
An ASIC Implementation of Low Area AES

Encryption Core for Wireless Networks

Van-Lan Dao, Anh-Thai Nguyen, Van-Phuc Hoang and Tuan-Anh Tran
Le Quy Don Technical University, 236 Hoang Quoc Viet Str., Hanoi, Vietnam

Email: kqha1025@gmail.com; nguyenanhthai77@gmail.com; phuchv@mta.edu.vn; tuananhtran.hs@gmail.com

Abstract— This paper presents an efficient ASIC implementation

of the low area 8-bit AES encryption core using an optimized S-

Box for wireless networks. The proposed AES core supports 128-

bit key length and 128-bit data blocks. The implementation

results in a 90nm CMOS standard library show that the

proposed AES encryption core has the maximum clock frequency

of 452.5 MHz and higher resource usage efficiency compared

with other designs.

Keywords— AES; ASIC; S-Box

I. INTRODUCTION

Currently, wireless networks are highly employed for many

applications such as Zigbee, Bluetooth, broadband internet

connection, environment monitoring, etc. [1, 2]. Figure 1

presents the general model of a wireless sensor network

(WSN). However, security issue is becoming more and more

emerging in these wireless networks [1]. Advanced Encryption

Standard (AES) is a well-known security standard for data

encryption [3, 4]. Although the encryption is standardized, the

efficient hardware architecture and implementation methods

are the topics which many researchers are focusing on.

The objective of this paper is to design a low area AES

encryption core based on the 8-bit architecture with an

optimized S-Box for such area and power constrained wireless

networks. The rest of this paper is organized as follows.

Section II describes the AES encryption core design issues and

section III presents the optimized S-Box design. Section IV

shows the implementation results and finally, section V

concludes the paper.

Node sensor

Computer

Management Center

Radio channel

Computer

User

Fig. 1. General model of a wireless sensor network.

II. 8-BIT AES CORE DESIGN

AES encryption core processes data in 128-bit blocks with

the key lengths of 128, 192 or 256 bit. Figure 2 shows the AES

encryption/decryption algorithms. The left hand side is the

encryption flow and the right hand side is the decryption one.

In this paper, to reduce the AES encryption core area, we

employ an 8-bit architecture with an optimized S-Box so that

the AES core encrypts an 8-bit data block in each clock cycle.

In [7]-[9], authors have also focused on optimizing AES

encryption core for the low area implementation. However,

they use an LUT-based (non-optimized) S-Box that may result

in a high area ASIC implementation.

Add round key

Subbytes

ShiftRows

MixColumn

Add round key

R
o

u
n

d
 1

Subbytes

ShiftRows

MixColumn

Add round key

R
o

u
n

d
 9

Subbytes

ShiftRows

Add round key

R
o

u
n

d
 1

0

Add round key

InvMixcolumn

AddRoundkey

InvSubbytes

InvShiftRows

R
o

u
n

d
 1

InvMixcolumn

AddRoundkey

InvSubbytes

InvShiftRows

R
o

u
n

d
 9

Add round key

InvSubbytes

InvShiftRows

R
o

u
n

d
 1

0

W[0,3]

W[4,7]

W[36,39]

W[40,43]

CipherText CipherText

PlainText PlainText

Fig. 2. AES encryption/decryption algorithms.

978-1-4673-6547-5/15/$31.00 ©2015 IEEE 99

In this paper, the AES core architecture as shown in Figure

3 is used [9]. This core includes a key expansion unit, a

mixcolumn unit, a parallel to serial converter and a byte

permutation unit. Table I lists the function of the signals in the

proposed AES core. S_box 1 and S-box 2 blocks are the sub-

blocks in the byte permutation unit as described in [9]. The

detail implementation of this byte permutation unit will be

presented in the section III.

TABLE I. SIGNALS IN THE PROPOSED AES ENCRYPTION CORE.

Signal Direction Function

clk Input System clock

rst_n Input System reset

load_in Input Control signal to load data and key

unload_in Input Control signal to unload data and key

start_in Input Control signal to start the encryption

key_in Input Key input

data_in Input Data input

data_out
Output Data output

busy_out Output To indicate that the output is ready to read

clk

rst_n

load_in

unload_in

start_in

data_in[7:0]

key_in[7:0]

P
a
ra

ll
el

 t
o

se
ri

a
l

co
n

v
er

te
r

Byte permutation

Key expansion

S-box 1

S-box 2

data_out[7:0]

busy_out

MixColumn

 Fig. 3. The 8-bit AES encryption core architecture.

III. S-BOX OPTIMIZATION

S-Box is an important block in the AES core so that some

papers on S-box optimization for the specific requirements

have been published [5-8, 10]. It can be optimized for speed or

area depending on the application requiring the core. When

using the LUT-based architecture, a 256-byte memory is

required so that the area may be high. Therefore, to reduce the

complexity, we use the S-Box architecture with the direct

hardware implementation.

