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Abstract 

We investigate new numerical results of thermal buckling for functionally graded plates (FGPs) 

with internal defects (e.g., crack or cutout) using an effective numerical method. The new 

formulation employs the first-order shear deformation plate theory associated with extended 

isogeometric analysis (XIGA) and level sets. The material properties of FGPs are assumed to vary 

continuously through the plate thickness obeying a power function. The internal defects are 

represented by the level sets, while the shear-locking effect is eliminated by a special treatment, 

multiplying the shear terms by a factor. In XIGA, the isogeometric approximation enhanced by 

enrichment is cable of capturing discontinuities in plates caused by internal defects. The internal 

discontinuity is hence independent of the mesh, and the trimmed NURBS surface to describe the 

geometrical structure with cutouts is no longer required. Five numerical examples are considered 

and numerical results of the critical buckling temperature rise (CBTR) of FGPs computed by the 

proposed method are analyzed and discussed. The accuracy of the method is demonstrated by 

validating the obtained numerical results against reference solutions available in literature. The 

influences of various aspect ratios including gradient index, crack length, plate thickness, cutout 

size, and boundary conditions on the CBTR are investigated. 

  

Keywords: Thermal buckling; Functionally graded plates; NURBS; Isogeometric analysis; 

First-order shear deformation theory; Crack; Cutout. 

 

1. Introduction 

Although the functionally graded materials (FGMs) in general or the functionally 

graded plates (FGPs) in particular have been extensively used in many engineering 

applications [1], however, the FGPs may develop defects or flaws during manufacturing or 

in-service suffering external loading conditions. In addition to the defects, the inner cutouts 

with different shapes are often created in the plate elements as many practical requirements. 

The presence of defects/flaws or such inner cutouts greatly affects the mechanical 

behaviors of structures and their performance in whole or part. Consequently it is very 

important to understand the mechanical response of FGPs with internal flaws [2,3]. The 

temperature rising in plates produces in-plane compressible forces which make the 
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structures to be buckled before reaching to a yield stress, and the structure suffers large 

deformation behavior and reduces load carrying capacity at the buckling state. 

Consequently, the thermal buckling problem under study plates plays an important role in 

practical application. This paper thus focuses particularly on the study of thermal buckling 

phenomena of FGPs with internal flaws under the variation of the temperature.  

It is fairly well covered in the literature on the investigation of thermal buckling 

behavior of FGPs. Javaheri and Eslami [4] presented closed-form solutions for thermal 

buckling of FGPs under four types of thermal loads. Shariat and Eslami [5] developed 

closed-form solutions for mechanical and thermal buckling of thick FGPs using the third 

order shear deformation theory (TSDT). Woo and Meguid [6] analytically investigated the 

thermo-mechanical post-buckling of FGPs and shallow cylindrical shells. Also in 

closed-form, Najafizadeh and Heydari [7] analyzed the critical thermal buckling 

temperature of functionally graded circular plates using the TSDT. Khalfi et al. [8] 

proposed a refined shear deformation theory and applied it to analyze thermal buckling of 

solar FGPs with simply supported boundary conditions and resting on elastic foundation. 

Malekzadeh [9] studied thermal buckling of functionally graded arbitrary straight-sided 

quadrilateral plates based on 3D elasticity theory, and the Trefftz criterion was used to 

obtain the stability equations. The effect of geometrical imperfections on thermal buckling 

of FGPs was investigated by Shariat and Eslami [10]. Jaberzadeh et al. [11] used the 

element-free Galerkin method for thermal buckling analysis of functionally graded skew 

and trapezoidal plates, while Zhao et al. [12] explored the mechanical and thermal 

buckling behaviors of FGPs using the first-order shear deformation plate theory (FSDT) in 

conjunction with the element-free kp-Ritz method.  

Nevertheless, studies on thermal buckling failure behaviors of FGPs with internal 

defects are rather rare. Thermal buckling of FGPs with temperature dependent material 

properties and containing a central circular cutout was investigated by Saji et al. [13]. 

Thermal buckling of composite plates with a circular cutout was investigated by 

Shaterzadeh et al. [14] using the finite element method (FEM), and the effect of boundary 

conditions, cutout size and plate aspect ratio on critical thermal buckling temperature was 

explored. Recently, Natarajan et al. [15] examined the effect of local defects such as cracks 
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and cutouts on the buckling behaviour of FGPs subjected to mechanical and thermal load 

using the extended finite element method (XFEM) and the FSDT.   

Isogeometric analysis (IGA) [16] is a new numerical method that shares the same 

splines basis function in representing the geometry in design and solution approximations 

in analysis. The IGA is based on CAD splines (e.g., NURBS), and proved to be an efficient, 

highly accurate, robust and higher order continuity approach. The desirable characteristics 

of IGA make it superior to the traditional FEM in some aspects as it has successfully 

applied to many engineering problems, e.g., see [17-24]. 

