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Abstract. Geometric parameters that define the geometry of imaging systems are crucial for image
reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric
parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large
field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is
considered. To accurately and rapidly find the geometric parameters for each projection view, we use the
projection matrix method and design a dedicated phantom that is partially visible in all projection views. The
phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in
all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated
geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing
the projection matrix into actual geometric parameters that are manually corrected before being used in
reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in pro-
jection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of
the proposed method with a real offset flat-panel CBCT system in dental imaging. © 2016 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.55.4.043102]
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1 Introduction
X-ray computed tomography (CT) is an imaging technique
that provides anatomical information about the object and is
now a major imaging modality in medicine. In CT imaging,
the images shown to the doctor are not directly acquired from
the scanner but reconstructed from projection data (which
were generated by the detector of the scanner).1 Many algo-
rithms have been proposed to reconstruct CT images (a.k.a.
cross-sectional slices) from projection data, where some
have the potential to significantly reduce the radiation dose,
while the others can rapidly provide the result.

One major requirement in all reconstruction algorithms in
CT imaging is knowledge about the geometry of the imaging
system. Minor errors in geometric parameters result in major
artifacts in reconstruction.2 In ideal conditions, one can
assume that the imaging system is perfectly manufactured
and the geometric parameters are highly accurate before
shifting to practical usage. However, due to unwanted factors
when shifting the scanner and the degradation of the system
from time and human factors, the precalculated geometric
parameters are less reliable. Those facts lead to the require-
ment of a method to automatically measure geometric
parameters of the CT scanner.

Existing geometric calibration methods can be classified
into two categories: phantom-based (offline) methods3–5

and phantom-less (online) methods.6–9 In phantom-based
methods, the projection of a calibration phantom, which
consists of several steel balls, is first carried and followed
by computation to estimate geometric parameters. The

phantom-based calibration method has the following steps:
(i) measure the projected location of balls (and their center
points) in the projection image; (ii) set up equations that
relate the found locations in step (i) and the predefined posi-
tion of the centers of balls in the phantom; and (iii) solve the
equations to find geometric parameters. If a highly accurate
calibration phantom is available, phantom-based methods
achieve the most accurate geometrical parameters.5

In phantom-less methods, the geometric parameters are
calculated directly from the projection images without the use
of a calibration phantom. The calibration process is mostly
performed concurrently with reconstruction. The computation
relies on a complex optimization whose objective function
is in the projection domain6 or in the reconstructed volume
domain.9–12 (see Ref. 8 for more information). However,
these methods suffer from expensive computation loads as
well as less accurate results in comparison with phantom-
based methods, though they have the advantage of not
using calibration phantoms.

Regarding their abilities, geometric calibration methods
can be classified into view-independent and view-dependent
methods. The first ones assume that the system is mechan-
ically stable and a large set of geometric parameters are fixed
in all views. Meanwhile, the latter ones are met in practice
where the geometric parameters vary in each view. This is
due to the imperfect design and unstable mechanism of the
scanner and the imbalance of the suspension arm holding the
x-ray source and detector, as well as the nonsymmetry of
the scanner, especially in mid- and low-end ones with flat-
panel detectors.
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Among methods to estimate geometric parameters for
each view, the projection matrix-based method is the most
widely used due to its fast computation and reliable results.
With accurate calibration phantom, the projection matrix
method can provide subdetector unit and subdegree angular
accuracy. It has been shown to provide state-of-the-art results
(in comparison with other existing methods) in C-arm CT,
micro-CT, and digital tomosynthesis systems.

Offset flat-panel CBCT systems are recently introduced
CBCT systems with applications in multimodality systems
(such as PET/CT and SPECT/CT) and dental imaging.
However, due to their imbalanced mechanism, geometric cal-
ibration for them is difficult and yet to be thoroughly con-
sidered. In this work, we develop a projection matrix-based
method for calibrating offset flat-panel CBCT systems. The
new method comes with a dedicated phantom for offset
flat-panel CBCT systems as well as a new technique to pre-
vent numerical errors due to approximations, which are
usually involved in conventional projection matrix methods.
In particular, instead of decomposing the projection matrix
into subsequent geometric elements, which are manually
corrected before using in reconstruction, we directly use
the projection matrix and its pseudo-inverse matrix in the
reconstruction process.

