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Abstract The semantic geometric crossover (SGX) proposed by Moraglio

et al. has achieved very promising results and received great attention from

researchers, but has a significant disadvantage in the exponential growth in size of

the solutions. We propose a crossover operator named subtree semantic geometric

crossover (SSGX), with the aim of addressing this issue. It is similar to SGX but

uses subtree semantic similarity to approximate the geometric property. We com-

pare SSGX to standard crossover (SC), to SGX, and to other recent semantic-based

crossover operators, testing on several symbolic regression problems. Overall our

new operator out-performs the other operators on test data performance, and reduces

computational time relative to most of them. Further analysis shows that while SGX

is rather exploitative, and SC rather explorative, SSGX achieves a balance between

the two. A simple method of further enhancing SSGX performance is also

demonstrated.
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1 Introduction

Genetic programming (GP) [18, 37] is an evolutionary paradigm with the objective

of evolving programs that produce desired outputs for predefined inputs. To

improve the performance of GP, a number of researchers have recently attempted to

integrate semantic methods into GP. This integration typically happens by definition

of new operators, which can be divided into two types: indirect and direct [39].

Indirect methods achieve desired semantic criteria by sampling and rejection. They

alter the syntax of the parents [19, 23, 33, 34]. In contrast, direct methods generate

new children with desired semantic criteria which incorporate the complete syntax

of their parents without modification [29, 38]. Although recently proposed by

Moraglio et al. [29], direct methods have received substantial interest from the GP

research community [7, 31, 38]. Perhaps the main contribution of the approach is

that it allows GP to search directly in the semantic space.

Although semantic geometric crossover (SGX) has been empirically shown to be

superior to standard crossover (SC) in several studies [7, 29, 38], it has a

shortcoming in the exponential growth of solution size. This exponential code

growth can potentially hinder applications of SGX for several reasons. First, running

GP with SGX requires excessive hardware resources and long running time. Second,

the solutions found by SGX might be arbitrarily large and complex. While the first

problem has been partly alleviated in recent implementations of SGX, e.g. [28, 38],

the second remains. Since the objective of GP, in contrast to other black-box

learning approaches, is to find solutions in the form of comprehensible structures, its

usefulness in many applications often relies on the simplicity and understandability

of the generated programs. For instance, in medical applications the goal might be

to understand the relationships between genes as they affect particular diseases [10].

In other applications, the produced programs may have to run in an environment

with limited resources such as wireless sensor networks [6]. In these applications,

small and simple synthesized solutions are required. Therefore, finding small and

comprehensible solutions is of great importance for the usefulness of GP.

In order to lessen the code growth problem in SGX, some GP researchers [22, 36]

have used a version of the operator in which the geometric property is

approximated, using a library of sub-programs of known semantics. However,

these methods may increase the computation time of the system due to the library

search process. In this paper, we introduce another way to address code growth in

SGX by proposing a new semantic geometric crossover that works on subtrees. The

new crossover not only helps to greatly reduce the complexity of the evolved

solutions, compared to SGX, but also to further enhance GP performance. The main

contributions and findings of the paper can be summarized as follows:

• A new semantic-based crossover, called subtree semantic geometric crossover

(SSGX), is proposed and its performance is investigated. The experimental
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results show that this operator helps to alleviate code growth in SGX and also to

improve its performance.

• Further analysis shows that the geometric operator of Moraglio et al., SGX, has

exploitative, local search behaviour, while the SC and other semantic-based

operators have more global, explorative search. SSGX is the only operator of

those tested that possesses both abilities (exploitation and exploration).

• Analysis of computation time shows that while using an additional library as in

the random desired operator (RDO) and approximate geometric crossover

(AGX) of Krawiec et al. [22, 36] increases the execution time of GP systems

considerably, the overhead of SSGX is negligible.

• The design of SSGX allows for further improvements. In this paper, a simple

method for improving SSGX is also introduced that leads to better performance.

In the next section, we present background. A brief review of the previous work

on semantic operators in GP is given in Sect. 3. The proposed crossover, SSGX, is

described in Sect. 4. The experimental settings are detailed in Sect. 5. The

performance of SSGX is examined and compared with other crossover operators in

Sect. 6. Section 7 analyses some crucial properties of the tested operators. The

impact of parameters on the performance of SSGX is investigated in Sect. 8. In

Sect. 9, a simple way to enhance the SSGX’s performance is introduced and

examined. Section 10 concludes the paper and highlights some potential future

work.

2 Background

This section presents some necessary background for the research in this paper.

First, a way to measure semantics is introduced. Next, a semantic distance is

defined. Finally, a brief description of SGX [29] is presented.

2.1 Measuring semantics

The meaning of the term ‘‘semantics’’ varies between fields. In GP it is common to

define the semantics of a program simply as its behaviour with respect to a set of

input values. In this paper, we follow previous GP research [23, 26, 29, 34, 36] in

defining the semantics of a program (individual) as its outputs for the problem’s

fitness cases. Formally, the semantics of a program is defined as follows:

Definition 1 Let K ¼ ðk1; k2; . . .kNÞ be the fitness cases of the problem. The

program semantics S(P) of a program P is the vector of output values obtained by

running P on all fitness cases.

SðPÞ ¼ ðPðk1Þ;Pðk2Þ; . . .;PðkNÞÞ; for i ¼ 1; 2; . . .;N:

This definition is valid for problems where a set of fitness cases is defined.
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2.2 Semantic distance

Based on the above definition, a semantic distance between two trees or subtrees is

often defined as the distance between their corresponding output vectors with

respect to the vector of fitness case inputs. In this paper, we use the Manhattan

metric normalized by the number of fitness cases of the problem as the semantic

distance for two individuals.

Definition 2 The semantic distance (SD) between two trees (P1 and P2) is defined

as follows.

SDðP1;P2Þ ¼
jSðP1Þ � SðP2Þj

N
¼

PN
i¼1 jP1ðkiÞ � P2ðkiÞj

N
ð1Þ

This definition is valid for programs whose output is a single real-valued number,

as in symbolic regression.

2.3 Semantic geometric crossover

As mentioned, Moraglio et al. [29] proposed geometric semantic operators

(crossover and mutation) for several problem domains in. Their idea is rooted in

the unifying geometric theory of evolutionary algorithms [27]. The motivation for

these operators is to allow GP to directly search in the semantic space. Formally, the

geometric crossover (SGX) for real-valued symbolic regression is defined as follows

[29].

Definition 3 Given two parent functions P1, P2: R
n ! R, the geometric semantic

crossover returns the real function P3 ¼ ðTRP1Þ þ ðð1� TRÞP2Þ where TR is a

random real constant in [0, 1] or a random real function with codomain [0, 1].

If TR is a random real constant, the crossover produces an offspring that lies on

the line segment connecting the two parents in the semantic space with respect to

the Euclidean distance. This is a ‘‘thin’’ line segment. However, if TR is a random

real function, the offspring lies on the line segment between the parents with respect

to Manhattan distance. This is a ‘‘thick’’ line segment. Some previous research has

shown that the Manhattan version of SGX performs better [7, 30], so that is the

version investigated in this paper. The choice of TR as a function rather than a

constant here is linked to the choice of Manhattan rather than Euclidean distance for

semantic distance and to the choice of mean absolute error for the fitness function,

as opposed to root mean square error.

The SGX operator generates offspring that contain the complete structure of both

parents. Therefore, the size of a child is more than the sum of the sizes of its parents.

The exponential growth of the size of individuals makes this operator impractical in

a naive implementation, though this may be partly addressed using automated

simplification of offspring as in Moraglio et al. [29] or by implementation with
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caching as proposed in [28, 38]. In Sect. 4, an alternative solution to this problem is

proposed.

The SGX operator depends on several assumptions about the problem. As stated,

it defines semantics as a vector of output values with respect to a pre-determined set

of inputs, which may not be appropriate to all problems. It depends for its geometric

property on the output being in a suitable metric space, and on the GP language

being ‘‘functional’’, i.e. without side effects or program state. All of these

assumptions are fulfilled for important problem classes including symbolic

regression, but they do represent a limitation on SGX. The same is true of several

other modern semantic crossover operators, including those in this paper.