Similar to the XFEM, the standard IGA approximation is enriched with some special 

functions around the discontinuities in the framework of partition of unity to create a novel 

method, namely, the so-called extended isogeometric analysis (XIGA) [20, 25]. The XIGA 

contains the inherent advantages of both IGA and local enriched partition-of-unity method 

(XFEM). The XIGA has been applied to solve linear elastic fracture mechanics problems 

[25-28], static and dynamic cracks in piezoelectric materials [20], curved interface 

problems [29], vibration analysis of cracked FGM plates [30], and stochastic fatigue crack 

growth of interfacial crack in bi-layered FGMs [31].  

In this paper, we investigate the thermal buckling behaviors of FGPs with internal 

defects such as cracks or cutouts using NURBS–based XIGA with level sets and the FSDT. 

Parametric studies are performed by investigating the critical temperature value versus 

various aspect ratios including the gradient index, crack location, crack length, 

width-to-thickness, boundary conditions, and cutout size. The nature of the tensor product 

of the NURBS basis functions induces the difficulty in treating the trimmed objects like 

internal cutouts, as a result of very complicated tasks in modeling cutouts using the 

conventional NURBS-based IGA. In the contrary, by using the level sets in describing the 

discontinuities and the discontinuities are independent of the mesh, so the trimmed 

NURBS surface to describe the geometrical structure with cutouts is thus no longer 

required.  

The body of the paper is outlined as follows. Problem model of FGPs is described in 

Section 2. In Section 3, XIGA formulation for thermal buckling analysis of plates with 

internal defects is derived. Numerical results and discussions are provided in Section 4. 
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Section 5 closes with some concluding remarks. 

 

2. Problem model definition 

2.1. Functional graded materials 

In this work, a ceramic-metal FGP with thickness h is considered. The bottom and top 

faces of the plate are assumed to be fully metal and ceramic, respectively, and the gradient 

properties changed along with z-direction as depicted in Fig. 1. The xy-plane reveals the 

mid-plane of the plate, while the positive z-axis is upward from the mid-plane. The 

Poisson’s ratio ν  is assumed to be constant throughout the study, but the Young’s 

modulus E and thermal expansion coefficeint α  vary through the thickness with a power 

law distribution: 

( ) ( )
1

2

n

m c m

z
E z E E E

h

 
= + − + 

 
                    (1) 

( ) ( )
1

2

n

m c m

z
z

h
α α α α

 
= + − + 

 
                    (2) 

where n denotes the gradient index, z is the thickness coordinate variable with 

/ 2 / 2h z h− ≤ ≤ , and subscripts c and m represent the ceramic and metal constituents, 

respectively. 

 

     

Fig .1 Schematic geometry of an FGP. 

 

2.2. Kinematic equations of plates 

  Based on the first order shear deformation plate theory (FSDT), the displacements u, v, 
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w at a point ( , , )x y z  in the plate, see Fig. 1, are expressed as 

( ) ( ) ( )0, , , ,xu x y z u x y z x yβ= +                     (3a) 

( ) ( ) ( )0, , , ,yv x y z v x y z x yβ= +                     (3b) 

( ) ( )0, , ,w x y z w x y=                              (3c) 

where 0u , 0v , 0w  are the mid-plane displacements components in the x, y, z axes, 

respectively. xβ  and yβ  are the transverse normal rotations in the xz- and yz- planes of 

mid-plane. 

By making the usual small strain assumptions, the strains are expressed in the following 

matrix form 
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with 

0,

0,

0, 0,

x

p y

y x

u

v

u v

 
 

=  
 + 

ε , 

,

,

, ,

x x

b y y

x y y x

β

β

β β

 
 

=  
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β
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+ 
=  

+ 
γ           (5) 

   According to Hooke’s law for plane stress elastic problem, the stresses can be written 

as  

( )( )m p b T
z z= + −σ D ε ε ε  , ( )s

z=τ D γ                (6) 

with 

T

x y xyσ σ τ =  σ                          (7a) 
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( ) [ ]1 1 0
T

T z Tα ∆ε =                        (7c) 

T

xz yzτ τ =  τ
                             (7d) 
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0 12 1
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kE z
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=  +  

D                       (7e) 
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T

xz yzγ γ =  γ                             (7f) 

where ( )zα  is the coefficient of thermal expansion, T∆  is the temperature change, k is 

the shear correction factor, and k = 5/6 is adopted in this study. 

 

2.3 Weak-form  

  For the buckling analysis, the weak-form can be expressed as follows: 

0
0T T s T T

T
d d d w wdδ δ δ δ

Ω Ω Ω Ω
Ω + Ω − Ω + ∇ ∇ Ω =∫ ∫ ∫ ∫ε Dε γ D γ ε Dε N        (8) 

where  

p
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/2

h
s

s
h

z dz
−
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m 
=  
  

D
D

B
                             (9g) 

and [ ]/ /
TT

x y∇ = ∂ ∂ ∂ ∂  is the gradient operator, 

0 0

0 0 0

x xy

xy y

N N

N N

 
 
  

N =  is the in-plane 

resultant forces under temperature change.  

