of FGMs are found 

• Material combinations of FGMs play a key role and significantly affect the mechanical 

behaviors of plates. 

Abstract 

Composite functionally graded materials (FGMs) are fabricated and most commonly used to operate 

in high temperature environments, where are expected to have significant changes in properties of 

constituent materials. The FGMs inherently withstand high temperature gradients due to low thermal 

conductivity, core ductility, low thermal expansion coefficient, and many others. It is essential to 

thoroughly study mechanical responses of FGMs and to develop new effective approaches for accurate 

prediction of solutions. We present in this paper new numerical results of high temperature mechanical 

behaviors of heated functionally graded (FG) plates, emphasizing the high temperature effects on static 

bending deflections and natural frequencies. A displacement-based finite element formulation associated 

with a novel third-order shear deformation plate theory (TSDT) without any requirement of shear 

correction factors is thus developed, taking the desirable properties and advantages of the TSDT theory as 

its kinematics of displacements are derived from elasticity theory rather than the hypothesis of 

displacement. The FG plates are assumed to be placed suffering high temperature environment, resulting 

in a uniform distribution of temperature across the plate thickness. The variation of material compositions 

across the thickness is described by a power-law distribution. Representative numerical examples of 

heated FG plates with different shapes are considered and obtained results are then investigated. The work 

additionally involves parametric studies performed by varying volume fraction, temperature range, 

material combinations, thickness-to-length ratio, etc., which have significant impacts on mechanical 

deflections and natural frequencies of heated FG plates. It is found that the ZrO2/SUS304 plate possesses 

different static bending behaviors and performance compared to Al2O3/SUS304 and Si3N4/SUS304 plates 

due to the differences not only in the nonlinear thermal expansions but also in the material behaviors of 

constituent materials by which the FGMs are formed, in the contrary similar behaviors of natural 

frequencies of all FG plates is found.  
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1. Introduction 

Composite materials with graded microstructures or functionally graded materials (FGMs), 

which are characterized by gradual variation of effective material properties and spatially varied 

non-uniform microstructures of constituent phases (as schematically illustrated in Fig. 1 [1] for 

NiCoCrAIY-YSZ), have been successfully manufactured, developed and designed in a wide 

range of engineering applications that most commonly operate in situations suffering high 

temperature environments. The FGMs are usually made from a mixture of ceramic (e.g., YSZ) 

and metal (e.g., NiCoCrAIY), gaining a smooth and continuous variation of material properties 

from one surface to another throughout specific directions [2]. Due to their outstanding features 

and excellent characteristics of ceramics in heat and corrosive resistance, and the high toughness 

of metal in absorb energy and plastically deform, the FGMs particularly are capable of 

withstanding intense high temperature gradient but maintaining the structural integrity as well as 

eliminating/reducing interface problems, thermal stress concentration, residual stresses, and so 

on [3]. The FGMs specially have now gained much more attention in high temperature 

applications, especially in nuclear plants, fusion reactors and spacecraft [4]. For instance, a 

useful and technical application of the FGMs is the thermal barrier coatings (TBCs), which are 

generated for the purpose of increasing the service life and performance of structures. The TBCs 

can not only provide thermal resistance to metallic substrates, but also reduce the substrate 

surface temperatures, which can be applied to many power generation systems like gas turbines, 

diesel engines, aircraft engines, and so on [1].  
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Fig. 1 NiCoCrAIY-YSZ composite five-layered functionally graded material [1], exhibiting graded 

microstructures and representing a smooth and continuous variation of material properties from one 

surface to another throughout specific directions. 

 

In line of significantly increasing in use of the FGMs for many engineering applications 

nowadays, further studies for a better and thorough understanding in material behaviors and 

mechanical response of structures made of FGMs suffering high temperature environments are 

important. In many aforementioned engineering applications, valuable knowledge regarding the 

mechanical behaviors of FGMs plays an important role in the design and development of new 

products. Keeping track of the preceding studies of FG plates in terms of thermal conditions has 

shown that there are a great deal of works accounting for the behaviors of FG plates subjected to 

various mechanical and thermal loadings. Wattanasakulpong et al. [3, 5] formulated analytical 

solutions for free, forced vibration and thermal buckling analysis of FG beams and plates under 

high temperature, respectively, using a new simple third-order shear deformation plate theory [4]. 

Shen and his co-workers [4, 7-9] analytically presented nonlinear solutions of bending, vibration 

and dynamic responses of FG plates in thermal environments using high-order shear deformation 

plate theories. Under ambient or room temperature, Talha and Singh reported static response and 
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free vibration of FG plates with different boundary conditions based on finite element method 

(FEM) and a high-order theory [10]. Transient thermal stresses in FG plates induced by unsteady 

heat conduction, temperature-dependent material properties are examined by Tanigawa et al. [11]. 

Shariat and Eslami [12] proposed closed-form solutions of thermal buckling of imperfect FG 

plates using the classical plate theory, while a new micromechanical theory for the response of 

FG metal-matrix composites subjected to thermal gradients is developed by Aboudi et al. [13].  

Kim and Noda [14] described a Green’s function approach to the deflection of FG plates under 

transient thermal loading. Recently, Golmakani et al. [15] explored large deformation of circular 

and annular FGM plates under thermo-mechanical loadings with temperature-dependent 

properties, using the first-order shear deformation theory and von Karman description.  

It is obvious that most preceding efforts are devoted to the solutions that are derived from the 

analytical or closed-form approaches, whereas solutions based on the numerical methods like 

FEM for mechanical response of FG plates in high temperature are rather rare. The analytical 

solutions are useful in some particular cases, but they are very limited in general, especially in 

practice where complicated geometries and boundary and loading conditions or others like high 

temperature environments are often encountered. In light of that circumstance, the present work 

particularly intends to fill that gap by providing an effective numerical model, which is based on 

a displacement-based finite element formulation integrating with a new improved third-order 

shear deformation plate theory, for mechanical response of static bending and natural frequencies 

of heated FG plates under high temperature environment. Compared to analytical approaches, 

the work being studied is expected to serve a more general purpose of numerical modeling of 

heated FG plates suffering high temperature environment.  
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Many different plate theories from the classical to high order ones have developed in the past 

few decades, curious readers may refer to, e.g., see [16, 17], for more information on recent 

developments of the plate theories. However, it reveals one important conclusion that the 

third-order shear deformation plate theories (TSDTs) are one of the effective and accurate 

methods available in literature due to the fact that the TSDTs account for a quadratic variation of 

the transverse shear strains and stresses across the thickness, and more importantly the shear 

correction factors are no long required in most TSDTs as well as high accuracy on the stress 

distributions can be obtained. The TSDTs may be highly suitable for capturing the inherent 

nonlinear properties of FGMs as the field variables of displacements are often expressed in terms 

of cubic functions of the thickness coordinates. Recently, Shi [6] successfully formulated a novel 

improved yet simple third-order shear deformation plate theory (TSDT) based on rigorous 

kinematics of displacements, initially applied to static analysis of isotropic and orthotropic 

beams and plates. The results obtained by the Shi’s TSDT have shown to be more reliable and 

highly accurate than many other higher-order shear deformation plate theories. The achievement 

of higher accuracy of the Shi’s TSDT may be due to the fact that the kinematics of displacement 

is derived from elasticity theory rather the hypothesis of displacement like other existing 

approaches. Only a few works have developed based on the Shi's TSDT, for instance, 

Wattanasakupong et al. [3, 5] adopted the Shi’s TSDT to analytically develop exact solutions for 

thermal buckling and elastic vibration of FG beams and free and forced vibration of FG plates in 

high temperature. Therefore, the Shi’s TSDT is relatively young, new and its application and 

extension to other models/problems is potential. The present work is thus the first development 

of forming the Shi's TSDT into a numerical model in terms of finite element analysis, which is 
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expected to be an effect numerical tool highly suitable for practical applications.  

Formulating a new and effective displacement-based finite element model, taking the 

outstanding features of the Shi’s TSDT into account, for extracting mechanical response of static 

bending and natural frequencies of FG plates in high temperature environments with different 

configurations is one of the main objectives of the present study. We emphasize our attention on 

the accuracy of the proposed TSDT-based FE approach, and addressing new numerical results of 

mechanical response of heated FG plates in high temperature in which the effect of high 

temperature conditions on the static deflections and natural frequencies is explored. We highlight 

the parametric studies performed by varying volume fraction, material combinations, plate 

thickness-to-length ratio, boundary conditions, etc., which have great impacts on mechanical 

response of heated FG plates. In this study, the FG plates are assumed to be placed in a high 

temperature environment for a long period and the temperature hence distributes uniformly 

across the plate thickness. The gradual variation of effective material compositions throughout 

the thickness is represented by a power law distribution. Representative numerical examples of 

heated FG plates with different configurations involving a square, a circle and an L-shape are 

considered and obtained results are then verified and investigated in detail.  

Additionally, the FG plates are one of the major research interests of the authors and hence 

several works have been recently studied, for instance, buckling failure analysis of cracked FGM 

plates using a discrete shear gap 3-node extended finite element [2]; geometrically linear and 

nonlinear of FGM plates using the first order shear deformation theory and isogeometric analysis 

[18-21]; mechanical response of cracked FG plates under different loads and boundary 

conditions derived from an XIGA [22]; a quasi-3D hypothesis shear deformation theory for FG 
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plates; dynamic transient analysis of sandwich beams with FG core using a novel truly meshfree 

method [23], and so on. As a consequence, conditions under making use of our previous 

knowledge, computer resources and experience are great advantages to make this work to appear.   

The rest of the manuscript is structured as follows. We briefly present in Section 2 the 

fundamental of functionally graded material plates, highlighting the effective material properties 

under thermal conditions. Finite element formulation for mechanical responses of static bending 

and free vibration problems of heated FG plates is developed and presented in Section 3. Section 

4 shows the numerical results of static bending deflections and natural frequencies for three 

heated FG plates with different configurations, and a discussion on the static bending deflections 

and natural frequencies under high temperature is given. Some conclusions drawn from the study 

are presented in the last section. 

 

2. Functionally graded plates 

Material properties of FG plates are usually assumed to be varied in the volume fractions in 

the plate thickness. Let us consider a ceramic-metal FG plate with thickness h as depicted in Fig. 