The remainder of this paper is organized as follows.
Section 2 presents a projection matrix-based calibration
method, imaging geometry, and calibration phantom for
offset flat-panel CBCT systems. This section also presents
a method to improve the accuracy of calibration via the use
of the projection matrix and its inverse (rather than actual
geometric parameters) in reconstruction. Section 3 presents
our experimental studies. Section 4 presents discussion and
the conclusion of this article.

2 Methods

2.1 View-Dependent Projection Matrix-Based
Calibration Method

In x-ray imaging systems, given a point source (x-ray source)
and a two-dimensional (2-D) detector, a point ðx; y; zÞ in
object coordinates will be projected onto the detector at
a point coordinated at ðu; vÞ in detector coordinates (see
Fig. 1).

The mathematical relationship between two points is
represented via the following equation, which is a mapping
between two coordinates [a three-dimensional (3-D) point in
object coordinates and a 2-D point in detector coordinates]:

EQ-TARGET;temp:intralink-;e001;63;236½uw; vw; w�T ¼ P½x; y; z; 1�T; (1)

where P is a 3 × 4 projection matrix and w is a weighting
factor.

The projection matrix P can be factorized as

EQ-TARGET;temp:intralink-;e002;326;719P ¼ K½Rjt�; (2)

where K is a 3 × 3 intrinsic matrix, R is a 3 × 3 rotation
matrix, and t is a 3 × 1 translation vector.

K contains intrinsic geometric information about the
imaging system and has the following form:
EQ-TARGET;temp:intralink-;e003;326;644

K ¼

2
664

f
pu

f
pu tan α u0

0 f
pv sin α v0

0 0 1

3
775; (3)

where f is the distance from the source to the detector; pu, pv
represents the width and height of the detector element
(detector bin), respectively; α is the angle formed by two
axes of the detector bin (which is usually assumed to be
exactly 90 deg in other works, but this is not the case in prac-
tice); and ðu0; v0Þ is the coordinate of the central ray (the ray
starting from source and is perpendicular to the detector) and
the detector.

R is (an orthogonal) rotation matrix R ¼ RzRyRx, where
Rx, Ry, Rz is the rotation matrix around the x, y, and z axes,
respectively.

In current practice, once the projection matrix P is calcu-
lated, it will be decomposed into subsequent matrices K, R,
and t, from which the actual geometric parameters are
extracted. The extraction process involves the use of RQ
decomposition and normalizations (see Ref. 4 for details).
The calculated values will be compared with the measured
values given by measurement techniques (or provided by the
manufacturer), and adjustments will be made to each param-
eter. The adjusted values will later be used in reconstruction.
However, the numerical result might not match with prede-
fined assumptions about the system. For example, the K
matrix does not satisfy the preset values of pu, pv, and α.
The projection matrix P constructed from the adjusted geo-
metric parameters does not match the one calculated from the
calibration process (Sec. 2.3 will discuss this issue in detail).

In order to measure P in Eq. (1) for each view, we need
several pairs of ðui; viÞ and ðxi; yi; ziÞ with i ¼ 1; : : : ; N. To
obtain these, a calibration phantom is used. The phantom
consists of several steel balls whose centers correspond to
ðxi; yi; ziÞ in Eq. (1). The balls are positioned in a cylindrical
plastic (or glass) holder. The phantom is designed and manu-
factured with high accuracy. To find ðui; viÞ, we project
the balls onto the detector by illuminating the phantom in
the scanner and find the centroids of the ellipses that were
projections of balls in the projection data.4,12 To accurately
find the centroids of ellipses, the following steps are used:
(i) remove the noise in the projection images using a
noise filter; (ii) detect edges using the Canny edge detector;
(iii) locate the ellipse centers using a curve-fitting algorithm,
which processes the detected edge pixels of the balls to result
in centroids.

Given the calibration dataset, which in this case is a group
of 3-D points ðxi; yi; ziÞ, where i ¼ 1; : : : ; N (where N is
the number of balls in the projection view) and their 2-D
projected points ðui; viÞ, we can determine the geometricFig. 1 Cone-beam CT geometry and its 3-D to 2-D projection.
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parameters by solving the linear systems of equations (1)
via the singular value decomposition technique or a least
square optimization technique such as Levenberg–Marquardt
algorithm.13

The projection matrix–based calibration method described
above is designed to find geometric parameters for each view
of a standard CBCT system, where all information about the
phantom is captured in a single view. However, to apply it to
offset flat-panel CBCT, some issues need to be resolved.