Actually, S-Box is an 8×8 matrix built by combining the

two following transformations:

- Byte inversion: each byte is substituted by its inverted

version (by the multiplication operation in GF(28));

- Affine transformation in GF(28) according to (1).



2x ×

×

1x

×

and

affine

1 

in[7:0] out[7:0]8

4

4

4

4

4

4

4

4

4

4
×

(a)



2x ×

×

1x

×

and

affine

1 

in[7:0] out[7:0]8

4

4

4

4

4

4

4

4

4

4
×

Stage 1

Stage

2

Stage 3

(b)

Fig. 4. S-box architectures: (a) Non-pipelined, (b) 3-stage pipelined.

100

iiiiiii cxxxxxy   8mod)7(8mod)6(8mod)5(8mod)4(
 (1)

In which, 0 ≤ i < 8 and x = “x0x1x2x3x4x5x6x7” is the result of

byte inverting, and y = “y0y1y2y3y4y5y6y7” is the result of affine

transformation. Byte c is the constant of {63} or {01100011}.

The matrix form of this transformation is shown in (2).































































































































0

1

1

0

0

0

1

1

.

00011111

01111100

11111000

11110001

11100011

11000111

10001111

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

(2)

As we can see, each bit of one byte in GF(28) can be

considered as a coefficient for an exponent in polynomial of

GF(28). As stated in [11], every component in GF(28) can be

presented as a linear polynomial with the coefficients in GF(24).

The linear polynomial can be written in the form of bx + c, via

a second order polynomial of x2 + Ax + B. Then, the inverting

of any polynomial in the form of bx + c can be shown in (3).

  1221221
))(()(

 cbcABbbAcxcbcABbbcbx (3)

In [5], the irreducible function is chosen as x2 + x + λ. By

solving that A = 1, B = λ, we can write the equation (3) as in

(4).

  12121
))()(())((

 cbcbbcxcbcbbcbx  (4)

In (4), there are some operations needed to be performed in

GF(24) which are multiplication, addition, squaring and

inversion. Each operation in GF can be implemented in

separate hardware block for inverting. Combining

multiplicative inversion in GF(28) and affine transformation

[12], we can implement the S-Box as shown in Fig. 4a which

includes the following operations:

- δ: the isomorphic mapping to composite fields;

 - x2: the squarer in GF(24);

- λ: a constant in GF(24), λ = {1100};

 - x-1: multiplicative inversion in GF(24);

 - δ-1: the inverse isomorphic mapping to composite fields

GF(28).

The pipeline registers are used to improve the computation

speed for the hardware system shown in Fig. 4a. It can be seen

from this figure that byte inversion is the most complicated

operation in the GF. Therefore, by combining the circuits that

can be minimized using AND, OR operations, balancing each

pipeline stage, we propose the block diagram for this core as

shown in Fig. 4b.

IV. IMPLEMENTATION RESULTS

The AES encryption core was implemented with VHDL

code, simulation in Modelsim tool and then synthesized with a

90 nm CMOS standard library by Synopsys Design Complier.

Figure 5 is the simulation model for the 8-bit AES encryption

core. The input generation block generates the input vector

values for AES core verification. Figure 6 presents the

simulation result in Modelsim tool. Table II is an example of a

test vector for the AES core verification. The AES core designs

are also implemented and verified the function on Xilinx

Spartan-3E FPGA as presented in Table III.

The ASIC implementation results are shown in Table IV in

which the proposed AES encryption core area can be reduced

to only 3.8 kgates. Compared with [7], the AES encryption

core area can also be reduced significantly while achieving the

maximum clock frequency of 452.5 MHz.

Moreover, S-Box optimization can lead to a reduction of

AES core area by 15% compared with the LUT-based S-Box

architecture. Using the 3-stage pipelined S-Box results in a

reduction of 8.5% in AES core area compared with the LUT-

based S-Box while the maximum clock frequency is improved

highly. Figure 7 is the synthesized netlist in the 90 nm CMOS

standard cell library for the case of non-pipelined S-Box

architecture.

Input

generation

block

8-bit AES

encryption

core

clk

unload_in

start_in

rst_n
load_in

data_in[7:0]

key_in[7:0] data_out[7:0]

busy_out

Fig. 5. The simulation model for the 8-bit AES encryption core.