2, assuming that its bottom and top faces are to be fully metallic and ceramic, respectively. The 

xy-plane is the mid-plane of the plate, while the positive z-axis is upward from the mid-plane. 

There are some descriptions to the variation of the volume fractions available in the literature, 

and in this particular work we adopt the common simple power-law assumption for describing 

the volume fraction of the ceramic (Vc) and the metal (Vm) [2, 24]: 

1

2

n

c

z
V

h
 = + 
 

; 1m cV V= −  with 0n ≥   (1) 

where z is the thickness coordinate variable with / 2 / 2h z h− ≤ ≤ , and subscripts c and m 
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represent the ceramic and metal constituents, respectively. In this paper, we denote n being the 

non-negative volume fraction gradient index and its variation can greatly alter the material 

properties as schematically sketched in Fig. 3. Particularly, it is easy to obtain a pure ceramic 

material by setting 0n = , whereas a pure metal by assigning n = ∞ .  

 

Fig. 2 Geometrical notation of a rectangular FG plate. 
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Fig. 3 Variation of volume fraction with respect to the non-dimensional thickness for various 

non-negative volume fraction coefficients of an FG plate using the power-law distribution. 

The Young’s modulus E, the density ρ , the Poisson’s ratio ν , and the coefficient of thermal 

expansion α  vary through the thickness with a power-law distribution [3, 4, 7-9]: 

( ) ( ) 1

2

n

m c m

z
E z E E E

h
 = + − + 
   

( ) ( ) 1

2

n

m c m

z
z

h
ρ ρ ρ ρ  = + − + 

   

(2) 
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( ) ( ) 1

2

n

m c m

z
z

h
ν ν ν ν  = + − + 

   

( ) ( ) 1

2

n

m c m

z
z

h
α α α α  = + − + 

 
 

Environments under study where the common use of FG plates suffers high temperature often 

induce considerable changes in material properties. The effect of temperature on material 

properties must hence be taken into account, as a result of the nonlinear equation of themoelastic 

material properties, which is as a function of temperature T(K), and can be expressed as [3, 4, 7-9, 

25, 26]  

( )1 2 3
0 1 1 2 31P P P T PT PT PT−

−= + + + +  (3) 

where 0T T T= + ∆  and 0 300T K=  (ambient or free stress temperature), T∆  is the 

temperature change, and 0 1 1 2 3, , , ,P P P P P−     are the coefficients of temperature T(K), and are 

unique to each constituent. 

 

3. Finite element formulation for bending and vibration analysis of FG plates 

The goal of this section is to derive a finite element formulation for heated FG plate taking the 

advantages of a new simple third-order shear deformation plate theory, which is originally 

proposed by Shi [6] based on rigorous kinematic of displacements. Previous effort presented in 

[6] has made to reveal the advantages of this new theory as it substantially provides more 

accuracy than other higher-order shear deformation plate theories. It may be due to the fact that 

the kinematic of displacements is derived from an elasticity formulation rather than the 

hypothesis of displacements.  

According to the new theory [6], the three-dimensional displacement field (u,v,w) can be 

expressed in terms of five unknown variables as follows: 
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( ) ( ) ( )3 3
0 0,2 2

5 4 1 5
, , , ,

4 3 4 3x xu x y z u x y z z x y z z w
h h

φ   = + − + −   
   

 

( ) ( ) ( )3 3
0 0,2 2

5 4 1 5
, , , ,

4 3 4 3y yv x y z v x y z z x y z z w
h h

φ   = + − + −   
   

 
( ) ( )0, , ,w x y z w x y=  

(4) 

where 0u , 0v , and 0w  define the displacements at the mid-plane of a plate in the x, y, and z 

directions respectively, while xφ  and yφ  denote the transverse normal rotations of the y and x 

axes. In Eq. (4), the comma represents the differentiation against x and y coordinates. 

Under small strain assumptions, the strain–displacement relations can be expressed as follows: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

3
0, , , , ,2

3
0, , , , ,2

3
0, 0, , , , , , ,2

2
, ,2

1 5
5

4 3

1 5
5

4 3

1 5
5 2 5 2

4 3

5 5

4

x x x xx x x xx

x y y y yy y y yy

y

xy y x x y xy y x x y xy y x

yz

y y y y
xz

u z w z w
h

v z w z w
h

u v z w z w
h

w z w
h

φ φ

ε φ φ
ε
ε φ φ φ φ
γ

φ φγ

− + + + + 
 

−   + + + +    
 

−   + + + + + + +   
  

  − + + +      

=

( ) ( )2
, ,2

5 5

4 x x x xw z w
h

φ φ

 
 
 
 
 
 
 
 
 
 
 
 
 − + + +  

    

(5) 

or in matrix form 

(0) (1) (3)
2 3

(0)

0

0 0

           + +         
         

(2)

ε ε ε ε
=  + z z z

γ γγ
 (6) 

in which 

0,

(0)
0,

0, 0,

x

y

y x

u

v

u v

 
 

=  
 + 

ε ; 

( )
( )

( )

, ,

(1)
, ,

, , ,

5
1

5
4

5 2 5

x x xx

y y yy

x y xy y x

w

w

w

φ

φ

φ φ

 +
  = + 
 

+ +  

ε ; 
, ,

(3)
, ,2

, , ,

5

3
2

x x xx

y y yy

x y xy y x

w

w
h

w

φ
φ

φ φ

 +
 −= + 
 + + 

ε  (7) 

,(0)

,

5
.

4

y y

x x

w

w

φ
φ

+  =  +  
γ ; 

,(2)
2

,

5 y y

x x

w

wh

φ
φ

+ −  =  +  
γ (8) 

The constitutive relations are derived from Hooke’s law by the following equation: 

(0) (1) 3 (3) ( )( )( )T
m= + + −σ D z ε zε z ε ε

 
(9) 
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( )( )(0) 2 (2)
s z=τ D γ +z γ  

with 

T

x y xyσ σ σ =  σ ; 
T

yz xzτ τ =  τ
 

(10a) 

( ) ( )

( )
2

1 0

1 0
1

0 0 1 / 2
m

v
E z

z v
v

v

 
 =  −
 − 

D  (10b) 

( ) ( )
( )

1 0

0 12 1s

E z
z

v

 
=  +  

D  (10c) 

[ ]T T( ) ( ) ( ) ( ) 1 1 0T T T
x y z Tα = = ∆ ε ε ε 0  (10d) 

It must be noted in all above equations that we have denoted ( )T
ε  to indicate the strain 

induced by temperature, which is different from the term of transpose, i.e., T( )⋅ .   

In this study, we adopt a quadrilateral 4-node plate element in which each node contains five 

degrees of freedom, i.e., T
0 0{ }ie i i i xi yiq u v w φ φ= , 1 4i = − . The generalized 

displacements in the middle plane can hence be approximated as 

0 e=u Nq  (11) 

with 

T

0 0 0 x yu v w φ φ =  u  (12a) 

[ ]1 2 3 4N N N N=N  (12b) 

[ ]T

1 2 3 4e e e e e=q q q q q
 

(12c) 

where N  and eq  denote the shape function and the unknown displacement vector at element, 

respectively. 

By substituting Eq. (11) into Eqs. (7) and (8), the strain can be obtained as follows: 

( )1 2 3 e= + +ε B B B q ; 
 

( )4 5 e= +γ B B q
 

(13) 

with  
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,4

1 ,
1

, ,

i x

i y
i

i y i x
=

 
 =  
 
 

∑
N 0 0 0 0

B 0 N 0 0 0

N N 0 0 0

; 

, ,4

2 , ,
1

, , ,

5
1

5
4

2 5 5

i xx i x

i yy i y
i

i xy i y i x
=

 
 =  
 
 

∑
0 0 N N 0

B 0 0 N 0 N

0 0 N N N

; 

, ,4

3 , ,2
1

, , ,

5

3
2

i xx i x

i yy i y
i

i xy i y i x

h =

 
 =  
 
 

∑
0 0 N N 0

B 0 0 N 0 N

0 0 N N N

 

(14a) 

and 

4
,

4
1 ,

5

4
i y

i i x=

 
=  

 
∑

0 0 N 0 1
B

0 0 N 1 0
;

4
,

5 2
1 ,

5 i y

i i xh =

 
=  

 
∑

0 0 N 0 1
B

0 0 N 1 0
 (14b) 

The normal forces, bending moments, higher-order moments and shear force can then be 

computed through the following relations 

  

{ } { }

( )

/ 2
T T

- / 2

/ 2
(0) (1) 3 (3) ( )

- / 2

         =

          = ( )

h

x y xy x y xy

h

h
T

m

h

N N N dz

z z z dz

σ σ σ= =

+ + −

∫

∫

N

D ε ε ε ε

% % % %

 (15a) 

{ } { }

( )

/ 2
T T

- /2

/ 2
(0) (1) 3 (3) ( )

- / 2

        

         ( )

h

x y xy x y xy

h

h
T

m

h

M M M zdz

z z z zdz

σ σ σ= = =

= + + −

∫

∫

M

D ε ε ε ε

% % % %

 (15b) 

{ } { }

( )

/ 2
T T 3

- / 2

/ 2
(0) (1) 3 (3) ( ) 3

- / 2

          

        ( )

h

x y xy x y xy

h

h
T

m

h

P P P z dz

z z z z dz

σ σ σ= = =

= + + −

∫

∫

P

D ε ε ε ε

% % % %

 (15c) 

{ } { } ( )
/ 2 / 2

T T (0) 2 (2)

- / 2 - / 2

    ( )
h h

y x yz xz s

h h

Q Q dz z z dzτ τ= = = +∫ ∫Q D γ γ% % %  (15d) 

{ } { } ( )
/ 2 / 2

T T 2 (0) 2 (2) 2

- / 2 - / 2

     ( )
h h

y x yz xz s

h h

R R z dz z z z dzτ τ= = = +∫ ∫R D γ γ% % %  (15e) 

Eq. (15) can be rewritten in matrix form 
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( )(0)

( )(1)

(3) ( )

(0)

(2)

ˆ ˆ

ˆ ˆ

T

T

T

     
     
     
      = −     

      
      
            

N NεA B E 0 0

B D F 0 0M Mε

E F H 0 0P ε P

00 0 0 A B γQ
00 0 0 B D γR

% %

% %

% %

%

%

 (16) 

with  

( ) ( )
/ 2

2 3 4 6

- / 2

,  ,  ,  ,  ,  1,  ,  ,  ,  ,  ( )
h

m

h

z z z z z z dz= ∫A B D E F H D  (17a) 

( ) ( )
/ 2

2 4

- / 2

ˆ ˆ ˆ,  ,  1,  ,  ( )
h

s

h

z z z dz= ∫A B D D  (17b) 

( ) ( ){ }
/ 2

T( ) ( ) ( ) 3

- / 2

,  , ( ) 1,  ,  1  1  0 ( )
h

T T T
m

h

z z z z Tdzα= ∆∫N M P D% % %  (17c) 

It is interesting to see that Eqs. (16) and (17) reveal the thermal stresses that take place in the 

behaviors of the heated FG plates.  