2.2 Geometric Calibration for Offset Flat-Panel Cone
Beam Computed Tomography

In an offset flat-panel CBCT system, the source–detector
axis is positioned offset to the center of rotation so that
the field-of-view of a scanner can be enlarged. This exten-
sion poses difficulties to reconstruction14,15 and geometric

calibration. In particular, for a given calibration phantom,
in each view, the projection image contains projection infor-
mation about only a portion of the object, as illustrated in
Fig. 2.

To calibrate the offset CBCT, in this work, we designed a
phantom, which has a structure as illustrated in Fig. 3. The
phantom was made with 24 metal balls; each is a sphere with
diameter 2 mm. These 24 balls are distributed into two
circular shapes with diameters of 110 mm. The distance
between two virtual circles is 25 mm. The phantom is
designed for an offset CBCT system in dental imaging
(Papaya 3D™ scanner from Genoray Co., Ltd., South
Korea). The calibration phantom was manufactured with
the ball centers positioned at ðxi; yi; ziÞ with i ¼ 1; : : : ; N.
The phantom was then illuminated using an independent
CT system to determine its 3-D CT image. The actual posi-
tions of ball centers ðxi; yi; ziÞ were refined according to
the results in the 3-D CT image.

To appropriately align the calibration phantom with the
rotation center of the scanner so that all projection views con-
tain almost the same structural information about the phan-
tom, we use an additional positioning laser light equipped in
the scanner to pinpoint the position to place the calibration
phantom. There is no specific requirement for the accuracy
of alignment since it has no role in determining the projec-
tion matrix or geometric parameters.

Theoretically, to accurately estimate the projection matrix
P, the number of visible balls in the projection image should
not be smaller than 6 (since the projection matrix P has 12
elements to be estimated, while each ball yields two equa-
tions relating P and the ball center). Here, we use 24 balls
to stabilize the solution and improve the accuracy in the
geometric calibration. The number of balls is chosen and
symmetrically distributed so that the overlapping of balls
does not show up in the projection image.

To estimate the projection matrix for a projection view,
we need two lists sorted in the same order: coordinates of
centers of steel balls in the object coordinate ðxi; yi; ziÞ
and coordinates of their projection in the projection (detec-
tor) coordinate ðui; viÞ with i ¼ 1; : : : ; N. (For the offset
flat-panel CBCT system, the number of visible balls in
the projection image is less than N, and in our configuration,

Fig. 2 Illustration of an offset flat-panel CBCT system: (a) sagittal
view and (b) axial view.

Fig. 3 Structure of the proposed calibration phantom for offset flat-panel CBCT. (a) Axial view; (b) sagittal
view.
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it varies between 14 and 16.) While we have the first full list
of object coordinates (which is known from the design proc-
ess), the associated one in projection coordinates is difficult
to construct since only a few balls are visible in each projec-
tion view. In particular, it is difficult to label or match the
center of each ball in object coordinates with its correspond-
ing projected center in the projection image (see Fig. 4 for
illustration).

To label balls in the projection image, we first separate the
projection balls into two groups, upper and lower. Then, we
find the centers of all ellipses using the ellipse fitting tech-
nique. From the calculated centers of ellipses (a.k.a. the ball
centers), we calculate the virtual center of the ball centers by
simple averaging. The angles between the line connecting

each ball center and the virtual center and the horizontal axis
crossing the virtual center will be measured. The balls are
then ordered and labeled according to the measured angles.
The resulting list is now matched with the one in object coor-
dinates. Figure 5 illustrates our method to label balls in the
projection image.

2.3 Errors due to the Extraction of Geometric
Parameters from Projection matrix

In both conventional full-beam CBCT and offset flat-panel
CBCT, the intermediate output of the geometrical calibration
process is the projection matrix P. This matrix is then decom-
posed into subsequent elements. In particular, once the pro-
jection matrix P is computed, we will get the intrinsic matrix
K, rotation matrix R, and translation vector t.

In the conventional methods (which are widely used in
practice), after estimating P, and then R, K, and t, the actual
geometric parameters embedded inR,K, and t are calculated
via decomposition techniques and might be followed by
manual corrections. The decompositions involve preset
constraints (some parameters are known beforehand) and
approximations that might result in numerical errors in the
modeling projection image.