 

3. XIGA formulation for thermal buckling of plates with internal defects 

3.1 The NURBS basis functions 

A knot vector in one dimension is a set of non-decreasing numbers in the parametric 

space, that is ( ) { }1 2 1, ,..., n pk ξ ξ ξ ξ + += , 1i i
ξ ξ +≤ , where [ ]0,1iξ ∈ , and 

i
ξ  is the ith knot, 

n and p are the number of basis functions and the order of the B-spline basis function, 
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respectively. Given a knot vector ( )ξk , the B-spline basis function ( ),i pN ξ  is defined 

recursively as follows [20, 32]:  

1

,0

1
( )

0 otherwise

i i

iN
ξ ξ ξ

ξ +≤ <
= 


                      (10) 

and 

1

, , 1 1, 1

1 1

( ) ( ) ( )
i pi

i p i p i p

i p i i p i

N N N
ξ ξξ ξ

ξ ξ ξ
ξ ξ ξ ξ

+ +

− + −

+ + + +

−−
= +

− −
 for 1p ≥     (11) 

For two-dimensional problem, the NURBS basis functions can be constructed by 

taking the tensor product of two one-dimensional B-spline basis functions as [20, 32] 

, , ,,

,

, , ,

1 1

( ) ( )
( , )

( ) ( )

i p j q i jp q

i j n m

i p j q i j

i j

N N w
R

N N w

ξ η
ξ η

ξ η
= =

=

∑∑
                  (12) 

where 
, ( )

i p
N ξ

 
and 

, ( )
j q

N η
 

are the B-spline basis functions of order p  in the ξ  

direction and order q  in the η  direction, respectively; , ( )
j q

N η  follows the recursive 

formula shown in Eqs. (10) and (11) with knot vector ( )ηk , and the definition of ( )ηk  

is similar to that of ( )ξk ; ,i j
w  represents the weight. 

 

3.2. The XIGA 

Compared with the conventional XFEM, the XIGA utilizes the NURBS basis 

functions instead of the Lagrange polynomials in the approximation of the displacement 

field. Owing to the higher-order continuity of NURBS, the obtained stresses are smooth 

which is unavailable in XFEM with C0-continuity of inter-element. 

3.2.1 XIGA approximations for plate with cracks  

The deflection and rotations of plates using the XIGA can be approximated as follows 

[33-36]: 

( )( ) ( )( ) ( ) ( ) ( )( )( )
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( )( ) ( )( ) ( ) ( ) ( )( )( )
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s cut
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where ( )
i

R x , ( )
j

R x , and ( )
k

R x  are the NURBS basis functions; s
N is the set of all 

control points in the discretization; cut
Ν  is the set of control points whose basis function 

support is entirely split by the crack, and are enriched with a modified Heaviside step 

function ( )H x  which takes on the value +1 above the crack and -1 below the crack; 

tip
N  is the set of control points whose basis function support is partly split by the crack, 

and are enriched with the crack-tip branch enrichment functions; 
i

u , 
i

v , 
i

w , 
x

β  and 

y
β  represent the unknown vectors associated with the continuous part of the finite 

element solution, respectively, jb  is the additional enriched degree of freedom vector at 

the node associated with the modified Heaviside function, and klc  denotes the additional 

enriched degree of freedom vector associated with the elastic asymptotic crack-tip 

functions. The asymptotic crack-tip functions are given by [33-36] 

( )
3 3 3 3

2 2 2 2
3 3

, sin , cos , sin , cos
2 2 2 2

l
r r r r r

θ θ θ θ
θ

         
=         

         
G            (14a) 

( ) ( ) ( )
1 1 1 1

2 2 2 2, sin , cos , sin sin , cos sin
2 2 2 2

l r r r r r
θ θ θ θ

θ θ θ
        

=         
        

F   (14b) 

 

3.2.2 XIGA approximation for plate with cutouts 

According to [37], the deflection and rotations of plate with cutouts using the XIGA can 

be approximated as  

( )( ) ( ) ( )( ), , , ,
s

h h h

i i i i i i i

i

u v w H R u v w
∈

= ∑
N

x x x             (15a) 

( )( ) ( ) ( )( ), ,
s

h h

x y i xi yi

i

H Rβ β β β
∈

= ∑
N

x x x               (15b) 

with 

( )
1

0
H

∈Ω
= 

∉Ω

x
x

x
                        (16) 
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Remark #1: In practice, we may implement the displacement functions similar to that 

in the conventional IGA, instead of the displacement function described in Eq. (15), and 

merely remove the integral on the cutout part in the calculation of the stiffness matrix, and 

the geometrical stiffness matrix. 

Remark #2: In the XIGA, it should be stressed out here that the boundary of the cutout 

is represented by the zero level curves. The boundary is located from the value of the level 

set information stored at the nodes, thus the trimmed NURBS surface is no longer required 

to describe the geometrical structure with cutouts [38].   