TABLE II. AN EXAMPLE OF A TEST VECTOR FOR AES CORE

VERIFICATION.

data_in (hexa) key_in (hexa) data_out (hexa)

0X00,0X11,0X22,0X33,

0X44,0X55,0X66,0X77,

0X88,0X99,0XAA,0XBB,

0XCC,0XDD,0XEE,0XFF

0X00,0X01,0X02,

0X03,0X04,0X05,

0X06,0X07,0X08,

0X09,0X0A,0X0B,

0X0C,0X0D,

0X0E,0X0F

0X69,0XC4,0XE0,0XD8,

0X6A,0X7B,0X04,0X30,

0XD8,0XCD,0XB7,0X80,

0X70,0XB4,0XC5,0X5A

TABLE III. IMPLEMENTATION RESULTS OF 8-BIT AES ENCRYPTION
CORE ON XILINX SPARTAN-3E FPGA.

AES Core

Architecture

Number

of Slices

Number

of Slice

Flip-Flop

Number

of 4- input

LUTs

Speed

(MHz)

Using non-pipelined

S-box
280 191 538 50.1

Using 3-stage

pipelined S-box
324 195 627 59.4

Using LUT-based S-

box
452 190 842 88.0

101

V. CONCLUSIONS

This paper has presented an area efficient 8-bit AES
encryption core for emerging wireless networks. The
implementation results in ASIC show that by using S-Box
optimization, the AES core area can be reduced significantly.
The proposed AES encryption core has the maximum clock
frequency of 452.5 MHz and high resource usage efficiency.
Therefore, this AES encryption core is highly potential to be
used in wireless network nodes such as in WSN for
environment monitoring which requires low power, compact
encryption cores. In the future, we will optimize the power
consumption for the proposed AES core and apply it for a
wireless network application.

Fig. 7. Synthesized netlist of the AES encryption core in a 90 nm CMOS
library for the case of non-pipelined S-box architecture.

TABLE IV. IMPLEMENTATION RESULTS OF 8-BIT AES ENCRYPTION
CORE IN A 90NM CMOS ASIC LIBRARY.

AES Core Architecture Area (kgates) Speed (MHz)

In [7] 3.9 290.0

Using non-pipelined S-box 3.5 452.5

Using 3-stage pipelined S-box 3.8 526.3

Using LUT-based S-box 4.1 584.8

REFERENCES

[1] Xiaojiang Du, Hsiao-Hwa Chen, “Security in wireless sensor
networks,” IEEE Wireless Communications, vol.15, no.4, pp.60-66,
Aug. 2008.

[2] Wei Wang, Guangyu He, Junli Wan, “Research on Zigbee wireless

communication technology,” Pro. 2011 International Conference

on Electrical and Control Engineering (ICECE), pp.1245-1249, Sep.

2011.

[3] National Institute of Standards and Technology (NIST), “Advanced

Encryption Standard (AES),” FIPS Publication 197, Nov. 2001.

[4] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone,

Handbook of Applied Cryptography, CRC Press, Inc. Boca Raton, FL,

USA, 1996."

[5] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael

hardware architecture with S-box optimization,” Proc. 7th Int. Conf. on

Theory and Application of Cryptology and Inf. Secur., Advances in

Cryptology (ASIACRYPT 2001), pp.239-254, Dec. 2001.

[6] D. Canright. “A very compact S-box for AES,” Proc. 7th Int. Workshop

on Cryptographic Hardware and Embedded Systems (CHES 2005),

pp.441-455, Sep. 2005.

[7] P. Hamalainen, T. Alho, M. Hannikainen, T.D. Hamalainen, “Design

and Implementation of Low-Area and Low-Power AES Encryption

Hardware Core,” Proc. 9th EUROMICRO Conference on Digital System

Design: Architectures, Methods and Tools (DSD2006), pp.577-583,

2006.

[8] Tim Good and Mohammed Benaissa, “Very Small FPGA

Application-Specific Instruction Processor for AES,” IEEE

Transactions on Circuits and Systems - I: Regular Papers, vol. 53,

no. 7, pp.1477-1486, Jul. 2006.

[9] T. Jarvinen, P. Salmela, P. Hamalainen, J. Takala, “Efficient byte

permutation realizations for compact AES implementations,” Proc. 13th

European on Signal Processing Conference, pp.1-4, Sep. 2005.

[10] K. Munusamy, C. Senthilpari, D.C.K. Kho, “A low power hardware

implementation of S-Box for Advanced Encryption Standard,” Proc.

11th International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology (ECTI-

CON), pp.1-6, May 2014.

[11] V. Rijmen, “Efficient Implementation of the Rijndael S-Box,” Dept.
ESAT., Katholieke Universiteit Leuven, Leuven, Belgium, 2006.
[Online]. Available: http://www.networkdls.com/Articles/sbox.pdf.

[12] M.T Sakalli, E. Bulus, A. Sahin, F. Buyuksaraqoglu, “Affine
Equivalence in S-boxes,” Proc. 2006 IEEE 14th Signal Processing and
Communications Applications, pp.1-4, Apr. 2006.

(a)

(b)

Fig. 6. Simulation results in Modelsim tool (a) Data and key input; (b) Data output.

102