We validated this fact by conducting perturbation analysis
using a software simulation. The modeled system had f ¼
620 mm, distance from source to rotation center ¼ 418 mm,
θx ¼ θy ¼ 0, and rotation angle θz = 22.86°, 45.71°, 67.75°,
89.80° for four different views. The experiment consisted of
the following steps:

a. Generate ground-truth values of geometric parame-
ters, denoted by Gtrue, and the ground-truth values
of ball centers in the phantom ðxi; yi; ziÞtrue with i ¼
1; : : : ; N (its values matched with the phantom, as
described in Sec. 2.2). The two axes of the detector
were perfectly perpendicular to each other.

b. Calculate the ground-truth projection matrix Ptrue

from Gtrue.

c. Calculate the projection of ðxi; yi; ziÞtrue with
i ¼ 1; : : : ; N in the detector using Ptrue and denote
the result as ðui; viÞtrue.

d. Model the imperfect placement of ðxi; yi; ziÞtrue in
the calibration phantom by adding Gaussian noise

Fig. 4 Illustration of calibration phantom and its projection image: (a) a projection image where only part
of phantom is visible and (b) axial view of the calibration phantom. The calibration process requires the
coordinates of ball centers in object coordinates (b) and its projection in (a) sorted in the same order.

Fig. 5 Method to label balls in projection image. For each group, the
virtual center (large cross sign) is first determined, then the angle of
each ball with the horizontal axis crossing the virtual center will be
calculated and used to determine its label. The small cross sign on
each ball indicates the centroid calculated using the ellipse fitting
technique. The final goal is to assign ball centers in the projection
image to the 3-D ones in object coordinates.
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to it and denote the result as ðxi; yi; ziÞnoisy with
i ¼ 1; : : : ; N.

e. Calculate the projection of ðxi; yi; ziÞnoisy in the detec-
tor using Ptrue, followed by adding Gaussian noise to
the resulting projection (to model the error in estimat-
ing ball centers from the projection) and denote the
result as ðui; viÞnoisy with i ¼ 1; : : : ; N.

f. Estimate the projection matrix from ðxi; yi; ziÞnoisy
and ðui; viÞnoisy with i ¼ 1; : : : ; N and denote the
result as Pest.

g. Calculate the reprojection of ðxi; yi; ziÞtrue in the
detector using Pest and denote the result as ðui; viÞA.
Measure the distance dAi from ðui; viÞA to ðui; viÞtrue
with i ¼ 1; : : : ; N.

h. Decompose Pest to get geometric parameters Gest with
the constraint of the detector having perpendicular
axes (this constraint was known beforehand).
Calculate the projection of ðxi; yi; ziÞtrue in the detec-
tor using Gest and denote the result as ðui; viÞB.
Measure the distance dBi from ðui; viÞB to ðui; viÞtrue
with i ¼ 1; : : : ; N.

We repeated steps (d) to (h) for 50 noise trials and mea-
sured the mean and standard deviation of dAi and dBi with
i ¼ 1; : : : ; N. The resulting mean and standard deviation of
dAi and dBi with i ¼ 1; : : : ; N at four different views are sum-
marized in Table 1. Note that Table 1 only shows the result
for balls that are visible in all considered views.

As shown in Table 1, the direct use of P results in less
error than the indirect counterpart (which relies on geometric
parameters decomposed from P).

To further validate this fact, we conducted the following
experiment. We illuminated the calibration phantom in the
real scanner and acquired the projection data. From the pro-
jection data and the given geometry of the phantom, we per-
formed geometric calibration and calculated the projection
matrix P. From P, we decomposed to get R, K, t. The actual
geometric parameters were then calculated from R, K, t.

After getting the geometric parameters from the real pro-
jection data, we performed forward projection in the soft-
ware simulation with the calculated geometric parameters
and compared the simulated projection image with the real
one. In this case, the software calibration phantom was mod-
eled identically to the real calibration phantom (ball sizes,
shapes, and distribution of balls in the plastic holder). In par-
ticular, it was defined on a 3-D volume with a resolution of
1024 × 1024 × 1024 and a voxel with a size of ð0.125 mmÞ3.
Since the projection matrix relates the object coordinate and
detector coordinate via two lists ðxi; yi; ziÞ and ðui; viÞ with
i ¼ 1; : : : ; N, the origin of the object coordinate is set by
ðxi; yi; ziÞ. To match the software phantom with the real
phantom, the list ðxi; yi; ziÞwith i ¼ 1; : : : ; N in the software
phantom needs to match the one in the real phantom. In
our software simulator, we have the means to define the posi-
tion of the phantom and to move the phantom around to
make its ðxi; yi; ziÞ list with i ¼ 1; : : : ; N match with the
real phantom.