As we have already stated in the previous section that the FG plates under consideration are 

assumed to be placed in high temperature environment for a long period. The temperature is 

hence assumed to be uniformly distributed across the plate thickness. The variation of the 

temperature within the FG plates is controlled by the temperature change T∆ .   

The total strain energy of a plate due to the normal forces, shear force, bending moments and 

higher-order moments can be given by  

( )

T T T
1 1 1 2 1 3

T T T
2 1 2 2 2 3

T T T T T T
3 1 3 2 3 3

T T T
4 4 4 5 5 4

T
5 5

T T ( ) T ( ) T ( ) T T
1 2 3

1 1

2 2
ˆ ˆ ˆ

ˆ

      

e e e

e

e e

V S S

T T T
e e

S

U dV dS dS

dS

 + + +
 

+ + + + 
 = − = + + + + − 
 + + + +
 
 + 

− + + −

∫ ∫ ∫

∫

B AB B BB B EB

B BB B DB B FB

ε σ u f q B EB B FB B HB q

B AB B BB B BB

B DB

q B N B M B P q N f% % % % ( )T( ) ( )1

2
e e

T T

S S

dS dS+∫ ∫ ε Aε

 (18) 

where f  is the transverse loading per unit area and Eq. (18) can be rewritten in matrix form as 
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T T ( ) T ( )1
   

2
T T

e e e e e e eU = − − +q K q q F q F C  (19a) 

T ( ) ( )1
  

2
T T

e e e e eU
 = − − + 
 

q K q F F C  (19b) 

with eK  and ( )T
eF  defined in Eq. (19) being the element stiffness matrix and the coefficient 

matrix of temperature change, respectively, whilst eF  representing the element force vector. In 

addition, ( )T( ) ( ) ( )1

2
e

T T T

S

dS= ∫C ε Aε  is a constant matrix dependent on the temperature but not 

on the nodal displacement. It must be noticed that the appearance of the temperature-dependent 

constant matrix ( )TC  in the system comes up naturally, as a result of the mathematical 

manipulation between the stress and strain components at the state of establishing the discrete 

equations. However, this term disappears and eventually does not present in the final system of 

discrete equations. 

For free vibration analysis of plates, the kinetic energy is expressed as 

T T T T T1 1 1
( )  = ( )

2 2 2
e e

e e e e e

V V

T z dV z dV
  = = 
  

∫ ∫u ρ u q N L ρ LN q q M q% %& & & && &

 

(20) 

In Eq. (20), the dot represents as the differentiation with respect to time. The term L  is 

explicitly detailed as 

3 3
2 2

3 3
2 2

1 5 5 4
1 0 0

4 3 4 3

1 5 5 4
0 1 0

4 3 4 3

0 0 1 0 0

z z z z
h x h

z z z z
h y h

 ∂    − −    ∂    
 ∂   = − −    ∂    
 
 
 

L  (21) 

and the element mass matrix is hence given by  

/ 2
T T T T

/ 2

( ) ( )
e e

h

e

V S h

z dV z dz dS
−

 
= =  

 
∫ ∫ ∫M N L ρ LN N ρ L L N% % % %  (22) 

For bending analysis, the bending solutions can be obtained by solving the following equation: 

( )T= +Kd F F  (23) 

where K  and ( )TK  are the global stiffness matrix and global coefficient matrix of 
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temperature change, respectively. F  is the global force vector while d  stands for the vector of 

unknowns.  

To obtain the natural frequency, the dynamic equations can be expressed as one must solve the 

following eigenvalue equation:  

( )2 0ω− =K M d  (24) 

with ω  denoting the natural frequency, and M  representing the global mass matrix.  

 It should be noted that all the integrations described above are numerically evaluated by 

using the common Gauss quadrature integration rule.    

 

4. Numerical results and discussion 

In this section, we focus our attention on numerical investigations of FEM solutions for static 

bending deflection and natural frequency of heated FG plates in high temperature environment, 

exploring the effects of thickness-to-length ratio, different materials, boundary conditions, 

volume fraction exponent, material combinations, etc. on the mechanical responses. Three 

representative numerical examples of heated FG plates having different configurations including 

a rectangular, a circle and an L-shape are considered and analyzed. Both the simply supported 

and fully clamped boundary conditions are investigated. For the simply supported boundary 

conditions: 

0 0yv w φ= = = , at 0,x a=  (25a) 

0 0xu w φ= = = , at 0,y b=  (25b) 

and the fully clamped edges: 

0 0 / / 0x yu v w w x w yφ φ= = = = = ∂ ∂ = ∂ ∂ = , at 0,x a=  and 0,y b=  (26) 

Different material combinations of FG plates made of the ceramics Al2O3, Si3N4, ZrO2, and 

the metal SUS304 with their parameters detailed in Table 1 are studied [3, 4]. In all the 
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investigations, the numerical results are computed using the proposed finite element model with 

a regular fine mesh to ensure the accuracy of the final solutions.  

 

Table 1  

Temperature dependent coefficient of Young’s modulus E (Pa), thermal expansion coefficient α  (1/K) , 

Poisson’s ratio ν , mass density ρ (kg/m3) for various materials [3, 4]. 

Materials P0 P-1 P1 P2 P3 P (300K) 

Ceramic Aluminum oxide (Al2O3) 

E (Pa) 349.55e9 0 -3.853e-4 4.027e-7 -1.673e-10 320.24e9 

α  (1/K) 6.8269e-6 0 1.838e-4 0 0 7.203e-6 

ν  0.26 0 0 0 0 0.260 

ρ (kg/m3) 3800 0 0 0 0 3800 

Ceramic silicon nitride (Si3N4) 

E (Pa) 348.43e9 0 -3.070e-4 2.160e-7 -8.946e-11 322.27e9 

α  (1/K) 5.8723e-6 0 9.095e-4 0 0 7.475e-6 

ν  0.24 0 0 0 0 0.240 

ρ (kg/m3) 2370 0 0 0 0 2370 

Ceramic zironium oxide (ZrO2) 

E (Pa) 244.27e9 0 -1.371e-3 1.214e-6 -3.681e-10 168.06e9 

α  (1/K) 12.766e-6 0 -1.491e-3 1.006e-5 -6.778e-11 18.591e-6 

ν  0.288 0 1.133e-4  0 0.298 

ρ (kg/m3) 3657 0 0  0 3657 

Metal stainless steel SUS304 

E (Pa) 201.04e9 0 3.079e-4 -6.534e-7 0 207.79e9 

α  (1/K) 12.330e-6 0 8.086e-4 0 0 15.321e-6 

ν  0.326 0 -2.002e-4 3.797e-7 0 0.318 

ρ (kg/m3) 8166 0 0 0 0 8166 
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4.1 Numerical results for static bending analysis 

4.1.1 A rectangular FG plate 

We start examining the accuracy of the proposed finite element formulation by comparing the 

obtained numerical results with reference solutions derived from other approaches available in 

literature. A fully simply supported FG plate (a/b = 1) made of Al/Al2O3 with a 

thickness-to-length aspect ratio of a/h = 10 subjected to a uniform load P
 
is thus considered. 

The material properties of Al and Al2O3, 0.3mv = , 70mE GPa= , and are 0.3cv = , 380cE GPa= , 

respectively, are employed for the analysis. Fortunately, this particular example has previously 

studied by other scientists and their results are hence used for the comparison purpose.  

For convenience in representation of the numerical results, the maximum central deflection 

and tensile stress are respectively normalized by  

3

4

10
( , )
2 2

ch E a b
w w

Pa
=   

 ( , , )
2 2 2xx xx

h a b h

Pa
σ σ=  

(27) 

It must be mentioned here that the Al/Al2O3 material used for the analysis of accuracy of the 

developed FE model is independent of temperature. Table 2 presents a comparison of the 

normalized deflections and tensile stress of a simply supported FG square plate gained by the 

developed method and other approaches using different theories such as the Reddy's theory [27], 

the sinusoidal shear deformation plate theory (SSDPT) [28], and the hyperbolic shear 

deformation theory (HPSDT) [29]. The results reported in the table are accounted for different 

values of the volume fraction coefficient, taken from a pure ceramic (n = 0) to a pure metal (n = 

∞ ) as well as others n = 2, 3, 5, and 10. As expected, the present numerical results show a good 

agreement with other reference solutions for each value of the volume fraction exponent. In 
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Table 2, the present numerical results clearly reveal a significant effect of the gradient index on 

both the dimensionless deflections and normal stress of an FG Al/Al2O3 plate. As the plate 

becomes more and more metallic (i.e., the volume fraction index increases), the normalized 

deflection w  and the in-plane longitudinal stress xxσ  gradually increase. The same conclusion 

can interestingly be observed as raised by Daouadji et al. [29] in a way is that the stress xxσ  

yields the same values for both the pure ceramic and the pure metal plates. The phenomenon of 

giving the same values of the stress component for both pure ceramic and metal plates is clear to 

the authors. It is due to the fact that the material properties of both pure plates are fully 

homogeneous, in which the modulus of elasticity does not alter the stress distribution. In other 

words, the stress does not depend on the modulus of elasticity of the homogeneous plates.    