 

3.3 Discrete equations 

Substituting Eq. (13) into Eq. (5), the in-plane, bending and shear strains can be 

rewritten as 

( ) ( ) ( )
1

m n T
T T TT

T T T p b s

p b i i i i

i

×

=

   =    ∑ε ε γ B B B δ              (17) 

where 
i
δ  is the vector of nodal degrees of freedom associated with the control point i , 

including the continuous displacements and enriched variables, and  

std enr =  B B B                                (18) 

where stdB  and enrB  are the standard and enriched strain matrices of B  defined in the 

following forms 

,

,

, ,

0 0 0 0

0 0 0 0

0 0 0

i x

p

i i y

i y i x

N

N

N N

 
 

=  
 
 

B                      (19a) 

 

,

,
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=  
 
 

B                      (19b) 

,

,

0 0 0 0

0 0 0 0

i xs

i

i y

N

N

 
=  
 

B                        (19c) 

where 
iN  can be either the NURBS basis functions ( )iR x  or enriched functions 
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( ) ( ) ( )( )j jR −x H x H x , ( ) ( ) ( )( )
4

1

, ,k l l k k

l

R r rθ θ
=

 
− 

 
∑x G G , 

( ) ( ) ( )( )
4

1

, ,k l l k k

l

R r rθ θ
=

 
− 

 
∑x F F . 

  Substituting Eq. (13) with relation in Eq. (17) into Eq. (8), the eigenvalue formulations 

of buckling plate problem can be rewritten as  

( ) 0cr Gλ+ =K K δ                         (20) 

where 
cr

λ  is the critical buckling load; and K and 
G

K  are the global stiffness matrix 

and geometrical stiffness matrix, respectively, which are expressed as 

{ } { }
T

p b p b sT s sd
Ω

= + Ω∫K B B D B B B D B             (21) 

 
0

T

G b bd
Ω

= Ω∫K G N G                                 (22) 

with 

,

,

0 00 0

0 00 0

i x

bi

i y

N

N

 
=  
 

G                          (23) 

 

3.4 Treatment of shear-locking effect 

The shear locking also appears in low-order NURBS isogeometric elements for the very 

thin plate [19]. The shear locking is suppressed by introducing a modification factor into 

the shear terms, and the modified material matrix related to shear terms is given as [33] 

2

2 2

s s h

h lα
=

+
D D                        (24) 

where l is the longest length of edges of the NURBS element and 0.1α =  is selected in 

this study. 

 

4. Numerical results and discussions 

In this section, the thermal buckling analysis of FGPs with through-thickness crack or 

cutout using the proposed XIGA is presented. In all numerical calculations, the cubic order 

NURBS basis functions are used. For the numerical integration, a 4×4 Gaussian 
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quadrature scheme is assigned for the normal elements, while a triangular sub-domain 

technique is applied to the elements which are cut by crack or cutout. All the plates being 

studied are considered under uniaxial load. The critical buckling temperature rise (CBTR), 

which is solved directly from the eigenvalue equation of buckling plates by the developed 

XIGA, is numerically analyzed. 

For convenience in representing the numerical results, different boundaries of the plate 

are named as simply supported (S), clamped (C), and free (F). For the clamped boundary 

conditions, the rotations are obtained from the derivatives of transverse deflection. The 

constraint on the rotations is hence imposed by fixing the transverse defection with two 

rows of control points as described in [19]. Throughout the study, two FGPs made of 

Al/Al2O3 and Al/ZrO2 material with their material parameters in Table 1 are considered.  

 

Table 1  

Properties of the functionally graded material components. 

Material 
Properties 

E (GPa) ν  α (/
o
C) 

Aluminium (Al) 70 0.3 23×10
-6

 

Alumina (Al2O3) 380 0.3 7.4×10-6 

Zirconia (ZrO2) 151 0.3 10×10-6 

 

4.1. Convergence and accuracy studies 

The thermal buckling of a square Al/Al2O3 plate (a=b=0.2m) subjected to a uniform 

temperature rise is considered, verifying the convergence property and the accuracy of the 

developed XIGA method based on the FSDT. All the boundaries of plate are fully clamped. 

We typically consider two plate thickness ratios, for instance, a/h=50 and 100, and various 

values of the volume fraction exponent taken from 0 to 5. As reported in Table 2, the 

CBTR calculated by the present XIGA for the two specified thickness ratios converges 

well to the reference solutions [12] as the physical mesh gets finer. The reference solutions 

[12] were derived based on the FSDT in conjunction with the element-free kp-Ritz method, 



  

 13

in which the displacement field is approximated by a set of mesh-free kernel particle 

functions while the bending stiffness is evaluated using a stabilized conforming nodal 

integration technique. The present numerical results of the CBTR also reveal one 

interesting issue that even a very coarse mesh (e.g., 8×8) can also yield acceptable 

solutions, demonstrating one of the advantages of the XIGA as compared with the FEM 

which often requires fine meshes for the solution. In the rest of the manuscript, we 

however use a regular physical fine mesh for all the computational models, which is to just 

ensure the accuracy of the solutions.  