We repeated the above experiment with different projec-
tion views, and show representative results in Fig. 6.
According to the results in Fig. 6, there are misalignments
between the real projection images and the software-gener-
ated projection images. The differences become larger for
balls far from the x-ray source.

Figure 7 shows the variation of α (where α is the angle
formed by two axes of the detector bin) and the distance
f between the source and detector in different views. As
shown in Fig. 7, the extracted geometric parameters had
unrealistic values, such as α varying (when it should not
vary) and f changing too much in each view. We can observe
that the degradations due to the approximations in decompo-
sition and extraction (from P to geometric parameters) tech-
niques are inevitable.

One can also consider adjusting the geometric parameters
(for example, forcing α ¼ 90 deg) to make them close to
the actual values provided by the manufacturer when setting
up the system. Unfortunately, the new projection matrix
generated by the corrected geometric parameters is different

Table 1 Mean and standard deviation of error distance calculated from 50 noise trials.

Ball (i)

View 1 View 2 View 3 View 4

dA
i dB

i dA
i dB

i dA
i dB

i dA
i dB

i

1 0.35� 0.17 1.13� 0.79 0.29� 0.14 0.84� 0.54 0.33� 0.17 0.77� 0.59 0.44� 0.23 1.19� 0.88

2 0.34� 0.18 1.18� 0.82 0.33� 0.16 0.93� 0.62 0.37� 0.20 0.89� 0.65 0.42� 0.21 1.18� 0.90

3 0.35� 0.20 1.29� 0.91 0.38� 0.17 0.99� 0.67 0.35� 0.20 0.92� 0.60 0.37� 0.20 1.13� 0.90

4 0.36� 0.18 1.32� 0.94 0.34� 0.19 0.96� 0.67 0.36� 0.17 0.91� 0.56 0.46� 0.19 1.34� 1.11

5 0.49� 0.26 1.33� 0.92 0.32� 0.18 0.85� 0.55 0.34� 0.18 0.70� 0.46 0.39� 0.21 1.04� 0.78

6 0.39� 0.21 1.51� 1.10 0.29� 0.13 1.14� 0.76 0.34� 0.15 1.14� 0.76 0.41� 0.23 1.65� 1.35

7 0.34� 0.17 1.68� 1.27 0.33� 0.16 1.29� 0.90 0.35� 0.18 1.29� 0.85 0.42� 0.21 1.68� 1.39

8 0.35� 0.19 1.89� 1.45 0.38� 0.18 1.38� 1.00 0.33� 0.19 1.30� 0.84 0.39� 0.22 1.59� 1.34

9 0.38� 0.20 1.98� 1.50 0.36� 0.18 1.32� 0.97 0.33� 0.19 1.22� 0.77 0.47� 0.27 1.73� 1.43

10 0.57� 0.28 1.61� 1.14 0.30� 0.14 1.05� 0.68 0.34� 0.17 0.96� 0.64 0.34� 0.17 1.44� 1.19
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from the initially estimated one. Those differences result
in errors in projection and backprojection operations.
Therefore, the adjusted geometric parameters cannot be
used in reconstruction.

To prevent numerical errors due to the abovementioned
issues, we propose to directly use the projection matrix P
and its pseudo-inverse matrix P† in reconstruction without
going into the geometric parameters. The use of the projec-
tion matrix P and its pseudo-inverse P† in reconstruction will
be addressed in the next subsection.

2.4 Projection Matrix in Reconstruction Algorithms

The geometric parameters define the system matrix, which is
used in many iterative reconstruction methods.16–20 In par-
ticular, the geometric parameters are used to construct the
system matrix, which is key in performing projection and
backprojection operations. In this paper, we consider the
relaxed ordered-subset convex (OSC) algorithm,17 which
is a widely used algorithm in the field due to its advantage

in providing high-quality reconstruction. In this section, the
use of the projection matrix and geometric parameters in
constructing a system matrix of the imaging system is
presented.