 

Table 2 

Comparison of the normalized deflections and tensile stress of a square FG Al/Al 2O3 plate (a/b = 1, 

a/h = 10) for different values of the volume fraction exponent n obtained by the present formulation and 

other approaches: the Reddy’s theory [27], the SSDPT [28], and the HPSDT [29]. 

n 

w     
xxσ     

Reddy 

[27] 

SSDPT 

[28] 

HPSDT 

[29] 

This 

work 

Reddy 

[27] 

SSDPT 

[28] 

HPSDT 

[29] 

This 

work 

Ceramic 0.4665 0.4665 0.4665 0.4630 2.8920 2.8932 2.8928 2.8930 

1 0.9421 0.9287 0.9421 0.9130 4.2589 4.4745 4.2607 4.3560 

2 1.2227 1.1940 1.2228 1.2069 4.8889 5.2229 4.8890 5.0449 

3 1.3530 1.3200 1.3533 1.3596 5.2055 5.6108 5.2064 5.2026 

5 1.4646 1.4356 1.4653 1.4874 5.7066 6.1504 5.7074 5.8751 

10 1.6054 1.5876 1.6057 1.6308 6.9540 7.3689 6.9547 7.1148 

Metal 2.5328 2.5327 2.5327 2.5120 2.8920 2.8932 2.8928 2.8930 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 20

We further verify the accuracy of the proposed formulation to the FG plates affected by 

temperature environment, and thus the temperature under consideration is set to be 300T K=  

( 0)T∆ = . We employ the same previous simply supported square plate but it is now made of 

Si3N4/SUS304 instead. The material parameters of Si3N4/SUS304 for the particular case of 

300T K=  can be found in Table 1. The maximum central deflections obtained by the present 

finite element method are normalized by  

( )
3

2 4

100

12 1
c m

m

w E h
w

v Pa
=

−  (28) 

and are then compared with the analytical solutions given by Wattanasakulpong et al. [3], as 

reported in Table 3. In Eq. (28), mE  and mν  are the reference values of the Young’s modulus 

and Poisson’s ratio of metal at 300T K=  detailed in Table 1. A very good agreement between 

two solutions for each value of the volume fraction exponent is found. 

 

Table 3  

Comparison of the normalized deflections of a simply supported FG plate (a/b = 1, a/h = 10) under 

ambient temperature for different values of volume fraction exponent between the developed finite 

element model and analytical approach [3]. 

Method n = 0.5 n = 1.0 n = 5.0 n = 10 

Analytical [3] 0.325 0.343 0.380 0.396 

This work 0.3297 0.3515 0.3901 0.4050 

 

Figure 4 shows the computed numerical results using the developed method in which the 

dimensionless deflections are expressed as a function of temperature for fully clamped FG plates 

fabricated by three different pairs of materials Al2O3/SUS304; Si3N4/SUS304 and ZrO2/SUS304. 

The geometrical parameters of FG plates utilized for this analysis are set to be a/b = 1 and a/h = 
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10, and the conditions under which the plates being considered suffer high temperature 

environment, as the temperature interval is ranged from 300T K=  up to 1400K . Notice that 

we limit our study to such a specified range of temperature, and any other values of temperature 

outside that interval are not considered either. It is naturally to understand the circumstance that 

under working conditions, in manufacturing or in-service for instance, the FG plates often 

operate in a certain environment in which the temperature bound is fully controlled.  

The computed numerical results of the normalized deflections for thee FG plates depicted in 

Fig. 4 are very interesting as they reveal a significant impact of the temperature condition on the 

mechanical deflections. It is also found the same for the volume fraction exponent, which greatly 

alters the dimensionless deflections of FG plates. For the Al2O3/SUS304 and Si3N4/SUS304 

plates, the normalized deflections get larger for the entire range of the temperature when 

increasing the volume fraction coefficient. More interestingly, under the same condition the pure 

metal plates deformed in such a way that their deflections are larger than those of the pure 

ceramic plate and any other FG plates whose properties are more and more ceramic. By suffering 

higher temperature conditions, the deflections induced by the pure metal plates even get larger as 

clearly seen in the picture. It may be due to the fact that once the pure metal plates placed in high 

temperature environment, the stiffness degradation of the plate is the main source that makes the 

deformation of plates larger. In the contrary, the mechanical behaviors of the ZrO2/SUS304 plate 

are much more complicated than those of the other two FG plates. The pure SUS304 metal plate 

yields smaller deformations compared to the pure ZrO2 ceramic plate at the temperature 

approximately 1080T K= , beyond that range of temperature up to 1400K , the situation 

changes oppositely and the deformation of the pure SUS304 metal plate is the winner, meaning 
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that the SUS304 plate after the transition point yields larger deflections compared to the ZrO2 

ceramic one. This indicates a significant difference on the deflection behavior of ZrO2/SUS304 

plate as its response naturally generates a transition point, which does not appear to that of the 

Al 2O3/SUS304 and Si3N4/SUS304 plates. A close-up view at the transition point of the deflection 

of the ZrO2/SUS304 plate is also illustrated in the picture.   

In overall, an increase of the dimensionless deflections can be found for all FG plates for the 

whole range of temperature. The metal SUS304 plates yield larger deformation than the Al2O3 

and Si3N4 ceramic plates, however it depends on the temperature range whether the SUS304 

plate can yield larger or smaller deformation compared to the pure ZrO2 ceramic plate. As the FG 

plates become more and more metallic, the larger deflections are obtained as compared to those 

whose properties are more and more ceramic. The capability of withstanding large deformation 

in high temperature environment of the ceramic materials is shown, which are well known as a 

special material well sustaining high temperature conditions, are often designed to be working 

under such tough conditions of temperature.    

While the normalized deflections obtained by the proposed model for the Al2O3/SUS304 and 

Si3N4/SUS304 plates are found to be almost similar between each other, opposite behaviors of 

the mechanical deflections of the ZrO2/SUS304 plate compared to the Al2O3/SUS304 and 

Si3N4/SUS304 plates can be observed. It can be concluded that the mechanical bending 

behaviors of the FG plates are to be material-dependent, mainly caused by the nonlinear thermal 

properties and material behaviors of constituent materials. In other words, not all the FG plates in 

high temperature environment possess the same situation, they, as observed numerically, behave 

different from each other. Therefore, material combinations in terms of FGMs are important and 
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greatly affect the mechanical static bending behaviors of resultant FG plates and their 

performance under high temperature conditions. Consequently, this phenomenon and behaviors 

of FGMs may be important to the design and development of the FGMs in engineering 

applications, especially for those that suffer tough conditions of temperature. Such information 

might also be helpful to the designers or researchers in the appropriate selection of FGMs for 

specific purposes of utilizing the FGMs, for instance, a right selection of the FGMs to a right 

condition, e.g., structures to be working under high temperature conditions, is of course a great 

benefit in practice.  
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Fig. 4 Dimensionless deflections of fully clamped FG plates (a/b = 1, a/h = 10) made of Al2O3/SUS304 ; 

Si3N4/SUS304 and ZrO2/SUS304 calculated by using the developed finite element model, showing the 

effects of volume fraction coefficient and temperature on the mechanical behaviors of FG plates.   
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To additionally explore the physical reason which leads to the difference on the mechanical 

behaviors of ZrO2/SUS304 and those of the Al2O3/SUS304 and Si3N4/SUS304 plates, the 

Young’s modulus and the coefficient of thermal expansion described in Eq. (2) as a function of 

temperature for each constituent material (i.e., SUS304, Al2O3, Si3N4 and ZrO2) are hence 

depicted in Fig. 5, possessing a big difference on the behaviors among constituent materials. In 

Fig. 5, 0E  and 0α  are the reference values of SUS304E  and SUS304α  at T0 = 300K as given in 

Table 1. It is important to point out here that the material combinations, the nonlinear thermal 

properties and material behaviors of constituent materials are the main sources that make the 

mechanical behaviors of FGMs differently from each other. By looking at Fig. 5, it is very 

important to see that the transition on the behaviors of the Young’s modulus can be found for the 

FG plate made of ZrO2 and SUS304, whereas such transition behavior does not take place for 

other FG plates made of Al2O3 or Si3N4 combined with SUS304. Easily to see that the Young’s 

modulus of ZrO2 and SUS304 starts transitioning at a temperature approximately 1080T K= , 

which does not happen to the Al2O3 or Si3N4 and SUS304. Therefore, the material combinations 

and the behaviors of used constituent materials create a significant difference on the overall 

mechanical behaviors of FG plates.  

Nevertheless, it is shown that the characteristics of the Young’s modulus and the coefficient of 

thermal expansion of constituent materials greatly alter the overall behaviors of FGMs. Here, the 

matters happen to the ZrO2 whose behavior is significantly different from that of the Al2O3 or 

Si3N4. We further show in Fig. 6, which is aimed at explicitly illustrating the variation behaviors 

of the Young’s modulus and the coefficient of thermal expansion through-the-thickness of the 

Al 2O3/SUS304 and ZrO2/SUS304 plates (n = 0.5) affected by the temperature. It is very 
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interesting and one can thus observe a quite difference on the behaviors of the two considered 

plates, and more importantly, the transition behavior only occurs to the ZrO2/SUS304 plate at a 

temperature approximately 1080T K=  as clearly exhibited in the picture. In fact, at the 

transition point, the non-homogeneous properties of FGMs degenerate to homogeneous by which 

the non-homogeneous FG plate becomes either homogeneous ceramic ZrO2 or metal SUS304 

plate irrespective of the volume fraction exponent effects.  

Furthermore, we also observe that the characteristics of the metal SUS304 additionally alter 

the overall behaviors of FGMs. The stiffness of the metal SUS304 becomes softer in higher 

temperature as its Young’s modulus decreases with respect to the temperature. Generally, under 

high temperature environments it apparently indicates a very important effect of the material 

combinations on the overall mechanical behaviors of FGMs, the obvious difference on the 

mechanical response of ZrO2/SUS304, Al2O3/SUS304 and Si3N4/SUS304 plates shown in Fig. 4 

is hence illustrated.   