Alternative definitions of semantics which may allow the lifting of this limitation

have been used in GP also [12, 16].

3 A review of semantic crossovers in GP

Semantics has been used in various ways in GP. In one strand of research, semantic

information was often represented in the form of attribute grammars which can be

used to eliminate individuals of poor fitness from the population [9] or to prevent the

generation of semantically invalid individuals, e.g. [8, 41]. Later, Johnson

advocated formal methods as a means to incorporate semantic information into

the GP evolutionary process [13–15]. In Johnson’s work, semantic information

extracted through formal methods is used to quantify the fitness of individuals on

some problems where the traditional sample-point-based fitness measure is

unavailable or misleading.

The idea of defining the semantics of an individual as its output with respect to a

set of inputs was perhaps first proposed by McPhee et al. [26]. They extracted

semantic information from a Boolean expression tree by enumerating all possible

inputs [26]. The semantic information was then used to analyse the semantic

diversity of the population during the search process. Recently, semantic

information has generally been used to design or guide genetic operators in GP.

Thus, we will mainly focus our review on this use of semantics. A more detailed and

comprehensive survey of semantic methods in GP is given by Vanneschi et al. [39].

Semantic methods for GP operators can be classified into two types: direct and

indirect [39]. Direct methods effectively act directly on the semantics of individuals

[29, 38], while indirect methods achieve their semantic goals indirectly by acting on

syntax and then applying semantically defined survival criteria [19, 23, 33, 34].

In indirect methods, Beadle and Johnson [3] extracted semantics from expression

trees on Boolean domains. They checked the semantic equivalence of the offspring

produced by crossover with their parents and discarded the offspring if equivalent to

their parents. This approach enhances semantic diversity in the evolving population,

and consequently leads to improvements in GP performance [3]. The method of

semantic equivalence checking is also applied to drive mutation [5] and guide the

initialisation phase of GP [4], with a positive effect on performance.

Considering indirect semantic operators in real-valued domains, Nguyen et al.

[32] proposed a crossover operator, called semantics aware crossover (SAC), aiming
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to promote semantic diversity. SAC was based on checking for semantic

equivalence of subtrees. SAC was then extended to semantic similarity based

crossover (SSC) [34] to improve semantic locality. SSC selected subtrees for

crossing over by checking semantic similarity but not semantic equivalence. In [33],

the improved version of SSC, called the most semantic similarity based crossover

(MSSC), was proposed, which better guarantees the semantic locality of crossover

in GP. The performance of SSC and MSSC were shown to be superior to both SC

and SAC [33, 34].

In other work, Krawiec et al. [20] used semantic information to guide crossover

in a method that is similar to Soft Brood Selection (SBS) [1], known as

approximating geometric crossover (AGC). A number of children are generated by a

crossover operation, and the child most semantically similar to the parents is added

to the next generation. Another semantic (subtree) crossover was proposed in [21,

23], namely, locally geometric semantic crossover (LGX). In LGX, two subtrees in

the common shape of the parents are randomly chosen. Then a search is performed

for a subprogram in a predefined library that is semantically intermediate to the

selected subtrees. This subprogram (subtree) replaces the two chosen subtrees to

generate two new offspring.

Among direct methods, Moraglio et al. [29] proposed an entirely new approach to

designing semantic based crossovers in GP. Unlike other subtree crossovers, in SGX

the offspring is created based on a convex combination of its parents. The crossover

was tested on a class of problems and showed to perform very well. However, SGX

can be very time- and memory-consuming as it keeps all parents in memory,

accumulating their complexity (number of nodes) via the convex combination.

More recently, Vanneschi at al. proposed a new implementation of this crossover

that helps to reduce the space and time requirements, as claimed by the authors, to

acceptable levels [38]. Although recently proposed by Moraglio et al. [29], direct

methods have received substantial interest from the GP research community [7, 24,

31, 38]. For a comprehensive review and comparison of different geometric

semantic crossovers in GP, the readers are recommended to see [35].

In an attempt to reduce the code growth observed with SGX, Krawiec and

Pawlak [22] proposed AGX. The main idea behind AGX is to replace subtrees in

parents with subtrees such that the offspring is semantically intermediate to the

parents. This objective is obtained by first calculating the midpoint m of the

semantic of parents. Then two crossover points p1 and p2 in the parents are selected.

Last, a backpropagation procedure is called to find the semantics of the subtree (st)

that when substituted for p1 and p2 will alter the semantics of the parents to

approximate m. A library is used to find a subtree that is as close to st as possible.

The experiments showed that the performance of AGX is superior to both SC and

LGX on a wide range of problems [22, 36].

The idea of semantic backpropagation is then extended for designing operators in

GP [36]. A new operator called RDO was proposed [36]. RDO used the same

principle of backpropagation as AGX but with different desired semantics. In RDO,

a parent is chosen by a selection scheme. Then a random subtree st is chosen. After

that, backpropagation is again used to identify the semantics of the subtree that

when substituted for st will produce a new child that matches the target semantics of
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the problem (the target output of the training data). This operator performs very well

on both real-valued and Boolean problems as reported in [36].

Although both AGX and RDO have been empirically shown to have superior

performance to both LGX and SC, they have some limitations. First, these operators

can be time consuming as a result of the backpropagation and library search

processes. Second, RDO is not fully black-box: it is not usable if the target

semantics of the problem is not explicitly defined (or calculated), as is common, for

example, in some reinforcement learning and security problems [36]. Moreover, on

problem domains like classification where the semantics of an individual may not be

strongly correlated to the target semantics of the problem, the performance of RDO

may suffer.

In the next section, we will present a novel crossover operator aiming to

approximate the geometric semantic crossover operator, SGX. This crossover is

implemented at the subtree level, leading to the reduction of code growth in SGX.

Consequently, the new operator does not lead to code growth (compared to SGX)

and executes rather faster (compared to AGX and RDO), while still achieving

competitive performance.

4 Subtree semantic geometric crossover

The new crossover operator is called SSGX and is similar to the crossover ofMoraglio

at al. [29] except that it is implemented at the subtree level. It proceeds as follows. Two

parents P1 and P2 and a probability value � are selected. If a randomly generated

number R 2 ½0; 1� is less than �, the novel geometric subtree crossover is performed.

Otherwise, we execute the standard (subtree) crossover. This step means that a certain

proportion of crossovers is executed by SC. In early experiments we implemented

100 % geometric subtree crossover and found that the population collapsed very

quickly to individuals of very small sizes. For complex problems, if the individuals do

not grow enough, the performance of GP deteriorates significantly.

In the cases where the novel geometric subtree crossover is conducted, a number

(given by the parameter MaxTrial) of subtrees that satisfies a size constraint are

randomly selected in P1, excluding P1 itself. We denote by St1 the one of these that

is most semantically similar to P1. The objective of selecting St1 in this way is to

replace a parent of high fitness by a smaller subtree which approximates its

semantics. The size constraint aims to control the code growth of the offspring. In

this paper, we use a simple constraint where only a subtree with size in the range of

½a; b� is chosen. The lower bound (a) aims to avoid the selection of very small

subtrees (e.g. leaf nodes), that may disrupt the structure of the parents. The upper

bound (b) is used to limit code growth.

We select St2 in P2 in the same way as St1. Two offspring1 are then generated by

convex combination of the subtrees St1 and St2. In other words, C1 and C2 are the

1 The reason for generating two offspring but not one as in the original version of SGX is to allow both

SC and geometric crossover are executed in SSGX. Moreover this implementation makes SSGX

consistent with conventional subtree-swapping crossovers.
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two children, generated as: C1 ¼ TRSt1 þ ð1� TRÞSt2 and C2 ¼ ð1� TRÞSt1þ
TRSt2. TR is a random function with codomain [0, 1], created by generating a

random tree of maximum depth 2 and passing the result through the logistic

function. Effectively, St1 and St2 approximate the semantics of P1 and P2 and are

used instead of them. P1 and P2 themselves are not used in the crossover. If St1 and

St2 were to duplicate the semantics of P1 and P2 precisely, then the semantic effect

would be the same as that of the geometric semantic crossover proposed by

Moraglio et al. [29], but with less code growth. In practice, St1 and St2 will only

approximate the semantics of P1 and P2. Hence we can think of the procedure as a

geometric semantic crossover preceded by a type of heuristic and inexact

simplification, analogous to the exact post-operator simplification proposed by

Moraglio et al. [29]. The details for SSGX are presented in Algorithm 1, where SD

is the semantic distance between the two individuals as defined in Sect. 2 and

SizeOf(St) function return the number of nodes of tree St.