Also in Table 2, when the plate becomes more and more metal, i.e., increasing the 

volume fraction exponent (n), the CBTR initially decreases for n ranging from 0 to 2, and a 

slight change of the CBTR is observed when escalating n further to 5. The decrease of the 

CBTR from 0 to 2 is significant, in about twice. This phenomenon can also be found the 

same for the reference solutions utilizing the element-free kp-Ritz method [12]. The 

decrease of the CBTR may be due to the fact that the elasticity modulus of the metal (Al) is 

much smaller than that of the ceramic (Al2O3) (see Table 1 for the material parameters), 

implying that the ceramic is stiffener, and that makes the critical buckling coefficient larger. 

More interestingly, it can be concluded that the thinner plates (e.g., a/h=100) undergo a 

smaller CBTR than the thicker ones (e.g., a/h=50). This conclusion can be found from the 

reference work [12] as well. 
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Table 2  

Comparison of the CBTR of a fully clamped square Al/Al2O3 plate for different aspect 

thickness-to-length ratios altered by the volume fraction exponents obtained by the 

developed XIGA and the reference solutions [12]. 

a/h Elements 
 The volume fraction exponent (n) 

0 0.5 1 2 5 

100 

4×4 52.534 30.186 24.932 22.065 22.251 

8×8 45.468 25.777 21.143 18.742 19.315 

16×16 45.268 25.652 21.035 18.647 19.232 

20×20 45.266 25.651 21.034 18.646 19.231 

24×24 45.265 25.650 21.033 18.646 19.231 

Ref. [12 ] 44.171 24.899 20.771 18.489 19.150 

50 

4×4 190.710 108.582 89.245 79.059  80.906 

8×8 180.360 102.266 83.876 74.340  76.585 

16×16 180.132 102.123 83.752  74.232 76.490  

20×20 180.128 102.121 83.751 74.230  76.489 

24×24 180.127 102.120 83.750 74.230 76.488 

Ref. [12 ] 175.817 99.162 82.357 71.013 74.591 
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In order to prove the validity of the present procedure, the thermal buckling of a square 

Al/Al2O3 simply-supported plate (a=b=1m) with thickness to span ratio h/a=0.2 subjected 

to a uniform temperature rise is further considered. Various values of the volume fraction 

exponent taken from 0 to 3 are examined. As reported in Fig. 2, the values of CBTR 

calculated by the present XIGA are in good agreement with the semi-analytical solutions 

[39].   

 

 

Fig. 2 Critical buckling temperature of FGM plate under uniform temperature rise vs 

gradient index of the plate. 

 

4.2. An edge cracked rectangular FGP 

Next numerical example deals with a rectangular Al/Al2O3 plate with an edge crack as 

shown in Fig. 3. The length and width of plate are set up to be a =2m, and b = 1m. The 

crack is assumed to be parallel to the x-axis. A regular mesh of 31×15 elements is used for 

the analysis. Different boundary conditions of plate including CCCC, SCSC, SSSS and 

SFSF are taken. The CBTR as a function of the volume fraction exponent (n) is calculated 

by using the proposed method and is then sketched in Fig. 4. The present CBTR results of 

the Al/Al2O3 plate shown in Fig. 4 are to show the effect of the boundary conditions on the 
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CBTR coefficient. In addition, both the plates with and without cracks are taken into 

account, which is to further interpret the influence of the defect or crack on the CBTR. We 

select a crack length of c/a=0.5 for the investigation. 

First, it is evident that the effect of the crack on the CBTR of FGPs is significant as the 

CBTR are found largely different between the plates with and without crack. The CBTR 

induced by the plates with crack is smaller than that caused by the perfect plates. It means 

that the imperfect plates get highly critical as compared with the perfect ones. Loosely 

speaking, the structures suffering defects or cracks are easily to get damaged or destroyed 

in the critical buckling circumstance. However, a great effect of the crack on the CBTR 

takes place clearly for the boundary conditions CCCC, SSSS and the SCSC, while nothing 

really has been seen to the SFSF. Generally, when the plates become more freely in 

constrain, the CBTR may become similarly. Anyway, the results are very interesting since 

it shows us one of the reasons why the studies on the cracks under thermal buckling load 

are important. 

Also in Fig. 4, it is again found that the CBTR decreases with increasing the volume 

fraction exponent. It is indicated clearly a great impact of the volume fraction on the FGMs, 

especially exhibiting a great difference on the CBTR behaviors among the ceramic and the 

ones whose properties become more and more metal.  

Further observation on the numerical CBTR results in Fig. 4, and additionally 

presented in Table 3, shows us a strong influence of the boundary conditions on the CBTR. 