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 26

400 600 800 1000 1200 1400
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T (K)

E
/E

0

 

 

E
SUS304 (Metal)

E
Al

2
O

3
 (Ceramic)

E
Si

3
N

4
(Ceramic)

E
ZrO

2
(Ceramic)

400 600 800 1000 1200 1400
0

5

10

15

T (K)

α/
α 0

 

 

α
SUS304 (Metal)

α
Al

2
O

3
 (Ceramic)

α
Si

3
N

4
(Ceramic)

α
ZrO

2
(Ceramic)

 

Fig. 5 Representative behaviors of the Young’s modulus and the coefficient of thermal expansion as a 

function of temperature for each constituent material: SUS304, Al2O3, Si3N4 and ZrO2. The material 

combination of ZrO2 and SUS304, formed by ZrO2/SUS304, naturally creates a transition point on its 

inherent mechanical behavior, which is found differently from that of Al2O3/SUS304 and Si3N4/SUS304.  
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Fig. 6 Variation behaviors of the Young’s modulus and the coefficient of thermal expansion 

through-the-thickness of Al2O3/SUS304 and ZrO2/SUS304 plates (n = 0.5) affected by the temperature. 
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Next, we analyze the effect of the aspect ratio (a/b) of FG plates on the mechanical deflection 

using the proposed formulation. By accomplishing it, a rectangular FG plate made of 

Si3N4/SUS304 with a/h=10 is taken, sustaining in high temperature conditions from 300T K=  

up to 800K . Different values of the aspect ratio such as a/b = 0.2; 0.33; 1; 2 and 4 are 

considered. The volume fraction exponent of FG plates n = 1 is used for the analysis. The 

computed numerical results of dimensionless deflections are thus presented in Table 4 and also 

depicted in Fig. 7. As expected, a significant variation of the mechanical deflections of the FG 

plate over the aspect ratio (a/b) can be clearly observed. As a result, the influence of the ratio a/b 

on the dimensionless deflections of FG plates is high. However, the variation of the normalized 

deflections as a function of temperature is insignificant as it shows a slight increase of the 

deflection when the FG plate places in environment with higher temperature. It is worth noting 

that the characteristic of the sides a and b configuring the plate is different, which may be due to 

the fact that we keep the thickness-to-length a/h=10 unchanged throughout the analysis.  

 

Table 4 

Effect of the aspect ratio (a/b) on the dimensionless deflections of a rectangular FG Si3N4/SUS304 

plate (a/h = 10) using the present formulation. 

a/b T=300K 400 500 600 700 800 

0.2 0.2562 0.2608 0.2669 0.2746 0.2844 0.2968 

0.33 0.2364 0.2407 0.2462 0.2533 0.2624 0.2739 

1 0.1219 0.1242 0.1270 0.1306 0.1353 0.1412 

2 0.0196 0.0199 0.0204 0.0210 0.0217 0.0226 

4 0.0025 0.0026 0.0026 0.0027 0.0028 0.0029 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 28

300 400 500 600 700 800

0

0.05

0.1

0.15

0.2

0.25

0.3

T(K)

D
im

en
si

on
le

ss
 d

ef
le

ct
io

n 

 

 

a/b=0.2
a/b=0.33
a/b=1
a/b=2
a/b=4

Si
3
N

4
/SUS304

a/h=10.0
n=1.0

 
Fig. 7 Variation of the aspect ratio (a/b) and its effect on dimensionless deflections of a fully clamped 

FG plate (a/h = 10) made of Si3N4/SUS304 by the developed finite element model.   

 

In order for exploring the effect of the thickness-to-length aspect ratio a/h on the mechanical 

bending response of FG plates in high temperature conditions, the normalization of the 

deflections is however redefined for this specific investigation, which, we expect to not take into 

account any effects caused by the thickness term as it presents in the previous formulation, Eq. 

(28). The new normalization for this specified analysis is hence formed as follows:   

( )21000 1
c m

m

w E
w

v Pa
=

−  (29) 

The study is carried out and numerical experiments are performed over three square FG plates 

(a/b = 1) made of Al2O3/SUS304; Si3N4/SUS304 and ZrO2/SUS304, respectively. The 

boundaries of the FG plates are fully clamped, while a constant temperature of 800T K=  is 

assumed throughout the analysis. The plates whose thickness are to be thin to moderate thick are 

considered as different values of the aspect ratio, e.g., a/h = 50; 30; 20; 10 and 5, are taken. The 

numerical results of the dimensionless deflections calculated by using the developed finite 

element formulation are then tabulated in Table 5 and also sketched in Fig. 8. The mechanical 
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deflections of three square FG plates are obtained for various values of volume fraction exponent 

including the pure metal and ceramic cases. Not surprisingly, by reducing the plate thickness the 

larger the mechanical deflections of FG plates is obtained, by which a great influence of the 

thickness-to-length aspect ratio (a/h) on the bending behaviors of the FG plates is exhibited. 

Furthermore, we have also found out that the dimensionless deflections increase with increasing 

the volume fraction coefficient, but this phenomenon takes place to the FG plates that are made 

of Al2O3/SUS304 and Si3N4/SUS304. Opposite situation however can be observed in such a way 

where the FG plate is made of ZrO2/SUS304, increasing the volume fraction exponent leads to 

an decrease of the dimensionless deflections, by which one important point raised above that not 

all the FG plates behave the same situation can be confirmed. As a result, the mechanical 

response of FGMs under high temperature environment is to be material-dependent. 

Our own numerical experiments have additionally found that the present formulation can 

avoid shear locking effect as it can be applied to solve thin plates successfully, as matrices of 

involving shear terms require only C0 continuity. It must be stressed out here in this manuscript 

that the authors do not intend to repeat a comprehensive analysis of verifying the shear-locking 

effect of the used new TSDT as it was already studied and reported in the original work by Shi 

[6], curious readers may refer to [6] for more information. Therefore, we here focus our attention 

on presenting new numerical results and numerical investigations of the mechanical response of 

FG plates in high temperature environment.  

We further explore the mechanical deflections as a function of temperature affected by the 

thickness-to-length aspect ratio (a/h). The present numerical results of this analysis are hence 

schematically sketched in Fig. 9, also experimenting over three fully clamped square FG plates 
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(a/b = 1) above. Only n = 0.5 which represents the volume fraction exponent of FG plate is 

considered. The numerical results obtained are very interesting as the thinner plates yield larger 

deflections than the thicker ones. The mechanical deflections of all FG plates increase for the 

higher range of temperature. It means that when the FG plates suffering higher temperature 

environments, larger deflections for all considered FG plates can be reached.  

 

Table 5 

Effect of the thickness-to-length aspect ratio (a/h) on the dimensionless deflections of fully clamped 

square FG plates (a/b = 1) using the present formulation. 

Al 2O3/SUS304 

a/h Ceramic n=0.2 5.0 10 Metal 

50 1.1033 1.2140 1.6838 1.7707 2.0001 

30 0.2421 0.2671 0.3710 0.3902 0.4136 

20 0.0735 0.0810 0.1129 0.1188 0.1334 

10 0.0103 0.0114 0.0160 0.0169 0.0188 

5 0.0018 0.0020 0.0029 0.0030 0.0033 

Si3N4/SUS304 

50 1.1409 1.2517 1.7135 1.7990 2.0211 

30 0.2503 0.2745 0.3764 0.3952 0.4136 

20 0.0760 0.0833 0.1145 0.1202 0.1347 

10 0.0107 0.0116 0.0162 0.0171 0.0189 

5 0.0019 0.0020 0.0029 0.0031 0.0033 

ZrO2/SUS304 

50 2.6828 2.4999 2.0936 2.0330 1.9357 

30 0.5894 0.5494 0.4596 0.4463 0.4136 

20 0.1794 0.1673 0.1397 0.1357 0.1294 

10 0.0255 0.0238 0.0197 0.0192 0.0184 

5 0.0046 0.0043 0.0035 0.0034 0.0033 
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Fig. 8 Variation of the thickness-to-length aspect ratio (a/h) and its effect on dimensionless deflections of 

fully clamped square FG plates (a/b = 1) as a function of volume fraction exponent.   
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Fig. 9 Variation of the thickness-to-length aspect ratio (a/h) and its effect on dimensionless deflections of 

fully clamped square FG plates (a/b = 1) as a function of temperature.   

 

 

The stress distributions in heated FG plates would be very interesting and they are now 

analyzed. We hence deal with a simply supported FG plate (a/b = 2) made of Si3N4/SUS304 

suffering high temperature environments of 800T K= . The volume fraction index of FG plate n 

= 1 is indicated for this study of stress distributions. However, different values of the 

thickness-to-length ratio such as a/h = 5, 10 and 20 are examined. For simplicity and 

convenience in representation of the numerical results, the stresses at the middle point of plate 

obtained by the developed model are normalized by the following equations: 
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{ ; ; ; ; } { ; ; ; ; }( , , )
2 2 2xx yy xy yz xz xx yy xy yz xz

h a b h

Pa
σ σ σ τ τ σ σ σ τ τ=  (30) 

Fig. 10 shows the through-the-thickness distributions of the stress components in the FG plate 

under uniform load for different thickness-to-length ratios. Clear distinction among the curves is 

obvious in the figures, revealing that the effect of the thickness-to-length ratios on the 

mechanical behaviors of the plate (stress distribution) is significant. The in-plane longitudinal 

and normal stresses (xxσ  and yyσ ) are first compressive and then tensile throughout the plate as 

exhibited in Fig. 10. One can also observe that the maximum values of the compressive and 

tensile stresses may occur on the bottom and top surfaces of FG plates. In addition, it is evident 

that the minimum value of zero for the xxσ  and yyσ  takes place at a point that is not the 

middle of plate due to the non-homogeneous properties of FG materials, as a result of asymmetry 

of the stress distributions in the FG plates. It can further be found from the stress distributions 

that the compressive and tensile values of the longitudinal tangential stress xyσ  at the middle 

point of plate are different from that of the xxσ  and yyσ , their distributions are even more 

complicated. While the through-the-thickness distributions of the shear stresses yzτ  and xzτ  are 

fully different from other stresses, the shear stresses increase with decreasing the 

thickness-to-length ratio. Although the response of the shear stresses behaves in a similar 

situation, but the amplitude of the stress xzτ  is found to be smaller than the stress yzτ . 

Nonetheless the maximum values of the stresses occur not at the plate center as often observed in 

the homogeneous plates. In all cases, one can conclude that the thickness-to-length ratio has a 

great impact on the mechanical behaviors of heated FG plates.  
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Fig. 10 Stress distributions through the thickness of an FG Si3N4/SUS304 plate (a/b = 2) for different 

values of thickness-to-length ratio obtained by the developed finite element model. 