Algorithm 1: Geometric Semantic Subtree Crossover. Parameters: P1, P2:
parent programs, : threshold.

generate a random number R
if R then

Max=ExtremalValue;
for Count=1 to MaxTrial do

choose an arbitrary subtree St1 in P1 that satisfies size constraint;
D=SD(St1, P1)
if D<Max then

Max=D;
Subtree1=St1;

Max=ExtremalValue;
for Count=1 to MaxTrial do

choose an arbitrary subtree St2 in P2 that satisfies size constraint;
D=SD(St2, P2)
if D<Max then

Max=D;
Subtree2=St2;

execute geometric crossover based on Subtree1 and Subtree2;
Else execute standard subtree crossover

In Sect. 8 several values of MaxTrial will be tested to examine its impact on the

performance of SSGX. Comparing to SGX [29], this crossover has some interesting

properties. First, the geometric property is approximated at the subtree level,

potentially helping to reduce the offspring size while still maintaining some of the

advantages of geometric crossover (the results in Sect. 6 provide evidence for this).

Second, only a certain portion of SSGX crossovers use the geometric method, i.e.

the convex combination of subtrees. Therefore, we can use any version of subtree

crossover such as SSC, MSSC [33, 34] or LGX [19] for the rest. In Sect. 9, we will

investigate whether this can further enhance the performance of SSGX.

It is possible that a subtree selected as St1 or St2 in one generation will later be

selected again to serve as St1 or St2 in a later generation, because each crossover

works by preserving St1 and St2 as a subtree of the offspring. If this happens

frequently, search may be inefficient due to revisiting old genetic material.
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However, the probability of this occurring is not high, because in our experiments,

only a certain portion (30 %) is geometric crossover, and the remainder (70 %) is

SC. Mutation is also used to modify individuals. These reduce the probability that a

subtree is reselected.

5 Experimental settings

In order to investigate the performance of SSGX, we tested it and several other

operators on 10 regression problems. Amongst the tested problems, there are 6 GP

benchmark problems taken from [25], originally proposed by Keijzer [17], and four

real-valued problems drawn from the UCI repository [2]. The detailed descriptions

of the problems are presented in Table 1.

The GP parameters used for our experiments are given in Table 2. The function

set includes eight functions widely used in GP [18, 40]. The protected versions of

division (/) and logarithm (log) function were used that return 1 when the

denominator in the division is zero, or the argument in the logarithm is zero or less.

The terminal set for each problem includes N variables X1 to XN corresponding to

the number of variables (attributes) of the problems. The raw fitness is the sum

absolute error on all fitness cases. Therefore, smaller values are better.

For all GP systems, the crossover rate is 0.9 and mutation rate is 0.1. A common

version of SC [18] is used, in which the crossover point is executed with 90 % at

nonterminal nodes, 10 % at leaf nodes. Standard subtree mutation is used on all GP

Table 1 All problems for testing different operators

Name Definition Training data Testing data

(a) GP Benchmark regression problems

Keijzer-4 x3e�x cosðxÞ sinðxÞðsin2ðxÞ cosðxÞ � 1Þ R[0,10,100] E[0.05,10.05,100]

Keijzer-6
Px

i
1
i

R[1,50,100] E[1,120,100]

Keijzer-11 xyþ sinððx� 1Þðy� 1ÞÞ R[-1,1,100] E[0,1,100]

Keijzer-12 x4 � x3 þ y2

2
� y R[-1,1,100] E[0,1,100]

Keijzer-14 8
2þx2þy2

R[-1,1,100] E[0,1,100]

Keijzer-15 x3

5
þ y3

2
� x� y R[-1,1,100] E[0,1,100]

Name Attribute numbers Training data Testing data

(b) UCI regression problems

Concrete slump test 7 50 53

CCPP 4 200 200

Wine quality red 11 250 250

Wine quality white 11 300 300
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systems but SGX. The parameters for SSGX is as follows: MaxTrial=20, � ¼ 0:3,
a ¼ 1 and b ¼ 80. These values were calibrated from early experiments for good

performance. In Sect. 8, these parameters will be further examined. In SGX we used

geometric semantic mutation by Moraglio et al. [29] since SGX performs better

when accompanied with this mutation [29]. The mutation step size for SGX was set

to 0.001, which was found to be the best value by Moraglio et al. [29]. We used the

caching implementation described in [38] to reduce the computation time. The

library size for RDO and AGX was set at 1000. This library was obtained by

randomly generating 1000 semantically different individuals with max depth of 4.

The library size of 1000 is intermediate between two tested values in previous

literature [35]. For each problem and each parameter setting, 30 runs were

performed.

We divided our experiments into four sets. The first aims to investigate the

performance of SSGX in comparison with SC and other semantic-based crossovers.

The second aims to analyse the solution size, execution time, and semantic effects

of the tested operators. The third set attempts to test how sensitive the performance

of SSGX is when its parameters are varied. Lastly, in the fourth set, we propose a

scheme to further enhance the performance of SSGX. The results of these sets of

experiments are detailed in the following sections.

6 Performance analysis

This section aims to analyse the performance of the new operator (SSGX) and to

compare it with the SC and some recently proposed semantic-based crossovers. The

tested semantic-based operators include SGX [29], AGX [22] and RDO [36].2 In

Table 2 Evolutionary parameter values

Parameter Value

Population size 500

Generations 100

Selection Tournament

Tournament size 7

Crossover probability 0.9

Mutation probability 0.1

Initial Max depth 6

Max depth 15

Max depth of TR 3

Raw fitness Mean absolute error on all fitness cases

Trials per treatment 30 independent runs for each value

Library size for AGX and RDO 1000

Mutation step size for SGX 0.001

Function Sets ?, -, *, /, sin, cos, exp, log

2 The list of all operators tested in this paper is presented in ‘‘Appendix 1’’.
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order to compare these operators, three metrics including training error, testing error

and running time were used.

The first analysis is the mean best fitness on the training data. These values are

presented in Table 3.3 In this table, K-I is short for Keijzer-I problem (I = 4, 6,...),

and UCI-I is the abbreviation for the four UCI regression problems in Table 1

respectively (UCI-1 is Concrete Slump Test, ..., UCI-4 is Wine Quality White). For

each problem, the smallest value among the five tested operators is printed in bold

face in this table. Statistical tests are presented later.

It can be seen in Table 3 that all tested operators other than SGX achieved a

smaller training error than SC. The training error of SGX was not always consistent.

The value for SGX was considerably smaller than for SC on one problem (K-11),

noticeably greater on four problems (K-4, K-14, K-15, UCI-1) and almost the same

on others. This result seems surprising given previous good training error with SGX

[29, 38]. However, the result is consistent with the result in a recent publication [35]

where Pawlak et al. also reported poor performance of SGX on real-valued

regression problems. One possible explanation is that SGX performs differently on

different problems. Another is that SGX requires an unusually large number of

generations (possibly with a smaller population) [29]. Further analysis (Sect. 7) also

showed that while SGX more frequently produced children that are better than their

parents in terms of the training fitness, the scale of semantic change from parents to

children in SGX was much smaller than that of SC. Subsequently, this crossover

moves rather slowly to the global optimum (best solution) in the semantic space.

This supports the hypothesis that SGX requires an unusually large number of

generations.

In contrast to SGX, other operators often achieved smaller values of the training

error than SC. Amongst three operators (AGX, RDO and SSGX), RDO is the best

and SSGX is the second best crossover, regarding training error. The performance

on the training data of RDO and SSGX is often better than AGX and much better

than other operators. The table shows that RDO is the ‘‘winner’’ (has the smallest

training error) in eight out of ten problems (SSGX winning in one and SGX in one

problem). Noticeably, increasing the library size in AGX and RDO may potentially

achieve better training errors. However, even with a library of size 1000, it was

found that the computation time for both AGX and RDO was considerably higher

compared to SC and SSGX (around 8–10 times higher than SC and SSGX – see

Table 6). Therefore, a greater library size seems prohibitive, especially in

applications such as stream data mining or online learning.