The crack alters the CBTR as it is found to be decreased for the CCCC and SSSS and 

SCSC boundary conditions. The CBTR of the CCCC is much greater than that of a SSSS 

as well as other boundary conditions. In view of this, since the thermal expansion 

coefficient raising from ceramic to metal, approximately three time as seen in Table 1, the 

thermal body forces or constrains make the CBTR decreases when increasing the volume 

fraction exponents as well as when varying the boundary conditions.  
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Fig. 3 Model geometry of a rectangular FGP with an edge crack and its regular 

physical mesh of 31×15 elements. The “star” sign represents the enriched elements 

that are completely cut by crack, while the “square” sign denotes the enriched 

elements that contain the crack-tip. 
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Fig. 4 Effect of crack and boundary conditions on the CBTR as a function of the volume 

fraction exponent of a rectangular Al/Al2O3 plate (h/b = 0.1). 

 

Table 3. The CBTR of a rectangular Al/Al2O3 plate with an edge crack for different 

boundary conditions (h/b = 0.01, c/a = 0.5) altered by the volume fraction exponent. 

n CCCC  SCSC SSSS SFSF 

0 17.036  14.415 6.225  1.960  

0.5 9.665  8.176 3.531 1.111 

1 7.930  6.707 2.897  0.911 

5 7.236  6.123 2.644 0.833 
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Next, the study on the variation of the CBTR affected by the crack size is now explored. 

Similar to the previous example, we adopt different boundary conditions. We also employ 

a regular physical mesh of 31×15 elements for the analysis. Fig.5 shows the present 

numerical results of the CBTR as a function of crack sizes of an Al/Al2O3 plate with an 

edge crack with n =1 for various boundary conditions. It is evident that increasing the 

crack size leads to a decrease of the CBTR, which is found clearly for the cases of CCCC 

and SSSS and SCSC boundary conditions, while the CBTR for the SFSF varies very 

slightly, or it can be said, the variation of the CBTR with respect to the crack sizes. In other 

words, the crack sizes have no impact on the CBTR for the SFSF plate. In view of this 

phenomenon, when the crack size is set to be larger, the number of free boundaries of the 

plate is thus increased. In other words, the plates are more flexible now. The thermal forces 

in this circumstance can make the elastic energy in the system increases and as a result of 

decreasing the CBTR. Additionally, we again find that the CBTR of a fully clamped plate 

is much larger than that of simply supported one. Less constrains of plate from fully 

clamped to free or supported makes it freer and the elastic energy in the system is 

increased, which induces the decrease of the CBTR.  

 

 

Fig. 5  Effect of crack size on the CBTR of a rectangular Al/Al2O3 plate with an edge 
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crack (h/b = 0.01) altered by the boundary conditions.   

4.3. A square Al/ZrO2 plate with an inclined central crack 

A square Al/ZrO2 plate with an inclined central crack subjected to a temperature rise as 

depicted in Fig. 6 is further studied. The length and thickness of plate are set to be a =1m, 

and h = 0.01m for this analysis.  

 

 

Fig. 6 The model geometry of a square Al/ZrO2 with an inclined central crack. 

 

This model of plate allows us to study the influence of the inclination of cracked angle 

α  on the CBTR. We thus explore the effects of both the gradient index n  and the 

inclination of cracked angle α  on the CBTR. A regular physical mesh of 31×31 elements 

is used. Table 4 presents the gained numerical results of the CBTR of a fully simple 

supported Al/ZrO2 plate account for different crack orientations varying from 0o to 90o . 

The present numerical results of the CBTR reveal that increasing the volume fraction 

exponent n  induces a small decrease of the critical buckling load. The CBTR behaves 

symmetrically with respect to a crack orientation o45α = and it decreases as the crack 

orientation α  increases. The same conclusion was drawn by Natarajan et al. [15], in 

which the XFEM was used. Consequently, the volume fraction exponent greatly alters the 
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critical thermal buckling temperature of FGPs. 

 

Table 4  

Effect of the inclined angle of crack on the CBTR of a fully simple supported Al/ZrO2 

plate (c/a =0.6) altered by volume fraction exponent.  

n 
Inclined angle (degree) 

0 15 30 50 60 75 90 

0 8.894 8.797 8.608 8.506 8.608 8.797 8.894 

0.5 6.114 6.047 5.918 5.848 5.918 6.047 6.114 

1 5.412 5.353 5.238 5.176 5.238 5.353 5.412 

2 5.012 4.958 4.851 4.794 4.851 4.958 5.012 

5 4.771 4.718 4.616 4.561 4.616 4.718 4.771 

   

The effects of crack size and the boundary conditions on the CBTR are also studied for 

this square FGP. Fig.7 sketches the present results computed for the CBTR of a square 

Al/ZrO2 plate with n =1 for different crack sizes and different boundary conditions. 

Similar to the previous example, it is again found here in the numerical results that the 

CBTR decreases with increasing the crack sizes, but this behavior can only be found for 

the plates with the CCCC and SSSS and SCSC boundary conditions. In the contrary, the 

present numerical results accounted for SFSF plate exhibit no any effects of the crack size 

on the CBTR. In other words, it can be concluded that not all the boundary conditions have 

impacts on the CBTR of FGPs, they possess different behaviors from each boundary 

condition to another boundary condition as clearly observed in the given numerical results.  
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Fig. 7 Effect of crack size and boundary condition on the CBTR of a square Al/ZrO2 plate 

for different boundary conditions.   