The update equation of the OSC algorithm can be written
as follows:

EQ-TARGET;temp:intralink-;e004;326;208μðn;mþ1Þ
j ¼ μðn;mÞ

j þ λμðn;mÞ
j

P
i∈SðmÞaijðp̄i − piÞP
i∈SðmÞ

aijp̄igi
; ∀ j; (4)

where gi ¼
P

jaijμ
ðn;mÞ
j , p̄i ¼ bi expð−giÞ; μ is the attenu-

ation coefficient map (the image) to be reconstructed; aij
denotes the element of the system matrix, which weights
the contribution of the voxel indexed by j to the detector
bin indexed by i; p̄i is the expected number of transmission
counts in detector element i; n is the iteration number;
m is the subset number; λ is the relaxation parameter; pi
is the measured number of transmission counts in detector

Fig. 6 Illustration of the errors due to the decomposition of the projection matrix into actual geometric
parameters. (a)–(d) Projection images in different projection views. First row: the real projection image.
Blue rectangles in first row denote the region to be zoomed in, shown in top row. Top row: zoomed-in
region of the real projection image. The superposed dashed yellow circles denote the boundary of the
balls in the projection image generated by the software simulator with geometric parameters estimated
from the first row. (see description in the main text for details).

Fig. 7 Variation of estimated geometric parameters in a complete acquisition with 441 projection views:
(a) the angle formed by two axes of detector elements and (b) distance from source to detector.

Optical Engineering 043102-6 April 2016 • Vol. 55(4)

Nguyen: View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 06/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



element i; bi denotes the blank scan counts in the i’th bin;
and SðmÞ contains the projection in subset m.

Element of system matrix aij is modeled by the inter-
secting chord length of the voxel j with the ray i, which
is defined by the line connecting the x-ray source and the
center of detector bin i.21,22 To measure aij, we need to
know the two end points of the line i. These two end points
are indicated by the geometric parameters measured in
Sec. 2.1. In particular, once the projection matrix P is
computed, the source position c can be calculated by solving
the equations Pc ¼ 0. The resulting c is given by c ¼
ðX1∕T1; Y1∕T1; Z1∕T1Þ:12
EQ-TARGET;temp:intralink-;sec2.4;63;620

X1 ¼ detð½p1; p2; p3�Þ; Y1 ¼ − detð½p0; p2; p3�Þ;
Z1 ¼ detð½p0; p1; p3�Þ; T1 ¼ − detð½p0; p1; p2�Þ;

where p0, p1, p2, p3 are column vectors of P,
P ¼ ½p0 p1 p2 p3�. c is one end point of the ray i. The

other end point of the ray i is at ðx; y; zÞ ¼
ðX2∕T2; Y2∕T2; Z2∕T2Þ, where X2, Y2, Z2, T2 are calculated
as follows:

EQ-TARGET;temp:intralink-;e005;326;719½X2; Y2; Z2; T2�T ¼ P†½u; v; 1�T; (5)

where ðu; vÞ is the coordinate of center of detector bin i in
the detector space and P† is a 4 × 3 pseudo (right) inverse of
P, which is given by

EQ-TARGET;temp:intralink-;e006;326;655P† ¼ PTðPPTÞ−1: (6)

If one uses geometrical parameters (distance from source
to detector f, the width pu and the height pv of detector bins,
the angle α between two axes of the detector, the coordinate
u0, v0 of interesting point of the central ray and the detector,
rotation matrix R, translation vector t), the source position
is given by c ¼ −RTt. The other end point of the ray i is
indicated by determining the object coordinate of the center

Fig. 8 Projection images acquired from scanner (using real calibration phantom) and projection images
generated from software simulator using software calibration phantom with projection matrix and geo-
metric parameters estimated from real data: (a)–(d) projection images in different projection views. First to
third rows: real data, simulated data using method B, simulated data using method A. Blue rectangles in
first row denote the region to be zoomed in, shown in top row. Top row: zoomed-in region of the real
data. The superposed circles in the top row are the edges of software simulated projection data where
solid red and dashed yellow circles denote the boundaries resulting from newmethod A and conventional
method B.
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of detector bin i as follows: ½x; y; z�T ¼ R−1ðd − tÞ, where
d ¼ ½u − u0; v − v0; f�T and ðu; vÞ is the coordinate of the
center of detector bin i in detector space.