 

The effect of volume fraction exponent on the stresses distributed through-the-thickness in FG 

plates is also investigated numerically. The same simply supported FG plate made of 

Si3N4/SUS304 under condition of 800T K=  is considered, examining three different values of 
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gradient indices of FG plates such as n = 0.2, 1 and 10. Three individual tasks based on the 

developed finite element model for extracting the stresses are performed. The computed results 

of the in-plane longitudinal xxσ  shear yzτ  stresses are then depicted in Fig. 11. As exhibited in 

the figure that the volume fraction exponent greatly alters the stress distributions 

through-the-thickness in FG plates. In a similar manner, the influence of temperature on the 

stresses distributed through-the-thickness in FG plates is also explored. The computed stresses 

dependent upon the temperature are hence shown in Fig. 12 for three different values of 

temperature, 300T K= ; 800K  and 1400K , respectively. The volume fraction exponent n = 

0.2 is taken for this analysis. In overall, the stress distributions through-the-thickness in FG 

plates affected by temperature are insignificant except the maximum values of the compressive 

stress ( xxσ ), which occur at the bottom surfaces of FG plates, are different from each other once 

increasing the temperature. 
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Fig. 11 Effect of volume fraction exponent on stresses (xxσ  and yzτ ) distributed through the thickness 

of an FG Si3N4/SUS304 plate (a/b = 2) obtained by the developed finite element model. 
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Fig. 12 Effect of temperature on stresses (xxσ  and yzτ ) distributed through the thickness of an FG 

Si3N4/SUS304 plate (a/b = 2) obtained by the developed finite element model. 

 

 

4.1.2 A circle FG plate 

 The next example deals with a circle FG plate subjected to a uniform load P
 
to further 

show the applicability of the proposed approach. The deflections of circle FG plates obtained by 

the present model are normalized by  

( )
3

min
2 4

100

12 1
m

m

w E h
w

v PR
=

−  (31) 

where R is a radius and h is the plate thickness. The developed finite element model is applied to 

solve this circle plate, and the mechanical deflections are then analyzed numerically. Similar to 

the previous example, three circle FG plates made of Al 2O3/SUS304; Si3N4/SUS304 and 

ZrO2/SUS304 are considered. In the numerical implementation, an aspect ratio of R/h = 10 is 

taken. Table 6 reports the dimensionless deflections of a fully clamped Al2O3/SUS304 plate as a 

function of temperature taken from 300T K=  up to 800K , affected by the volume fraction 

exponents. The higher the volume fraction coefficient is taken the larger dimensionless 

deflections are obtained, revealing a significant variation of the mechanical response of FG 
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plates caused by the gradient index. In a similar manner, the higher the temperature is taken, the 

larger the deflections is gained, but the variation of the mechanical behavior caused by the 

temperature change is small for the plates whose properties are more and more ceramic, 

otherwise the variation becomes significant for those that properties approach to the metallic. 

This investigation is also visualized in Fig. 13, which additionally involves the results of pure 

metal plate and of Si3N4/SUS304 and ZrO2/SUS304. Nonetheless, Fig. 14 shows the numerical 

results of the dimensionless deflections as a function of temperature up to 1400T K= of 

Al 2O3/SUS304, Si3N4/SUS304 and ZrO2/SUS304 plates, computed by the developed finite 

element model. These results of circle FG plates are fully consistent with the previous examples. 

Unlike the Al2O3/SUS304 and Si3N4/SUS304 plates, the mechanical behavior of circle 

ZrO2/SUS304 plate in high temperature is also found to be transitioned at a point where the 

temperature takes place approximately 1080T K= . Larger deflections can be gained for the 

pure metal plates on the condition that the plates must be placed in higher temperature, e.g., 

1400T K= . It may be due to the stiffness degradation of plates in high temperature, the material 

properties of metal become softer compared to the ceramic. Once again, the mechanical 

behaviors of deflections depicted in Fig. 14 are similar to that for square FG plates plotted in Fig. 

4 above, confirming one important issue that not all the FG plates suffering high temperature 

environment deliver the same situation, they behave different from each other. As already 

investigated above, the material combinations, the behaviors and the nonlinear thermoelastic 

properties of constituent materials are those that make the mechanical behaviors of FGMs in 

high temperature differently as illustrated in Figs. 5 and 6.  
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Table 6 

Dimensionless deflections of a fully clamped circle FG plate (R/h = 10) formed by 

Al 2O3/SUS304 computed by the present formulation for different values of volume fraction 

exponent. 

n T=300K 400 500 600 700 800 

0 1.3984 1.4240 1.4441 1.4597 1.4721 1.4830 

0.2 1.5025 1.5294 1.5539 1.5776 1.6019 1.6285 

0.5 1.6130 1.6409 1.6709 1.7048 1.7446 1.7928 

1 1.7219 1.7506 1.7867 1.8323 1.8906 1.9658 

5 1.9151 1.9453 1.9922 2.0592 2.1515 2.2774 

10 1.9896 2.0204 2.0715 2.1466 2.2516 2.3961 
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Fig. 13 Dimensionless deflections of fully clamped circle FG plates (R/h = 10) made of Si3N4/SUS304 

and ZrO2/SUS304 calculated by using the developed finite element model, showing the effects of volume 

fraction coefficient and temperature.   
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Fig. 14 Dimensionless deflections of two fully clamped circle FG plates (R/h = 10) made of 

Si3N4/SUS304 and ZrO2/SUS304 calculated by using the developed finite element model, showing the 

effects of volume fraction coefficient and a wider range of temperature. The mechanical behaviors of the 

Si3N4/SUS304 plate are different from that of the ZrO2/SUS304 plate. The numerical results of the 

dimensionless deflections of the ZrO2/SUS304 plate are found the same as that for square FG plate 

above, they first increase and then decrease with increasing the volume fraction exponent and the 

transition point occurs at appropriately 1100T K= , and beyond that range, the deflections behave 

opposite. 

 

The influence of the thickness-to-length aspect ratio (R/h) on the mechanical deflections of 

this circle FG plate is analyzed. For this particular example, we also redefine the normalization 

of deflections as follows:   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 40

( )
min

21000 1
m

m

w E
w

v PR
=

−  (32) 

Only a fully clamped Al2O3/SUS304 plate with different values of thickness-to-length aspect 

ratio R/h is analyzed. The dimensionless deflections as a function of thickness-to-length ratio 

altered by the volume fraction exponent are depicted in Fig. 15 for 300T K=  and 1100K , 

respectively. By specifying R/h = 20, 15, 10 and 5, thin and moderate thick plates are hence 

involved, interpreting the applicability of the developed formulation in solving thin plates 

without any effects of shear-locking. Once again, the dimensionless deflections increase with 

decreasing the plate thickness, showing a significant effect of the thickness-to-length ratio on the 

dimensionless deflections of FG plates. In other words, the thinner plates yield larger deflections 

than the thicker ones as usual. Additionally, the SUS304 metal plate also yields larger deflections 

compared to the Al2O3 and other FG plates whose properties are more and more ceramic.  

Moreover, the non-dimensional deflection as a function of temperature of three 

Al 2O3/SUS304; Si3N4/SUS304 and ZrO2/SUS304 plates is also plotted in Fig. 16 for a volume 

fraction exponent of n = 0.5. These results aim to further interpret the variation of the mechanical 

behaviors of FG plates in high temperature environment affected by the thickness-to-length 

aspect ratio (R/h), and to confirm the physical phenomenon addressed in the previous square FG 

plates. It is again found that the thinner plates always yield larger values of the deflections, 

precisely showing a great influence of the thickness-to-length ratio on the mechanical behaviors 

of FG plates. Under higher temperature, the FG plates deform largely. It hence indicates a 

consistence of these numerical results obtained for circle FG plates with those of the previous 

example of square FG plates. Additionally, the deformation of a circle FG plate is also visualized 

in Fig. 17. 
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Fig. 15 Effect of the thickness-to-length aspect ratio (R/h) on the mechanical deflections of a fully 

clamped Al2O3/SUS304 plate for 300T K=  and 1100K , respectively. 
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Fig. 16 Variation of the thickness-to-length aspect ratio (R/h) and its effect on dimensionless deflections 

of fully clamped circle FG plates as a function of temperature.   
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Fig. 17 Visualization of the mechanical deformation of a fully clamped circle heated FG plate under high 

temperature obtained by the proposed FE model, a front view (left) and a top view (right). A 

magnification factor of 100 is used to scale the picture. 

 

 

4.1.3 A L-shape FG plate 

 The last example for static bending analysis devotes to a more complicated shape, an FG 

L-shape as its geometrical information is schematically sketched in Fig. 18. The plate is 

subjected to a uniform load P . Similarly, the deflections of the L-shape FG plate computed by 

the present finite element model are normalized by  

( )
3

min
2 4

100

12 1
m

m

w E h
w

v PL
=

−  (33) 

where L and b denote the sides of plate and h is also the plate thickness. The geometrical 

parameters of plate used for the analysis are set to be L = b = 1m, L' = L/2, b' = b/2, and h = 

0.025m. Fig. 19 depicts the numerical results of the non-dimensional deflections as a function of 

the volume fraction exponent altered by the temperature varying from 300T K=  to 1400K  

for two fully clamped L-shape FG plates, e.g., Al2O3/SUS304 and ZrO2/SUS304, respectively. 

As expected, the present numerical results reveal a significant influence of the volume fraction 

coefficient on the mechanical response. The difference on the mechanical behaviors between the 

Al 2O3/SUS304 plate and the ZrO2/SUS304 plate is obvious. The dimensionless deflections of the 
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Al 2O3/SUS304 plate increase with increasing the volume fraction exponent, whereas those of the 

ZrO2/SUS304 plate are found to be a little more complicated. It is, the transition point for the 

ZrO2/SUS304 plate is again found at 1080T K=  approximately, quite similar to the previous 

examples. Under high temperature conditions, for instance, less than 1080T K= , the 

dimensionless deflections of the ZrO2/SUS304 plate decrease with an increase of the volume 

fraction index, but beyond that range of temperature, i.e., 1080T K≥ , the larger the volume 

fraction exponent is taken the higher the deflections is obtained.   

 

Fig. 18 Geometrical notation of a L-shape FG plate. 
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Fig. 19 Dimensionless deflections of two fully clamped L-shape FG plates made of Al2O3/SUS304 and 

ZrO2/SUS304 as a function of volume faction exponent altered by temperature. 

 

The boundary conditions affected the mechanical behaviors of FG plates in high temperature 

environments are now investigated numerically. We restrict our study by considering only the 

fully clamped (CCCC) and simply supported (SSSS) boundary conditions to an FG L-shape plate. 