 

4.4. A skewed FGP with an edge crack 

Since the specific structures like skew plates have been applied to a variety of 

engineering application including, especially in the construction of aerospace, railway, 

civil and automotive structures. We thus devoted to the next numerical example by 

considering a skewed Al/Al2O3 plate with a = 2m, b=1m as schematically shown in Fig. 8. 

The aspect ratios such as h/b = 0.01 and c/a = 0.3 are taken for the analysis. In this study 

we adopt a regular physical mesh of 31×15 elements. We focus our attention on the 

numerical investigation of the effects of different gradient indexes, skew angles and the 

boundary conditions on the CBTR. 
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Fig. 8 Model geometry of a skewed plate with an edge crack and its regular physical mesh of a skew 

angle of 30θ = o  of 31×15 elements. The “star” sign represents the enriched elements that 

are completely cut by crack, while the “square” sign denotes the enriched elements that 

contain the crack-tip. 

 

The effects of the gradient index and the boundary conditions on the CBTR are 

explored. Table 5 presents the computed numerical results of the CBTR of a skewed 

Al/Al2O3 plate with 60θ = o for different volume fraction exponents and various boundary 

conditions including CCCC, SSSS, SCSC and SFSF. Not surprisingly, the behavior of the 

CBTR reported in Table 5 for this skew plate is quite similar to that accounted for the 

previous edge cracked rectangular FGP. It means that the gradient index n increases from 0 

to 5 to five leads to a decrease of the CBTR for all the considered boundary conditions. 

Obviously, the plates with a fully clamped boundary condition yield a larger CBTR than 

that of a simply supported boundary condition. 
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Table 5  

Effect of the volume fraction exponent and boundary conditions on the CBTR of a skewed 

Al/Al2O3 plate with an edge crack ( 60θ = o ). 

n CCCC  SCSC SSSS SFSF 

0 3.451  3.451 0.622  0.578  

0.5 1.956 1.956 0.355 0.331 

1 1.604 1.604 0.2917 0.273 

5 1.466 1.466 0.264 0.245 

10 1.506 1.506 0.269 0.249 

 

Figs.9 and 10 respectively presents the present numerical results of the CBTR 

computed by the developed XIGA for both fully clamped and simply supported skewed 

FGPs, taking into account the effect of the skew angles. We specifically take some skew 

angles of 150, 300, 450, 600, and 750. It is apparent that the influence of the skew angles on 

the CBTR is significant as the CBTR increases with increasing the skew angles. This 

physical behavior is found the same for two considered boundary conditions. Nevertheless, 

the values of the CBTR obtained by the clamped skewed FGPs are greater than those of the 

simply supported skewed FGPs. 
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Fig. 9 Critical buckling temperature rise for a CCCC skewed FGP with different skew 

angles. 

 

 

Fig. 10 Critical buckling temperature rise for a SSSS skewed FGP with different skew 

angles. 
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4.5. An Al/ZrO2 plate with a cutout 

The last example deals with a square Al/ZrO2 plate with a circular cutout at the centre as 

schematically depicted in Fig. 11. The geometry parameters are: a=10m, a/h = 100, the 

radius r/a =0.1, and the boundary of the circular cutout is free of loading. Table 6 tabulates 

the convergence of the CBTR with respect to mesh size. Based on our own numerical 

experiments, it is indicated in the examination of the progressive refinements that a set of 

18×18 elements is found to be adequate to model the full plate for the present analysis. 

 

 

Fig. 11 Model geometry of a square plate with a circular cutout 

 

Table 6  

Convergence study of the CBTR for a simply supported square Al/ZrO2 plate with circular 

cutout at the centre for accounted for different volume fraction exponents. 

Elements 
n 

0 1 5 

6×6 11.737  7.140 6.297 

12×12 10.630 6.468 5.702  

18×18 10.283 6.255 5.519  

24×24 10.272 6.248  5.513 
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 The influence of the aspect ratio of the radius 2r/a, the gradient index n  and the 

boundary conditions on the buckling behavior of an Al/ZrO2 plate is numerically studied. 

Fig. 12 shows that increasing the radius 2r/a and gradient index n  induces a decrease of 

the CBTR. The present numerical results are very interesting as they reveal also that the 

increase in the stiffness can cause an increase in the CBTR. It is important to observe from 

Fig.13 that the boundary conditions of FGPs in terms of the buckling analysis also alter the 

CBTR rise significantly. As expected, the CCCC plates yield a greater value of the CBTR 

compared with a SSSS one. 

Furthermore, we add in this example the first four mode shapes of FGPs obtained by 

the XIGA. We account for different boundary conditions of SSSS, CCCC, CSCS and 

CFCF, and a radius of 2r/a =0.2 and a gradient index of n =0.5 are taken. The first four 

modes of buckling behavior are then shown in Fig. 14. Similar to the numerical results, the 

mode shapes vary significantly dependent upon the boundary conditions on which the 

plates are constrained. 