The second metric used to measure the performance of the tested operators is

their ability to generalize beyond the training data. The generalization ability is

perhaps the most desirable property of a learner. In each run, the best solution was

selected and evaluated on an unseen data set (the testing set). The median of these

values across 30 runs was calculated and are shown in Table 4. This table is

consistent with Table 3, confirming the inferior performance of SGX and the

superiority of AGX, RDO and SSGX to SC. On the tested problems, the ability of

3 In ‘‘Appendix 3’’, figures presenting the training error of the tested operators during the evolutionary

process are shown.
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SGX to generalize was often much worse than SC. Perhaps the poor performance

SGX on the testing data is due to the fact that solutions obtained by SGX have very

high complexity (see Sect. 7), which likely allowed overfitting according to the

principle of Occam’s razor [11]. However, Vanneschi et al. [38] argue that

overfitting is bounded in SGX.

In contrast to SGX, three operators (SSGX, AGX, RDO) performed very well,

compared to SC, on unseen data. The test error of the solutions produced by these

operators was often much smaller than those of SC except on the UCI-1 problem.

On UCI-1, while the testing error of AGX was smaller than SC, the value for both

SSGX and RDO was worse. This suggests that on this problem both SSGX and

RDO have overfitted. For comparison among SSGX, AGX and RDO, it can be seen

that SSGX and RDO were often better than AGX with respect to generalization.

SSGX was the winner (the operator that achieves the best result on the testing data)

in four out of ten problems. AGX and RDO were each the winner in three problems.

For statistical comparison between multiple operators we used a Wilcoxon signed

rank test with a Bonferroni correction factor of 100 (10 pairwise crossovers and 10

problems). The results are shown in Table 5 (Table 5a for for training error and

Table 5b for testing error). In Table 5, if the operator in the row is significantly

better (p-value\0.05/100) than the operator in the column on problem t, the

problem t is presented in the corresponding cell. For instance, on the training data,

RDO is significantly better than SC on all problems except UCI-3, so ‘‘All-{UCI-

3}’’ is presented in the cell at row ‘‘RDO’’ and column ‘‘SC’’ of Table 5a.

On the training data, SC is superior to SGX on three problems (K-14,K-15,UCI-

1) while SGX is not better than SC on any problem. AGX is significantly better than

Table 3 Mean best fitness on training data

XOvers K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 4.86 2.21 7.13 10.3 6.88 2.99 200 2085 109 175

SGX 6.84 2.26 4.94 9.44 9.63 4.62 279 2079 102 170

AGX 6.35 1.47 6.92 6.20 7.51 1.89 216 748 113 175

RDO 0.81 1.28 4.23 2.50 5.50 0.86 121 509 109 152

SSGX 4.03 1.61 5.89 4.72 3.32 2.02 173 896 107 174

Lower is better and the best value on each problem is printed bold face

Table 4 Median of testing error of the tested operators

XOvers K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 19.0 5.19 18.3 11.0 24.5 7.84 442 2085 220 231

SGX 20.7 58.2 37.9 39.6 90.3 64.5 515 49,150 565 657

AGX 3.69 1.03 9.96 12.6 16.2 4.70 379 833 239 209

RDO 0.99 1.15 6.21 8.16 12.7 1.85 441 841 240 217

SSGX 3.69 1.42 7.67 6.27 8.59 2.40 495 1072 203 205

Lower is better and the best value on each problem is printed bold face
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SC on K-6,UCI-2 and better than SGX on six out of ten problems. However, AGX is

only better than SSGX on one problem (UCI-2) and not better than RDO on any

tested problem. Conversely, RDO and SSGX are more frequently better than SC,

SGX and AGX. Comparing between RDO and SSGX, Table 5 shows that RDO is

better than SSGX on six problems while the converse is true in one. Apparently,

RDO is the best crossover among the five tested operators.

On the test data, the performance of SSGX is more convincing. SSGX is

significantly better than SC on all problems except UCI-1, UCI-3, and better than

SGX on all problems except UCI-1. The test also shows that SSGX is better than

AGX and RDO on four and two problems respectively, while RDO is better than

SSGX on one problem (K-4) and AGX is not better than SSGX on any tested

problem. The performance of AGX and RDO are also solid compared to SC and

SGX on the unseen data. Both AGX and RDO are significantly better than SC on

five out of ten problems and they are better than SGX on all tested problems except

UCI-1 with RDO. SGX is the crossover that performed the worst on the test data.

Overall, the results of the statistical tests show that although SSGX is the second

best crossover on training data, it achieved better performance than all other

crossovers on test data.

The last metric used to measure the performance of the five tested operators is

their computational time. All operators were executed on the same computing

Table 5 Statistical testing conducted on training error and testing error using Wilcoxon signed rank test

and a Bonferroni correction factor of 100 (10 pairwise operators and 10 problems)

XOvers SC SGX AGX RDO SSGX

(a) Results of statistical test on training error

SC K-14,K-15,UCI-1 UCI-3

SGX UCI-3

AGX K-6,UCI-2 K6,K-12,K-14 UCI-2

K-15,UCI-1,UCI-2

RDO All-{UCI-3} All-{UCI-3} All K-4,K-12,K-15

UCI-1,UCI-2,UCI-4

SSGX K-12,K-14 All-{K-11,UCI-3} K-14 K-14

UCI-1,UCI-2 UCI-1,UCI-3

(b) Results of statistical test on testing error

SC All-{K-4,UCI-1}

SGX

AGX K-4,K-6,K-11 All

UCI-2,UCI-4

RDO K-4,K-6,K-11 All-{UCI-1} K-4 K-4

UCI-2,UCI-4

SSGX All-{UCI-1,UCI-3} All-{UCI-1} K-12,K-14 UCI-3

UCI-3,UCI-4 UCI-4

In the cells are the problems where the operator in the row is significantly better (p-value\0.05/100) than

the operator in the column
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platform (Operating system: Ubuntu 10.04 LTS, RAM 4G, CPU E7500

2.93GHz 9 2). The source code of our GP system is available for download.4

The computational time of a run measured by CPU time was recorded and the

values were averaged over 30 runs. These values are presented in Table 6. SGX is

the only operator that had running time considerably less than SC. This is not

surprising since in these experiments, the implementation of SGX by Vanneschi

et al. was used [7, 38]. In this implementation, caching prevents re-evaluation of

individuals, considerably reducing execution time.

The running time of SSGX and SC is roughly equal. SSGX did not require longer

running time compared to SCalthough it has an additional step of subtree searching.The

result in the next section shows that by limiting the size of selected subtrees, the code

growth with SSGX is less than with SC, which helps to limit runtime also. In contrast to

SSGX, the two other semantic based crossovers required longer running time than SC.

The running time of both AGX and RDO were much higher than other operators. Both

AGX and RDO were 8 to 10 times larger in running time compared to SC and SSGX.

This increase in computation time for AGX and RDO is one of the limitations of these

operators. In some application domains such as online learning or stream data mining

where the time constraint is critical, the slow execution of AGX and RDO might limit

their usefulness. In other scenarios, the long training time may not be important.

Overall, the empirical results in this section show that the proposed crossover

operator, SSGX, helps to enhance the performance of GP on unseen data in

comparison with SC and some recently proposed semantic-based operators.

Moreover, this superior performance (over SC and SGX) was achieved with much

less computational time compared to AGX and RDO. Therefore, this crossover

might be more suitable than AGX and RDO in application domains where time or

computing resources are limited.