A L-shape plate (b = 1m, L/b = 2) made of ZrO2/SUS304 is considered are, three typical values 

of volume fraction exponent n = 0.1, 1 and 5 are considered, and the dimensionless deflections as 

a function of temperature for each value of volume fraction index are hence depicted in Fig. 20, 

highlighting the difference on the mechanical response caused by the boundary conditions. Very 

interesting results are gained as they show a great impact of the boundary conditions on the 

mechanical deflections of L-shape FG plates. The plate constrained by SSSS boundary condition 

yields larger deformations than that of CCCC. The results are quite reasonable because the SSSS 

inherently offers a more flexible boundary conditions than the CCCC.   
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Fig. 20 Effect of boundary conditions on dimensionless deflections of L-shape FG plates (b = 1m, L/b = 

2, h = 0.025m) made of ZrO2/SUS304 as a function of temperature altered by volume faction exponent. 

 

4.2 Numerical results for eigenvalue analysis 

 In this section, we numerically study the natural frequency of FG plates in high temperature 

environment utilizing the proposed finite element formulation. Similar to the static bending 

analysis, the rectangular, circle and L-shape plates are again used for the eigenvalue analysis.  

 

4.2.1 A rectangular FG plate 

We now investigate the free vibration of FG plates made of Al2O3/SUS304, Si3N4/SUS304 

and ZrO2/SUS304 under fully simply supported boundary conditions with different values of 

volume fraction index using the present formulation. We first verify the accuracy of the proposed 

finite model, the geometrical parameters of plate are set to be, such as length a = b = 0.2m, 

thickness h = 0.025m [3, 4], a square plate. The analytical solutions of natural frequency of this 

example available in [3, 4] are thus used for comparison purpose. The natural frequency results 

presented in the dimensionless frequencies are normalized by ( ) 1/ 22 2
0 0/ (1 ) /a h Eω ρ ν Ω = −  , 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 46

where 0E  and 0ρ  are the reference values of mE  and mρ  at T0 = 300K as given in Table 1. 

Table 7 presents a comparison of the first three modes of dimensionless natural frequencies of 

Al 2O3/SUS304, Si3N4/SUS304 and ZrO2/SUS304 square plates for different values of volume 

fraction exponent n = 0, 0.5, 1 and 2 among the present formulation and other two analytical 

solutions [3, 4]. As expected, the present numerical results reveal good agreements with 

reference exact solutions [3, 4], precisely confirming the accuracy of the present formulation in 

solving eigenvalue problems of FG plates.  

In order to further validate the accuracy of the proposed method in high temperature, Table 8 

thus presents a comparison of the fundamental frequency at high temperature (e.g., T= 400K, 

500K and 600K) of two fully clamped Al2O3/SUS304 and Si3N4/SUS304 plates for different 

volume fraction exponents (e.g., n = 0.5, 1 and 5) between the proposed method and analytical 

method [3]. It is found that the frequencies at high temperature obtained by the present method 

are in good agreement with the analytical solutions [3]. The obtained numerical results are 

interesting as it indicates that the frequencies decrease with increasing the temperature. The 

frequencies also decrease when the material behavior of plates is more and more metallic. The 

Si3N4/SUS304 plates provide lower frequency results than those of the Al2O3/SUS304 ones. 
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Table 7  

Comparison of the first three modes of dimensionless natural frequencies 

( )( )1/22 2
0 0/ (1 ) /a h Eω ρ ν Ω = −   of simply supported FG square plates under ambient temperature 

(T=300K) (a = b = 0.2m, h = 0.025m) among the present formulation and other two exact solutions [3, 4] 

mode 

n = 0   0.5   1   2   

Si3N4/SUS304 

* [3] [4] * [3] [4] * [3] [4] * [3] [4] 

1 12.498 12.507 12.495 8.554 8.646 8.675 7.487 7.599 7.555 6.7052 6.825 6.777 

2 29.301 29.256 29.131 20.559 20.080 20.262 17.987 17.705 17.649 16.083 15.947 15.809 

3 45.061 44.323 43.845 31.088 29.908 30.359 27.209 26.727 26.606 24.326 24.147 23.806 

 Al 2O3/SUS304 

1 9.713 9.841 - 7.805 7.803 - 6.9974 7.114 - 6.5193 6.563 - 

2 23.009 23.008 - 19.003 18.253 - 16.518 16.633 - 15.833 15.323 - 

3 35.367 34.794 - 28.018 27.569 - 25.433 24.700 - 23.346 23.048 - 

 ZrO2/SUS304 

1 7.314 7.260 - 6.406 6.368 - 6.0747 6.037 - 5.796 5.753 - 

2 17.101 16.953 - 15.119 14.824 - 14.544 14.014 - 13.898 13.294 - 

3 25.959 25.671 - 24.719 24.570 - 21.582 21.456 - 20.636 20.247 - 

* This work 

 

Table 8  

Dimentionless frequencies ( )( )1/22 2
0 0/ (1 ) /a h Eω ρ ν Ω = −   of fully clamped FG plates in high 

temperature (a/b = 1, a/h = 10) ( 0E  and 0ρ  are the reference values of mE  and mρ  at T0 = 300K) 

n Method 
Si3N4/SUS304 Al2O3/SUS304 

T=400K 500K 600K T=400K 500K 600K 

0.5 [3] 15.938 15.468 14.939 14.384 14.003 13.592 

 Present 15.355 15.192 15.008 13.484 13.724 13.589 

1 [3] 13.915 13.462 12.941 13.025 12.631 12.188 

 Present 13.433 13.280 13.093 12.566 12.440 12.287 

5 [3] 11.175 10.749 10.242 10.965 10.556 10.073 

 Present 10.852 10.716 10.528 10.645 10.520 10.343 
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Fig. 21 shows the dimensionless frequencies of the first mode as a function of temperature of 

fully clamped FG square plates made of Al2O3/SUS304, Si3N4/SUS304 and ZrO2/SUS304 altered 

by the volume fraction exponent. It is evident that largest natural frequency is found for the pure 

ceramic plates. The natural frequencies decrease as the plates become more and more metallic. 

Interestingly, unlike the static bending results, the free vibration analysis of FG plates in high 

temperature environment delivers us a similar behavior on the natural frequencies regardless of 

any combinations of FGMs, i.e., all three considered FG plates made of Al2O3/SUS304, 

Si3N4/SUS304 and ZrO2/SUS304 show similar behaviors on the natural frequencies. Globally, 

the overall behaviors of natural frequencies can be said similarly for all three FG plates as the 

normalized natural frequencies decrease with the temperature. However, by more carefully 

looking at the natural frequencies, one may find out that the ZrO2/SUS304 plate causes 

differently in its natural frequency compared to that of two other FGMs, the Al2O3/SUS304 and 

Si3N4/SUS304. In any cases, the effect of the volume fraction exponent on the dimensionless 

frequencies of FG plates in high temperature conditions is significant.  
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Fig. 21 Dimensionless frequencies as a function of temperature of fully clamped FGM plates (a/b = 1, h = 

a/10) made of Al2O3/SUS304, Si3N4/SUS304 and ZrO2/SUS304  

 

The thickness-to-length aspect ratio may have some effects on natural frequency of FG plates 

in high temperature. Three fully clamped FG square plates (a/b = 1) made of Al2O3/SUS304, 

Si3N4/SUS304 and ZrO2/SUS304 are used for this analysis, and they are considered under a high 

temperature environment with 800T K=  for instance. Different thickness-to-length ratios such 

as a/h = 5, 10, 15, and 20 are examined. The dimensionless natural frequencies as a function of 

volume fraction exponent computed by utilizing the developed finite element are then shown in 

Fig. 22, and tabulated in Table 9. Very interesting results can be observed from the figures as all 

the FG plates deliver the same behavior, the dimensionless frequencies gradually decrease with 
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increasing the volume fraction exponent. The thicker plates induce lower natural frequencies 

compared to the thinner ones. The present numerical results clearly show a great variation of the 

natural frequencies caused by the thickness-to-length aspect ratio. In a similar circumstance, 

yielding higher natural frequencies is obtained for the Al2O3/SUS304 and Si3N4/SUS304 plates 

as compared to that of the ZrO2/SUS304 plate. 
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Fig. 22 Effect of thickness-to-length aspect ratio on dimensionless frequencies of fully clamped FGM 

plates (a/b = 1) made of Al2O3/SUS304, Si3N4/SUS304 and ZrO2/SUS304. 
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Table 9  

Numerical results of the effect of thickness-to-length aspect ratio on dimensionless frequencies of fully 

clamped FG plates (a/b = 1) made of Si3N4/SUS304 and ZrO2/SUS304 obtained by the present method. 

a/h n =0 0.2 0.5 1 5 10 

ZrO2,800 

5 8.7567 8.2331 7.8357 7.5197 7.0514 6.9748 

10 10.8115 10.1857 9.6822 9.2613 8.6400 8.5622 

15 11.4209 10.7675 10.2308 9.7750 9.1032 9.0268 

20 11.6679 11.0038 10.4533 9.9828 9.2897 9.2143 

Si3N4,800 

5 17.4159 14.0803 11.8767 10.2749 8.0247 7.5902 

10 21.2296 17.1119 14.4005 12.4589 9.8772 9.3525 

15 22.3327 17.9852 15.1249 13.0860 10.4231 9.8725 

20 22.7758 18.3354 15.4151 13.3373 10.6443 10.0835 

. 

Next, we explore the influence of the boundary conditions on the dimensionless frequencies 

of FG plates in high temperature environment using the developed finite element model. We 

adopt the ZrO2/SUS304 plate, which suffers 800T K= , and the numerical results of the 

dimensionless frequencies as a function of volume fraction exponent for different values of 

thickness-to-length aspect ratio are then plotted in Fig. 23. Different from the static bending 

results, the boundary conditions affect the natural frequencies oppositely, meaning that the FG 

plates constrained by CCCC boundary condition induce higher natural frequencies compared to 

that of SSSS. Once again, it is found that the thickness-to-length ratio greatly alters the 

frequencies. In addition, the dimensionless frequencies decrease as the plates become more and 

more metallic.   
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Fig. 23 Effect of boundary conditions on the dimensionless natural frequencies of an FG plate (a/b = 1) 

made of ZrO2/SUS304 altered by the thickness-to-length aspect ratio (a/h). 