In practice, the projection matrix and its pseudo-inverse
are precalculated before going into reconstruction. The
use of the projection matrix and its pseudo-inverse does
not result in more computation time, since: (i) only two
matrix multiplications are required to determine end-points
of the ray i in the projection; (ii) only one matrix multipli-
cation to determine the detector bins contributes to consid-
ering voxel j in the backprojection (if the voxel-driven
backprojection method22 is used). These computations are
on par with those in the conventional method, which directly
uses geometric parameters.

3 Results
To evaluate the performance of the proposed method, we per-
formed the experiment with a real scanner. The offset flat-
panel CBCT system used in this work was a Papaya 3D™
scanner from Genoray Co., Ltd., South Korea. The detector
of the scanner had a size of 128.6 mm × 130.5 mm. The
detector bin size was ð0.1 mm × 0.1 mmÞ, which gives the
detector a resolution of 1286 × 1305. Other parameters were
determined from the calibration process. The calibration
phantom was manually made with the specifications given

in Sec. 2.2. A software version of the calibration phantom
was also generated accordingly.

The calibration phantom was illuminated using the real
CBCT scanner to generate projection data. The new calibra-
tion method was applied to the acquired projection data to
estimate the projection matrix. The estimated projection
matrix and its inverse were then used to perform projections
in the software simulator with the software calibration phan-
tom (using the ray-tracing21 method with the value of a blank
scan set to b ¼ 4095). Finally, the estimated projection
matrix and its inverse were used to reconstruct the image
from a real dataset. This method is denoted as “method A.”

We also performed calibration using the conventional
method (with decomposition of P to K, R, t followed by
extraction) to get the geometric parameters. The estimated
geometric parameters were used to model the system matrix
in the projection and backprojection operations. This method
is denoted as “method B.”

Figure 8 shows the projection images of the calibration
phantom acquired from the scanner and the ones generated
from the software simulator with the projection matrix
(method A) and geometric parameters (method B) estimated
from the acquired projection image. Note that while the
acquired projection image was contaminated by Poisson
noise in the acquisition process, the simulated one was
a noiseless image. As shown in Fig. 8 (especially the top

Fig. 9 OSC reconstructions from real data of arch phantom using: (a) method B and (b) method A. First
row: axial slices. Second row: zoomed-in region of (a). The arrows indicate the area of artifacts due to
incorrect geometric parameters in conventional method.
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row), the projection image generated by the new method A
achieves almost identical results in comparison with the
real projection image (see solid red boundary in top row),
whereas the one generated by method B deviates from the
real one.

Using the projection matrix and geometric parameters
estimated above, we performed the reconstruction with a
real dataset acquired from an arch phantom. The OSC algo-
rithm was used to reconstruct images.

According to the results in Fig. 9, the new method over-
comes the limitations of the conventional method and results
in more accurate results [see Fig. 9(b)] and fewer artifacts
[see arrows in Figs. 9(a) and 9(b)]. Without decomposing
P into geometric parameters, the new method A prevents
the streak artifacts that appear in the conventional method.
Furthermore, it also reduces unwanted artifacts due to
degraded detector cells in the detector. This fact is also
clearly shown in Fig. 10, where the proposed method A
results in fewer artifacts than the conventional geometric
calibration method.

4 Conclusions
We have developed a new calibration method for offset flat-
panel CBCT systems, which can accurately determine the
geometric parameters for each projection view. The new
method comes with a calibration phantom specially designed
for offset flat-panel CBCT scanners. We have generalized the
projection matrix method to offset flat-panel CBCT scanners
without major changes to the calibration process. We have
also introduced the use of the pseudo-inverse of the

projection matrix and projection matrix for projection and
backprojection operations. By using the projection matrix
and its pseudo-inverse (not decomposing the projection
matrix into geometric parameters as in previous works),
we prevent numerical errors due to preset constraints on
the geometric parameters and approximations in decomposi-
tion that might cause degradation in projection and backpro-
jection operations and thereby reconstruction. The proposed
method was validated with software data and real data
experiments, where it provides more accurate results than
the conventional methods.

In conclusion, the proposed method uses an accurate
geometric calibration technique in real-world situations
where the scanner is unstable and geometric parameters
are view dependent. The new method improves the quality
of reconstruction and frees CT makers and practitioners from
time-consuming calibration work for offset flat-panel CBCT
systems.
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