7 An analysis of semantic based operators

This section aims to analyse some crucial properties of SSGX and compare themwith

those of the other tested operators. The properties examined include the average size of

the solutions, the average execution time of different phases in SSGX,AGXandRDO,

Table 6 Average running time of the tested operators measured in seconds

XOvers K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 49.1 41.5 24.9 25.3 23.4 25.8 34.6 32.9 28.9 29.5

SGX 13.2 12.8 9.02 8.2 8.18 8.3 7.52 7.15 7.12 8.36

AGX 407 315 242 226 218 187 192 196 105 162

RDO 272 236 229 215 221 193 205 274 186 210

SSGX 39.7 36.8 27.7 26.2 25.6 26.6 26.6 25.1 28.3 30.5

Lower is better

4 https://github.com/jmmcd/GP-SSGX.
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the semantic distance between children and their parents and the constructive rate of

these operators. The results are detailed in the following subsections.

7.1 Solution size of the tested operators

The main design objective of SSGX is to limit the code growth phenomenon of SGX,

helping to obtain simpler solutions. Therefore, it is important to examine if this objective

is achieved. In each run, the best solution was selected and its size was recorded. These

values were then averaged over 30 runs and the results are shown in Table 7.5

It can be seen from this table that SSGX achieved its main objective. The

solutions obtained by SSGX were much smaller than those of SGX. While the

solution size of SGX was very high and unacceptable in many real-world

applications, the size of the solutions produced by SSGX was acceptably small.

Interestingly, the solutions found by SSGX are frequently smaller than those of SC.

There are three possible reasons explaining why SSGX achieve its objective in

reducing solution size. The first is that only 30 % of SSGX uses the geometric

combination, while the rest (70 %) uses SC. Second, the subtree selected for

combination in SSGX was also limited by its size. Third, SSGX has a maximum

depth of 15 whereas SGX has no such limit.

The table also shows that GP systems using AGX and RDO found solutions with

sizes that are roughly equal and slightly higher than those of the GP system using

SSGX except onUCI-3. OnUCI-3, RDO andAGX achieved very small solutions.We

investigated the reason behind this and found that these operators often achieved the

best solution in the form of function(constant) e.g. e1:609438 or logð�148:413159Þ after
some generations. Perhaps this is the result of the constant search inAGX andRDO. In

general, Table 7 demonstrates that implementing geometric crossover at the subtree

level helps SSGX to find much less complicated solutions compared to SGX.6

7.2 Running time analysis of the tested operators

The results in Sect. 6 show that GP systems using AGX, RDO required longer

execution time than the GP system using SC and SSGX. This subsection aims to

Table 7 Average size of solutions of the tested operators

XOvers K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 150 117 101 103 87.6 90.1 261 190 147 164

SGX 1031 1030 1030 1030 1030 1030 1031 1031 1030 1031

AGX 173 102 89.5 80.6 46.1 54.9 119 147 16.2 82.6

RDO 201 147 109 104 89.0 76.1 174 252 46.1 154

SSGX 110 99.1 96.8 102 93.6 95.6 104 96.5 102 110

Lower is better

5 The size of the solutions obtained by SGX in Table 7 is presented approximately.
6 A sample tree output using SSGX with some remarks on its structure is given in ‘‘Appendix 2’’.
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give a further analysis on the reasons behind this. It can be seen that for AGX and

RDO, there are three extra stages that can potentially slow their execution time.

These stages are: library generation, inversion, and searching in the library for a

desired subtree. On the other hand, for SSGX, there is only one extra step, that is to

search for a subtree (within a parent) that has as close semantics as possible to its

parent and that satisfies the constraint on size. We measured the computational time

of each stage in AGX, RDO and SSGX. The values were then averaged over the

whole population and all runs. They are presented in Table 8.

In this table, there are four rows presenting the results of AGX and RDO. The

rows ‘‘LibGen’’, ‘‘Inversion’’, and ‘‘LibSearch’’ present the average running time of

library generation, inversion, and library search stages, respectively. For SSGX, the

first row (‘‘SubSearch’’) is the average running time for the subtree searching phase.

The row ‘‘Total’’ presents the average running time of these operators (AGX, RDO

and SSGX). For the sake of comparison, the results of SC are also presented.

The table shows that while the library generation stage in AGX and RDO was

relatively fast, the inversion and the library search were both computationally

expensive. The average running time of the inversion stage was often triple that of

the whole evolutionary process of the GP systems using SC and SSGX. The values

of the library search were five to six times higher than SC. Subsequently, both AGX

and RDO were usually 8 to 10 times slower than SC and SSGX in our experiments.

By contrast, the subtree searching produce in SSGX was rather fast. This process

was equivalent to just 15–20 % of the average running time of the GP system using

SC. This allowed SSGX to run as fast as SC on the tested problems.

7.3 Semantic distance between children and parents

The next property analysed is the semantic distance between parents and their

children. The semantic distance measures distance between a pair of individuals

(e.g. a parent and a child) in the semantic space. It is informative as to the balance

between exploration and exploitation behaviour of the search. A larger distance

Table 8 Average running time of different phases in SC, AGX, RDO and SSGX

XOver Phases K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 49.1 41.5 24.9 25.3 23.4 25.8 34.6 32.9 28.9 29.5

AGX LibGen 0.3 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.6 0.2

Inversion 88.2 67.0 88.6 69.4 72.1 69.5 63.8 36.5 20.6 49.3

LibSearch 271 235 123 136 127 113 108 127 92.7 112

Total 407 315 242 226 218 187 192 196 135 162

RDO LibGen 0.3 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.6 0.2

Inversion 101 86.7 102 84.6 94.9 56.2 61.7 94.5 88.2 85.3

LibSearch 134 117 97.1 119 108 114 125 123 94.8 106

Total 272 236 229 215 221 193 205 274 186 210

SSGX SubSearch 5.2 4.8 4.9 4.3 4.1 3.9 4.0 3.7 4.2 5.2

Total 39.7 36.8 27.7 26.2 25.6 26.6 26.6 25.1 28.3 30.5
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shows the ability to discover different areas in the search space, while a smaller

move is evidence for the convergence of the algorithm to a specific subspace.

Formally, the semantic distance between children and their parents is calculated as

follow:

SDXðP1;P2;C1;C2Þ ¼
SDðP1;C1Þ þ SDðP2;C2Þ

2
ð2Þ

where P1, P2 are two parents for crossover and C1, C2 are the two children resulting

from the crossover(C1 has the same root as P1 and C2 has the same root as P2).

This definition applies to all subtree crossover operators. Since RDO is similar to

mutation (it has a single parent and a single offspring), for the above definition to be

valid, P2, C2 and the factor of 2 are omitted. For SGX, since neither of C1 and C2

has the same root as either parent, a random child is selected and assigned as C1 and

the other is considered as C2. The semantic distance is calculated and averaged over

the number of crossovers, then over generations and the number of runs. The results

are shown in Table 9. In this table (and also Table 10 belove), there are three rows

for the results of SSGX. The first row (SSGX-Stan) presents the results of the SC

proportion in SSGX. The second row (SSGX-Geo) corresponds to the results of

geometric crossover in SSGX and the last row is the average over both.

It can be seen that the semantic distance values between children and parents in

SGX were very small. These values for SGX were often a hundred times smaller

than those of SC. Small values are expected in that they suggest that the offspring

Table 9 Average distance semantics in various operators between children and parents

XOvers K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 2.77 1.25 0.16 2.67 1.70 2.16 8.22 129 6.23 9.80

SGX 0.008 0.018 0.010 0.014 0.020 0.011 0.112 1.421 0.034 0.039

AGX 0.21 0.52 0.22 0.15 0.26 0.56 1.41 4.18 0.20 0.29

RDO 0.39 1.08 0.21 0.24 0.36 0.18 5.15 7.61 0.16 0.62

SSGX-Stan 3.41 6.25 0.82 1.24 2.71 0.97 56.2 152 12.5 14.5

SSGX-Geo 0.17 0.48 0.23 0.30 0.65 0.16 5.01 63.2 1.04 1.48

SSGX-Ave 2.62 4.21 0.62 1.07 2.03 0.80 39.8 117 8.33 9.35

Table 10 Average of constructive rate of the tested operators

XOvers K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 5.63 7.18 5.88 7.02 5.08 7.24 12.7 8.59 10.3 11.0

SGX 85.6 85.2 88.4 89.2 90.2 86.5 69.3 67.6 89.1 86.3

AGX 8.12 10.7 9.31 10.5 11.2 12.0 14.9 20.6 18.2 17.5

RDO 7.09 8.25 7.47 8.41 9.35 8.01 12.92 19.2 15.7 13.1

SSGX-Stan 9.28 9.71 9.72 9.26 9.71 9.35 12.7 13.2 12.5 12.2

SSGX-Geo 5.64 10.1 4.75 6.32 7.21 6.35 8.58 7.91 8.11 8.06

SSGX-Ave 8.97 9.85 7.21 8.01 8.34 8.69 10.6 11.2 11.7 10.9
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are semantically medial with respect to their parents, however they may also

indicate slow search progress when using SGX. This could be one of the reasons for

the unconvincing performance of SGX on some problems as shown in Sect. 6. All

other operators created greater semantic change from parents to children. However,

the scale of change also varied among them. The SC made greater moves in the

semantic space than both AGX and RDO. Therefore, it seems that both AGX and

RDO possess better semantic locality than SC, and their superior performance to SC

might be attributed to this [33].