 

Similarly, Table 10 reports the first five modes of dimensionless frequencies of simply 

supported FG rectangular plates made of ZrO2/SUS304 in high temperature condition, e.g., 

800T K= , devoted to the analysis of the aspect ratio (a/b) on the natural frequencies. Numerical 

results are obtained in which different values of the aspect ratio a/b = 0.5; 1; 2; 4 and 7; a 

thickness-to-length ratio a/h = 10 and a volume fraction exponent n = 0.5 are taken. Apparently, 

varying the aspect ratio a/b leads to a strong increase in the dimensionless frequencies of FG 

plates. Furthermore, the first five modes of FG plates for a/b = 1 (square plate) and 4 

(rectangular plate) are also depicted in Fig. 24, which shows a clear finite size effect on the 

mode-shapes of FG plate vibration.    
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Table 10  

Effect of aspect ratio a/b on dimensionless frequencies of simply supported FG plates (a/h = 10, n = 

0.5) made of ZrO2/SUS304 obtained by the present method. 

a/b Mode 1 2 3 4 5 

0.5 3.4967 5.5523 11.5024 13.3551 16.4725 

1 5.5185 13.3327 20.4604 25.4576 31.6871 

2 13.2002 20.3552 39.3487 44.8255 48.1604 

4 38.9445 44.4674 65.4237 80.2463 96.3754 

7 89.4794 93.0620 107.2442 117.7849 133.7789 

 

Mode #1 
 

 

 

 

#2 

 
 

#3 

  

#4 

  

#5 

 
 

 a/b = 1 a/b = 4 

Fig. 24 Visualization of the first five mode-shapes of square (a/b = 1) and rectangular (a/b = 4) FG 

plates made of ZrO2/SUS304 (a/h = 10, n = 0.5) obtained by the developed EF model. . 
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4.2.2 A circle FG plate 

Numerical results of the dimensionless natural frequencies for a simply supported circle FG 

plate (R/h = 10) made of Al2O3/SUS304 utilizing the present formulation are shown in Fig. 25. 

The normalized results of natural frequencies, ( ) 1/ 22 2
0 0/ (1 ) /R h Eωπ ρ ν Ω = −  , depicted in the 

figure are derived from two specified values of temperature, e.g., 300T K=  and 1400T K= . 

It is apparent that different environments of temperature lead to a significant variation of the 

natural frequencies of FG plates. The higher temperature the environments in which the plates 

locate the larger the natural frequencies are gained. In addition, the volume fraction exponent 

greatly alters the dimensionless frequencies as usual. Regardless of high temperature conditions, 

it is evident that the ceramic-rich plate always yield larger natural frequencies compared to plates 

whose properties are more and more metallic. Additionally, the first six modes of a simply 

supported circle FG plate with n = 0.5 under 1400T K=  are shown in Fig. 26. 
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Fig. 25 Effect of volume fraction exponent on dimensionless frequencies of simply supported circled FG 

plates made of Al2O3/SUS304 for 300T K=  and 1400T K=  obtained by the developed model. 
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Mode #1 #2 #3 

 
 

 

#4 #5 #6 

Fig. 26 Visualization of the first six modes of a simply supported circle FG plate (R/h = 10) made of 

Al 2O3/SUS304 (n = 0.5) under 1400T K=  obtained by the developed model. 

 

4.2.3 A L-shape FG plate 

 The last example for free vibration analysis is a simply supported L-shape FG plate 

(thickness h = 0.025m) made of ZrO2/SUS304 under 800T K= . The first five modes of the 

natural frequencies of L-shape plate derived from the developed finite element model normalized 

by ( ) 1/ 22 2
0 03 / 4 (1 ) /L h Eω ρ ν Ω = −   are then presented in Table 11, for different values of 

aspect ratio L/b and volume fraction coefficient n. In this example, we focus our interest only on 

the variation of the dimensionless frequencies affected by the aspect ratio L/b and the gradient 

index of FGMs. As a result, it is obvious that increasing the values of L/b leads to an increase of 

the frequencies. Once again, it can be observed in the table that the volume fraction exponent 

alters the dimensionless frequencies significantly as the ceramic-rich plates yield higher natural 

frequencies compared to pure metal plates and any other FG plates whose properties are more 

and more metallic. In other words, increasing the gradient index of FGMs leads to a decrease of 

the dimensionless frequencies of FG plates. The first five modes of simply supported L-shape 
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FG plates for different aspect ratios L/b =1; 2 and 3 are additionally depicted in Fig. 27. We 

again find out a significant effect of the aspect ratio L/b on the mode-shapes of FG plates. 

 

 

Table 11  

Dimensionless frequencies of simply supported L-shape FG plates (h = 0.025m) made of 

ZrO2/SUS304 under 800T K=  obtained by the present method. 

L/b Mode Ceramic n = 0.5 n = 1 n = 5 Metal 

1 1 14.5722 13.0582 12.4611 11.5820 11.4813 

 2 17.1024 15.3270 14.6252 13.5898 13.4748 

 3 21.7339 19.4819 18.5864 17.2604 17.1239 

 4 33.0021 29.5771 28.2215 26.2208 26.0021 

 5 39.0878 35.0337 33.4264 31.0513 30.7970 

2 1 23.9924 21.5044 20.5179 19.0594 18.9035 

 2 51.1614 45.8412 43.7486 40.6734 40.3099 

 3 54.4484 48.7954 46.5605 43.2651 42.8996 

 4 59.5040 53.3242 50.8846 47.2893 46.8829 

 5 74.4241 66.7040 63.6453 59.1265 58.6383 

3 1 37.1634 33.3084 31.7809 29.5243 29.2808 

 2 74.4593 66.7354 63.6759 59.1560 58.6661 

 3 107.0507 95.9121 91.5380 85.1182 84.3448 

 4 109.0287 97.6921 93.2301 86.6722 85.9032 

 5 131.7650 118.0798 112.6786 104.7195 103.8170 
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 L/b = 1 L/b = 2 L/b = 3 

Fig. 27 Visualization of the first five modes of simply supported L-shape FG plate (h = 0.025m) 

made of ZrO2/SUS304 (n = 0.5) under 800T K=  obtained by the developed model. 

 

 

 

5. Conclusions and future works 

 In this paper, we present new numerical results for static bending and natural frequencies of 

FG plates with different configurations using a finite element formulation, taking the advantages 

of a new simple third order shear deformation plate theory (TSDT). The finite element 

formulation can be applied to deal with both thin and moderate thick FG plates without the need 

for special treatments of shear-locking effect and shear correction factors. The new TSDT that 

dominates over other existing theories is due to the fact that the theory is based on rigorous 

kinematic of displacements, deriving from an elasticity formulation rather than the hypothesis of 

displacements. The numerical results of static bending and natural frequencies obtained by this 

new TSDT theory are also compared to the solutions from other high order plate theories, 
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showing a good agreement among approaches. Some major conclusions drawn from the study 

can be summarized as follows: 

• The subject under consideration on characterizing the high temperature mechanical 

behaviors of heated FG plates is important. The FGMs with excellent characteristics of 

ceramic in heat and corrosive resistances combined with the great toughness of metals in 

absorb energy and plastically deform, leading to outstanding advanced materials that can 

withstand large mechanical loads under high temperature environment. On the other hand, 

the plate structures in particular are one of major parts in many engineering applications. 

The use of plates or plate-like structures suffering high temperature conditions in nuclear 

power plant, aeronautical, civil, infrastructure, mechanical marine, and so on is very 

common in our modern life.  

• Unlike the significant limitation of analytical approaches, the developed finite element 

model associated with a new simple TSDT makes it greatly effective in solving practical 

problems where complicated configurations are often encountered. The numerical results 

presented above have shown a high accuracy of the proposed numerical model, which can 

be considered as an effective numerical tool for extracting mechanical response of FG plates 

in high temperature environment. 

• The mechanical behaviors of FG plates under consideration are complicated as they depend 

not only on the nonlinear thermal properties and behaviors of constituent materials but also 

on the volume fraction and material combinations. Static bending analysis has shown that 

the overall mechanical bending behaviors of FG plates are material-dependent, and more 

importantly, as it has been found that not all FG plates in high temperature environment 
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possess the same situation, they behave differently from each other, dependent on the 

constituent materials that form the FG plates. Obviously, the material combination is a 

crucial factor altering the overall mechanical behaviors of heated FG plates in high 

temperature. Particularly, numerical results accounted for FG plates made of Al2O3/SUS304, 

Si3N4/SUS304 and ZrO2/SUS304 suffering high temperature condition indicate that, for 

instance, increasing the volume fraction exponent leads to an increase in mechanical 

deflections of the Al2O3/SUS304 and Si3N4/SUS304 plates, however it does not take place 

for the ZrO2/SUS304 one. The ZrO2/SUS304 plate inherently owns a more complicated 

mechanical behavior as it naturally generates a transition point in the response. This 

phenomenon may be useful to the designers and developers in a way of selection of 

appropriate constituent materials to form the FGMs, especially to which under tough 

conditions of high temperature. On the other hand, numerical results for eigenvalue analysis 

have shown that all FG plates yield a similar behavior. Generally, there are no significant 

differences on the natural frequencies for Al2O3/SUS304, Si3N4/SUS304 and ZrO2/SUS304 

plates. Loosely speaking, the natural frequencies of FG plates possess similar behaviors, 

regardless of the constituent materials being used to form the FG plates. 

• Several aspect ratios including volume fraction coefficient, thickness-to-length, size effect, 

temperature, boundary conditions, material combinations, etc., which have significant 

impacts on the mechanical behaviors of deflections and natural frequencies of FG plates.  

• The present formulation is general and has no limitations to extend it to other problems 

related to plates or plate-like structures especially those in high temperature environment. 

Among others the nonlinear vibration of FG plates and shells, sandwich FG plates, buckling 
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of imperfect FG plates, etc. in high temperature would be very interesting. For instance, we 

may apply the proposed method to model thermal buckling of annular 

microstructure-dependent FGM plates resting on an elastic medium [30]; functionally 

graded carbon nanotube-reinforced cylindrical panel subjected to thermo-mechanical load 

[31]; and thermal buckling of grid-stiffened FGM cylindrical shells [32]. Other numerical 

approaches for modeling cracked FG plates in high temperature, for instance, the meshfree 

methods [33-35], the extended plate finite element [2, 36], or the extended isogeometric 

analysis [37-38] would be potential. 
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