 

 

Fig. 12 Effect of the aspect ratio of radius to length (2r/a) and the volume fraction 

exponent on the CBTR for a SSSS square Al/ZrO2 FGP. 
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Fig. 13 Effect of the boundary conditions on the CBTR for a SSSS square Al/ZrO2 FGP 

(2r/a =0.4) altered by the volume fraction exponent. 
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Mode SSSS CCCC CSCS CFCF 

1 

    

2 

    

3 

    

4 

    

Fig. 14 The first four buckling mode shapes of a square Al/ZrO2 FGP with a radius of 2r/a 

=0.2 and a gradient index n =0.5 for different boundary conditions. 
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The effect of cutout location on the CBTR of FGPs is additionally examined. A 

physical mesh of 24×24 is used, while the simply supported boundary condition is 

considered. We typically consider three center coordinates of the cutout, e.g., (2m, 8m), 

(5m, 8m), and (8m, 8m) for a radius of 2r/a =0.2. The numerical results of the CBTR for a 

simply supported FGM plate are reported in Table 7. For this particular case of study, the 

present numerical results reveal an insignificant effect of the location of the cutout on the 

CBTR. Numerically, we find that the CBTR for the plate with the cutout located at the 

center is slight smaller than that for the other cases. Loosely speaking, it might be 

understood that the plates become highly critical if the defects or cutout locate closer to 

their boundaries, where the tendency of damaging the structures becomes highly possible.  

Also in Table 7, interestingly, the volume fraction exponent greatly alters the CBTR 

with different locations of the cutout. The CBTR decreases with increasing the volume 

fraction. Furthermore, the first four buckling mode shapes of FGPs obtained by the XIGA 

for different cutout locations with a radius of 2r/a =0.2 and a gradient index n =1 are also 

depicted in Fig. 15. Clearly, the same boundary conditions and the same plates, but the 

buckling modes vary dependently on the location of the cutout. 

 

   

Table 7  

The CBTR for a simply supported square Al/ZrO2 plate with a circular cutout considering 

different locations and various volume fraction exponents. 

Center coordinates 

of the cutout 

n 

0 1 5 

(2m,8m) 12.347 7.510 6.627 

(5m,8m) 12.043 7.324 6.463 

(8m,8m) 12.347 7.510 6.627 

(5m,5m) 10.272 6.248  5.513 
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Mode (2m,8m) (5m,8m) (8m,8m) 

1 

   

2 

   

3 

   

4 

   

Fig. 15 The first four mode shapes of a SSSS square Al/ZrO2 FGP with the radius 2r/a 

=0.2 and the gradient index n =1 for different cutout locations. 

 

 

5. Conclusions 

We develop an effective and accurate NURBS-based XIGA using the first-order shear 

deformation plate theory for the analysis of thermal buckling behaviors of FGPs with 
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internal defects such as cracks or cutouts. In this formulation, the trimmed NURBS surface 

to describe the geometrical structure with cutouts is no longer required as the internal 

discontinuity is independent of the mesh, as a result of utilizing the level sets. The 

accuracy of the CBTR obtained by the developed XIGA is high and in good agreements 

with the reference solutions for both thin and moderately thick plates with internal defects. 

The influences of gradient index, crack location, crack length, width to thickness, cutout 

size, and boundary conditions on the CBTR are investigated. Some major conclusions 

drawn from the study can be summarized as follows: 

• Upon investigations carried out according to the numerical results presented, the 

developed approach based on XIGA using NURBS associated with the FSDT is 

shown to be ideal candidates for estimating the thermal buckling coefficients of 

FGPs, exhibiting a good agreement between the obtained results with the 

reference solutions. 

• The effects of the boundary conditions and the volume fraction exponents on the 

CBTR of FGPs are significant. The clamped FGPs yield a greater CBTR than the 

simply supported FGPs. 

• The behavior of the CBTR of square plates with an inclined central crack is found 

to be symmetric with respect to a crack orientation o45α = and it decreases as the 

crack orientation α  increases. 

• The skew angle has a critical impact on the CBTR. Increasing the skew angles 

lead to to an increase of the CBTR. The CBTR of clamped skewed FGPs are 

larger than those of simply supported skewed FGPs.  

• Increasing the cutout size and gradient index n  leads to a decrease of the CBTR 

of FGPs. Again, the boundary conditions significantly alter the CBTR of FGPs 

with internal cutout. Additionally, the location of the cutout also owns an 

important influence on the CBTR. The cutout or defect locates closer to the 

boundary of the plate induces a greater CBTR than the cutout locates at the center.  

• Knowledge that has drawn from the study may be helpful to the design and 

development of the FGMs and FGP structures in advanced engineering 
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applications.  

• Nevertheless, the present formulation is potential and has no limitation. As a result, 

definitely, its further extension to other problems is promising. 
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