Perhaps the most interesting results in this table are those of SSGX. This is only the

operator that possesses both exploration and exploitation ability simultaneously. Since

SSGX includes both a SC and a geometric crossover component, they accomplish

different tasks during the search process.7 While the SC portion of operations aims to

explore the search space, the geometric operator portion concentrates on exploiting

specific areas. This balance provides a partial explanation for the convincing

performance of SSGX compared to the other tested operators.

7.4 Constructive rate of the tested operators

The last property to be investigated is the constructive rate of the five tested

operators. The constructive rate reflects how often an operator produces a child that

is better than its parent in terms of the training error. With the same notation as in

the definition of semantic distance, the constructive rate of an operator in each

generation is calculated as follows:

Constructive rate ðOpÞ ¼ Count11 þ Count12 þ Count21 þ Count21

4:ðNumber of crossoversÞ ð3Þ

where Count11 and Count12 are the number of the crossovers in which C1 is better

than P1 and C1 is better than P2 respectively. Similarly, we calculate Count21,

Count22 for C2. Op is the tested operator. For RDO, since it has a single parent

generating a single offspring, Count12, Count21, Count22 and the factor of 4 in the

denominator are omitted. The values were averaged over all generations and over 30

runs. They are given in Table 10. This table shows that SGX was the only operator

that frequently improved the fitness of individuals on the training data. The con-

structive rate of SGX was from 80 to 90 %. However, due to the fact that this

crossover usually made a small change in the (semantic) search space, its perfor-

mance on the training data was not always convincing.

For the other operators, the constructive rate was much less. These values of SC

were usually \10 % on the tested problems. For AGX and RDO, the constructive

rate was often slightly better than those of SC. These values of RDO are not as high

as the results in [36] where the authors reported that RDO achieved about 70 %

constructive rate even with a small library size. The reason for the different results

could be that in [36], the constructive rate of RDO was calculated at only the first

7 The result of SC in SSGX, SSGX-Stan is not identical to the result of SC. One possible reason is due to

they are being executed in two populations with different diversity and structure. Future research will

further examine this.
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generation whereas in this paper, the constructive rate was averaged over all

generations. The constructive rate values for SSGX was also slightly higher than

those of SC, although the difference is marginal. Perhaps the better performance of

SSGX compared to SC is due to its ability to execute both exploration and

exploitation research (see Sect. 7.3).

8 Analysis of SSGX

As already discussed in Sect. 4, there are three factors that can potentially affect the

performance of SSGX. The first is the number of trials (MaxTrial) to find a subtree

that is semantically close to its parent. The second parameter is the proportion (�) in
which the geometric operator is executed. The last is the value of lower bound (a)
and upper bound (b) that were used to control the size of the selected subtrees in

SSGX. This section aims to analyse the impact of these factors on the performance

of SSGX.

8.1 Impact of parameters to SSGX

This subsection examines the effect of two first parameters (MaxTrial and �) on
SSGX performance. To do this, we set these parameters with a starting value and

then gradually increase it. Five values for each parameter were tested. ForMaxTrial,

they are 10, 15, 20, 25 and 30. For �, five tested values are 0.1, 0.2, 0.3, 0.4, 0.5.

When varying the value of MaxTrial, we fixed � at 0.3. Similarly, when we tested

various values of �, we set MaxTrial at 20. The performance (the mean of the best

fitness) of SSGX with different values of MaxTrial and � are presented in Tables 11

and 12, respectively. The performance with SC is also shown for reference.

We can see from Table 11 that the training error of SSGX seems not to be very

sensitive to MaxTrial. This value was not remarkably changed when the value of

MaxTrial was increased from 10 to 30. A statistical test using Wilcoxon signed rank

test and with a Bonferroni correction factor of 100 was used to verify if there is any

significant difference (p-value\0.05/100) in SSGX’s training error when MaxTrial

was varied. The results of the test show that none of these differences is significant.

However, the table shows that setting the value of MaxTrial at 20 helped SSGX to

perform slightly more consistently than at other values and therefore it was used to

Table 11 Performance of SSGX (mean best training fitness) with different values of MaxTrial

MaxTrial K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 6.00 2.24 9.06 13.7 9.61 4.08 210 2174 112 177.6

10 4.11 1.61 5.25 4.83 3.89 2.15 176 927 108 172

15 3.98 1.62 5.58 4.61 3.93 2.05 162 913 107 171

20 4.03 1.61 5.89 4.72 3.32 2.02 173 896 107 174

25 4.02 1.68 5.72 4.93 3.40 2.12 162 906 105 175

30 4.74 1.72 6.16 5.09 3.76 2.80 170 901 108 174

Genet Program Evolvable Mach

123



measure SSGX’s performance when this crossover was compared with other

operators in Sect. 6.

Table 12 shows a more apparent impact on the training error of SSGX when �
was modified. Values above 0.5 were ruled out in preliminary experiments.

Comparing between 0.1, 0.2 and 0.3, it could be seen that SSGX performed quite

consistently, with some decrease in performance at 0.4 and 0.5. Overall, the results

in this section show that the training error of SSGX was not very sensitive to

MaxTrial (values from 10 to 30 were all good) while the proportion of the geometric

operator in SSGX should be no [ 0.3 for good performance of SSGX on the tested

problems. This analysis provides some guidelines for GP practitioners to select

appropriate values for SSGX’s parameters. We leave the self-adaptation of this

parameter for a future study.

8.2 Impact of subtree size constraint with SSGX

This subsection investigates the impact of the size constraint for selected subtrees on

SSGX performance. We tested three schemes with the different constraints on size

as follows:

• SSGX-S1: There was no size constraint on selected subtrees.

• SSGX-S2: Using lower bound (a ¼ 1) to avoid selecting leaf nodes.

• SSGX-S3: Used both lower and upper bounds, with a ¼ 1 and b ¼ 80

The result of SSGX with different constraint in the size of selected subtrees is

presented in Table 13. In this table, three metrics including mean of the best fitness

on training data, median of testing error and size of solutions were used to analyze

the impact of size constraint of selected subtrees on SSGX. The results for SC are

also shown in this table for reference. It can be seen from this table that three

different schemes for controlling the size of selected subtrees in SSGX had only a

slight impact on SSGX performance. Apparently, the mean best fitness on the

training data and the median of testing data of SSGX-S1, SSGX-S2 and SSGX-S3

are mostly equal. However, controlling the size of the subtrees in SSGX, as with

SSGX-3, helps this scheme find solutions that are considerably smaller than with

other schemes.

Table 12 Performance of SSGX (mean best training fitness) with various values of �

� K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 6.00 2.24 9.06 13.7 9.61 4.08 210 2174 112 177

0.1 4.86 1.69 5.98 4.78 3.62 2.70 173 883 105 167

0.2 4.97 1.59 5.07 4.98 3.00 2.14 178 867 103 166

0.3 4.03 1.61 5.89 4.72 3.32 2.02 173 896 107 174

0.4 4.48 2.15 5.63 5.57 3.29 2.96 170 894 106 171

0.5 5.45 2.37 7.34 7.91 4.40 3.01 181 929 106 172
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9 Enhancing the performance of SSGX

In the design of SSGX (Sect. 4), only a certain proportion of SSGX operations

execute the geometric recombination. The remainder revert to SC. This suggests an

opportunity to use other advanced crossovers in place of SC. In this section, two

recently-proposed semantic-based crossovers, SSC [34] and the MSSC [33] are used

as the replacements for SC in the implementation of SSGX. Examining the

performance of SSGX when SC component is replaced by other advanced operators

such as LGX, AGX and RDO are left for the future search.

The configuration of SSC and MSSC in this experiment is as follows. The lower

bound semantic sensitivity for both SSC and MSSC was set at 0. The upper bound

for SSC was 0.6. The number of trials for selecting a pair of subtrees in both SSC

and MSSC was 10. These values are common for good performance of these

operators [33]. The performance of SSGX when combined with SSC (SSGX-SSC)

and MSSC (SSGX-MSSC) is compared to SC, SSC, MSSC and SSGX. The mean of

training error is presented in Table 14 and the median of testing error is shown in

Table 15.

Table 14 shows that the two new implementations of SSGX (SSGX-SSC and

SSGX-MSSC) helped to further improve its training error. The mean of best fitness

of SSGX-SSC and SSGX-MSSC are often smaller than those of other methods.

Comparing between SSGX-SSC and SSGX-MSSC, the table shows that SSGX-

MSSC was often better than SSGX-SSC. Moreover, SSGX-MSSC was often the

best operator in terms of the training error among all tested operators on the tested

problems. The results on the testing data was consistent with the results on the

training data, showing the better performance of SSGX when combined with SSC

and MSSC. Table 15 shows that the median of the testing error of SSGX-SSC and

SSGX-MSSC was often smaller than that of SSGX and of other operators.

Table 13 Performance of SSGX with different subtree size control

Metrics XOvers K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

Mean SC 4.86 2.21 7.13 10.3 6.88 2.99 200 2085 109 175

SSGX-S1 3.34 1.73 5.54 4.33 3.33 1.65 168 890 107 173

SSGX-S2 4.01 1.69 5.47 4.68 3.08 1.99 163 931 107 173

SSGX-S3 4.03 1.61 5.89 4.72 3.32 2.02 173 896 107 174

Median SC 19.0 5.19 18.3 11.0 24.5 7.84 442 2085 220 231

SSGX-S1 3.80 1.46 8.21 5.61 5.45 2.31 497 1007 203 202

SSGX-S2 3.87 1.63 7.45 5.79 5.63 3.13 494 1152 204 202

SSGX-S3 3.69 1.42 7.67 6.27 8.59 2.40 495 1072 203 205

Size SC 150 117 101 103 87.6 90.1 261 190 147 164

SSGX-S1 210 127 117 112 108 107 145 120 127 155

SSGX-S2 185 125 125 116 114 126 173 133 132 135

SSGX-S3 110 99.1 96.8 102 93.6 95.6 104 96.5 102 110
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We conducted statistical tests between SSGX-SSC and SSGX-MSSC versus

SSGX using Wilcoxon-signed rank test and with a Bonferroni correction factor of

20 (2 pairwise crossovers and 10 problems). The significant difference (p

value \ 0.05/20) between SSGX-SSC and SSGX-MSSC versus SSGX is presented

bold face in Tables 14 and 15. On the training data, SSGX-SSC is better than SSGX

on four problems while SSGX-MSSC is better than SSGX on all but K-6 and UCI-3.

On the test data, SSGX-SSC was significantly better than SSGX on one problem

(K-11) and SSGX-MSSC was significantly better than SSGX on four problems

(K-4, K-12, K-14, UCI-3).

Generally, the results in this section show that SSGX’s performance can

potentially be further enhanced by using advanced crossover operators in place of

the SC proportion of SSGX operations. In this section, two semantic-based

operators are implemented in that proportion. The new versions lead to improved

performance of SSGX in both situations. In the future, other advanced crossovers

such as LGX, AGX and RDO will be tested and the performance of SSGX will be

examined with these versions.

10 Conclusions and future work

In this paper, a new semantic crossover (SSGX) for GP was proposed. SSGX is

inspired by semantic geometric crossover (SGX) [29] but implemented at the

subtree level. The objective of SSGX is to address the code growth problem in SGX.

Table 14 Mean best fitness on training data of SSGX-SSC and SSGX-MSSC

XOver K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 4.86 2.21 7.13 10.3 6.88 2.99 200 2085 109 175

SSC 4.72 2.17 7.70 10.1 5.60 2.52 195 2015 106 175

MSSC 4.39 1.82 6.61 9.06 5.11 2.65 189 1851 105 172

SSGX 4.03 1.61 5.89 4.72 3.32 2.02 173 896 107 174

SSGX-SSC 4.00 1.56 3.84 4.32 2.21 1.82 153 806 103 168

SSGX-MSSC 1.91 1.52 2.62 2.65 1.71 1.01 151 772 101 165

Significant differences of SSGX-SSC and SSGX-MSSC versus SSGX are printed in bold face

Table 15 Median of testing error of SSGX-SSC and SSGX-MSSC

XOver K-4 K-6 K-11 K-12 K-14 K-15 UCI-1 UCI-2 UCI-3 UCI-4

SC 19.0 5.19 18.3 11.0 24.5 7.84 442 2085 220 231

SSC 14.8 2.44 14.2 10.8 13.5 4.96 398 1289 218 215

MSSC 12.9 2.75 13.2 9.81 11.2 5.55 389 1134 219 218

SSGX 3.69 1.42 7.67 6.27 8.59 2.40 495 1072 203 205

SSGX-SSC 4.31 1.31 4.52 7.40 7.46 3.14 535 1162 195 203

SSGX-MSSC 2.07 1.35 4.69 3.52 4.72 2.27 492 1011 189 203

Significant differences of SSGX-SSC and SSGX-MSSC versus SSGX are printed in bold face
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The proposed crossover was tested on a number of regression problems including

six GP benchmark problems and four UCI regression problems. The experimental

results were compared with other crossovers including SC, semantic geometric

crossover (SGX), AGX by Krawiec et al. [23] and RDO by Pawlak et al. [36]. The

results showed the advantages of the new crossover in improving GP performance

on unseen data compared to other operators. Moreover, the main objective of SSGX

in reducing code growth of SGX is also achieved.

Further experiments were conducted to analyse some important aspects of the

tested operators. The analysis showed that the computational time of SSGX is not as

high as some library-based operators such as AGX and RDO. Moreover, this

analysis showed that SGX carries out exploitative, local search, whereas SC and

others mostly execute in a more global search manner (focusing on exploration).

SSGX is the only operator that possesses both abilities (exploration and

exploitation). This may be one reason for its superior performance.

After that, the sensitivities of SSGX’s parameters were examined. The results

showed that while the number of trials for selecting a subtree that has semantics

similar to its parents does not considerably affect SSGX’s performance, the

proportion of SSGX crossovers in which a geometric operator is used should not be

too large (not [ 30 %). The impact of the constraint on size of the selected subtree

was also investigated and the results showed that this technique helps to

considerably reduce the code growth in SGX. Finally, a technique was introduced

to further enhance SSGX’s performance by using as the non-geometric operator in

SSGX two advanced crossovers, SSC and the MSSC. The results showed that these

two schemes lead to improved performance of SSGX.

There are a number of research areas for future work which arise from this paper.

First, we want to propose some techniques to allow the values of SSGX’s

parameters (MaxTrial, �, a, and b) to be self-adapted during the evolutionary

process. In this paper, these values have been tuned and analysed. However,

allowing them to be self-adapted could further improve the performance of SSGX.

Second, we would like to combine SSGX with some other advanced crossovers. In

Sect. 9, SSC and MSSC have been used to enhance SSGX’s performance. However,

other crossovers could also be used in the proportion of SSGX that is currently

implemented using SC.

Next, it will be very interesting to extend the applications of SSGX to other

problem domains such as Boolean and classification problems. To date, semantic-

based operators are often designed for regression problems only. Thus, it will be

very interesting to investigate the performance of semantic-based crossovers

including SSGX on classification problems. Finally, at the theoretical level, we want

to conduct a deeper analysis of the role of standard subtree crossover and geometric

crossover in SSGX during the evolutionary process to gain a better understanding of

the behavior of this operator.
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Appendix 1: List of operators tested

See Table 16.

Appendix 2: Sample output

As stated in Table 7, the trees output using GP with SSGX have a mean size close to

100 nodes. A typical output achieved on the UCI-I problem is shown:

add(mul(div(1,add(1,ep(sub(0,X2)))),add(mul(div(1,add(1,ep(sub(X3,X4)))),
add(sub(ep(ep(sub(sin(X5),X3))),div(1,add(sin(sin(X7)),X3))),
log(add(sub(mul(mul(X7,X1),X7),log(1)),div(0,1))))),mul(1,mul(div(1,
add(1,ep(ep(sub(X2,X3))))),add(div(1,1),log(X7)),div(sin(1),
add(sin(sin(X7)),X3))),X7))),mul(sub(1,div(1,add(1,ep(sub(div(1,
add(sin(ep(X4)),ep(ep(sub(X3,add(sin(sin(X7)),X3)))))),X2))))),
log(mul(X7,mul(X3,X3)))))

This tree shows several typical features. The root of the tree is add(mul(.),

mul(.)), which indicates the geometric crossover template TRSt1 þ ð1� TRÞSt2.
This pattern occurs at the root of many solution trees. However, here it occurs just

once in the tree, whereas with SGX this pattern is ubiquitous. The pattern

div(1,add(1,ep(sub(0,X2)))) also occurs near the root, indicating the

logistic mapping 1=ð1þ e�X2Þ applied to a random TR (here TR ¼ X2). Again, this

pattern occurs in many of the solution trees. In some cases the pattern occurs

partially, since after creation through crossover it can be altered by later crossover

or mutation. However, the pattern is again not ubiquitous in the tree: in this case, it

occurs fully once, and partially 4 times.

Appendix 3: Figures

This appendix presents figures for the results in Sects. 6 and 7. Figure 1 shows the

mean best fitness of the five crossovers over the course of the evolutionary process

on K-6, K-11, K-14 and UCI-1. Overall, all operators but SGX performed better

Table 16 The operators tested

in the paper
Abbreviation Meaning

SC Standard crossover

SSC Semantic similary-based crossover

MSSC The most semantic similarity-based crossover

SGX Semantic geometric crossover

AGX Approximate geometric crossover

RDO Random desired operator

SSGX Subtree semantic geometric crossover

SSGX-SSC SSGX combined with SSC

SSGX-MSSC SSGX combined with MSSC
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than SC during the evolutionary process. However, RDO and AGX tended to

converge early. These operators quickly improved the error on the training data after

around twenty generations but made little progress after that point. Conversely,

SSGX kept improving the fitness until the end of the evolution (generation 100).

Figure 2 presents the average of the size of individuals over the generations of

the four operators (we exclude SGX here since the size of individuals of SGX is too

high to be shown) on the same four problems. It can be seen that RDO is the

crossover that usually grew fastest. SSGX grew fast at the beginning of the

evolutionary process (about 20 generations). However, after that point, the operator

did not grow as fast as others. Among the four operators, AGX is the operator that

grew least.

The semantic distance between parents and children with the five tested operators

is presented in Fig. 3. SGX is the operator that created the smallest changes in

semantics during the evolutionary process. The semantic distance between children

and their parents in SGX quickly reduced to nearly zero after about five generations.

The semantic step with AGX and RDO was also much less than SC and SSGX, but

this value was not as small as with SGX. Two other operators (SC and SSGX) made

a greater move in the semantic space, and SSGX is the operator that make the

largest change. However, this value was averaged over both standard and geometric

portions of the crossover. In SSGX, the semantic change in the geometric portion

Fig. 1 Mean best fitness of five operators over the generations
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Fig. 3 Average of semantic distance between offspring and parents over the generations

Fig. 2 Average of population size over the generations
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was often much smaller than that with SC (see Table 9). Consequently, SSGX can

exploit the search space better than SC.

Figure 4 shows the constructive rate of five operators on the same four problems.

It can be seen that the constructive rate of SGX was far higher than other crossovers.

However, since its search step was much smaller, the performance of SGX was not

always better than SC as shown in Sect. 6. Comparing the four subtree crossovers,

Fig. 4 shows that their constructive rate is mostly equal.

References

1. L. Altenberg, The evolution of evolvability in genetic programming, in Advances in Genetic Pro-

gramming, chapter 3, ed. by K.E. Kinnear Jr (MIT Press, Cambridge, 1994), pp. 47–74

2. K. Bache, M. Lichman, UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

3. L. Beadle, C.G. Johnson, Semantically driven crossover in genetic programming. In Proceedings of

the IEEE World Congress on Computational Intelligence (IEEE Press, 2008), pp. 111–116

4. L. Beadle, C.G. Johnson, Semantic analysis of program initialisation in genetic programming. Genet.

Program. Evolvable Mach. 10(3), 307–337 (2009)

5. L. Beadle, C.G. Johnson, Semantically driven mutation in genetic programming. In ed. by A. Tyrrell.

2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18-21 May 2009. IEEE

Computational Intelligence Society, (IEEE Press), pp. 1336–1342

6. A. Boukerche, Algorithms and Protocols for Wireless Sensor Networks (Wiley-IEEE Press, Cam-

bridge, 2008)

Fig. 4 Average of constructive rate over the generations

Genet Program Evolvable Mach

123

http://archive.ics.uci.edu/ml


7. M. Castelli, D. Castaldi, I. Giordani, S. Silva, L. Vanneschi, F. Archetti, D. Maccagnola, An efficient

implementation of geometric semantic genetic programming for anticoagulation level prediction in

pharmacogenetics. In Proceedings of the 16th Portuguese Conference on Artificial Intelligence, EPIA

2013. Lecture Notes in Computer Science, vol. 8154 (Springer, Sept. 9-12, 2013), pp. 78–89

8. R. Cleary, M. O’Neill, An attribute grammar decoder for the 01 multi-constrained knapsack problem.

In Proceedings of the Evolutionary Computation in Combinatorial Optimization, (Springer Verlag,

2005), pp. 34–45

9. M. de la Cruz Echeanda, A. O. de la Puente, M. Alfonseca, Attribute grammar evolution. In Pro-

ceedings of the IWINAC 2005, (Springer Verlag, Berlin Heidelberg, 2005), pp. 182–191

10. E. Glaab, J. Bacardit, J.M. Garibaldi, N. Krasnogor, Using rule-based machine learning for candidate

disease gene prioritization and sample classification of cancer gene expression data. PLoS One 7,
1–18 (2012)

11. P.D. Grunwald, The Minimum Description Length Principle (MIT Press, 2007)

12. P. He, L. Kang, C.G. Johnson, S. Ying, Hoare logic-based genetic programming. Sci. China Inform.

Sci. 54(3), 623–637 (2011)

13. C.G. Johnson, Deriving genetic programming fitness properties by static analysis. In Proceedings of

the 4th European Conference on Genetic Programming (EuroGP2002), (Springer, 2002),

pp. 299–308

14. C.G. Johnson, What can automatic programming learn from theoretical computer science. In Pro-

ceedings of the UK Workshop on Computational Intelligence, (University of Birmingham, 2002)

15. C.G. Johnson, Genetic programming with fitness based on model checking. In Proceedings of the

10th European Conference on Genetic Programming (EuroGP2002), (Springer, 2007), pp. 114–124

16. G. Katz, D. Peled, Genetic programming and model checking: Synthesizing new mutual exclusion

algorithms. In Automated Technology for Verification and Analysis. Lecture Notes in Computer

Science, vol. 5311 (Springer, 2008), pp. 33–47

17. M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling. In Proceed-

ings of EuroGP’2003 (Springer-Verlag, 2003), pp. 70–82

18. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection

(The MIT Press, Cambridge, 1992)

19. K. Krawiec, Medial crossovers for genetic programming. In Proceedings of the 15th European

Conference on Genetic Programming, EuroGP 2012. LNCS, vol. 7244 (Springer Verlag, Malaga,

Spain, 11–13 Apr. 2012), pp. 61–72

20. K. Krawiec, P. Lichocki, Approximating geometric crossover in semantic space. In ed. by F.

Rothlauf, Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Mon-
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