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Abstract— This paper presents an efficient ASIC implementation 

of the low area 8-bit AES encryption core using an optimized S-

Box for wireless networks. The proposed AES core supports 128-

bit key length and 128-bit data blocks. The implementation 

results in a 90nm CMOS standard library show that the 

proposed AES encryption core has the maximum clock frequency 

of 452.5 MHz and higher resource usage efficiency compared 

with other designs. 
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I. INTRODUCTION 

Currently, wireless networks are highly employed for many 

applications such as Zigbee, Bluetooth, broadband internet 

connection, environment monitoring, etc.  [1, 2]. Figure 1 

presents the general model of a wireless sensor network 

(WSN). However, security issue is becoming more and more 

emerging in these wireless networks [1]. Advanced Encryption 

Standard (AES) is a well-known security standard for data 

encryption [3, 4]. Although the encryption is standardized, the 

efficient hardware architecture and implementation methods 

are the topics which many researchers are focusing on.  

The objective of this paper is to design a low area AES 

encryption core based on the 8-bit architecture with an 

optimized S-Box for such area and power constrained wireless 

networks. The rest of this paper is organized as follows. 

Section II describes the AES encryption core design issues and 

section III presents the optimized S-Box design. Section IV 

shows the implementation results and finally, section V 

concludes the paper.  
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Fig. 1. General model of a wireless sensor network. 

II. 8-BIT AES CORE DESIGN  

AES encryption core processes data in 128-bit blocks with 

the key lengths of 128, 192 or 256 bit. Figure 2 shows the AES 

encryption/decryption algorithms. The left hand side is the 

encryption flow and the right hand side is the decryption one. 

In this paper, to reduce the AES encryption core area, we 

employ an 8-bit architecture with an optimized S-Box so that 

the AES core encrypts an 8-bit data block in each clock cycle. 

In [7]-[9], authors have also focused on optimizing AES 

encryption core for the low area implementation. However, 

they use an LUT-based (non-optimized) S-Box that may result 

in a high area ASIC implementation. 
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Fig. 2. AES encryption/decryption algorithms. 
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In this paper, the AES core architecture as shown in Figure 

3 is used [9]. This core includes a key expansion unit, a 

mixcolumn unit, a parallel to serial converter and a byte 

permutation unit. Table I lists the function of the signals in the 

proposed AES core. S_box 1 and S-box 2 blocks are the sub-

blocks in the byte permutation unit as described in [9]. The 

detail implementation of this byte permutation unit will be 

presented in the section III. 

TABLE I.  SIGNALS IN THE PROPOSED AES ENCRYPTION CORE. 

Signal Direction Function 

clk Input System clock 

rst_n Input System reset 

load_in Input Control signal to load data and key  

unload_in Input Control signal to unload data and key 

start_in Input Control signal to start the encryption 

key_in Input Key input 

data_in Input Data input 

data_out 
Output Data output 

busy_out Output To indicate that the output is ready to read 
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 Fig. 3. The 8-bit AES encryption core architecture. 

III. S-BOX OPTIMIZATION 

S-Box is an important block in the AES core so that some 

papers on S-box optimization for the specific requirements 

have been published [5-8, 10]. It can be optimized for speed or 

area depending on the application requiring the core. When 

using the LUT-based architecture, a 256-byte memory is 

required so that the area may be high. Therefore, to reduce the 

complexity, we use the S-Box architecture with the direct 

hardware implementation. 

Actually, S-Box is an 8×8 matrix built by combining the 

two following transformations: 

- Byte inversion: each byte is substituted by its inverted 

version (by the multiplication operation in GF(28)); 

- Affine transformation in GF(28) according to (1). 
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Fig. 4. S-box architectures: (a) Non-pipelined, (b) 3-stage pipelined. 
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iiiiiii cxxxxxy   8mod)7(8mod)6(8mod)5(8mod)4(
 (1) 

In which, 0 ≤ i < 8 and x = “x0x1x2x3x4x5x6x7” is the result of 

byte inverting, and y = “y0y1y2y3y4y5y6y7” is the result of affine 

transformation. Byte c is the constant of {63} or {01100011}. 

The matrix form of this transformation is shown in (2). 
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(2) 

As we can see, each bit of one byte in GF(28) can be 

considered as a coefficient for an exponent in polynomial of 

GF(28). As stated in [11], every component in GF(28) can be 

presented as a linear polynomial with the coefficients in GF(24). 

The linear polynomial can be written in the form of bx + c, via 

a second order polynomial of x2 + Ax + B. Then, the inverting 

of any polynomial in the form of bx + c can be shown in (3). 
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 cbcABbbAcxcbcABbbcbx  (3) 

In [5], the irreducible function is chosen as x2 + x + λ. By 

solving that A = 1, B = λ, we can write the equation (3) as in 

(4). 
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In (4), there are some operations needed to be performed in 

GF(24) which are multiplication, addition, squaring and 

inversion. Each operation in GF can be implemented in 

separate hardware block for inverting. Combining 

multiplicative inversion in GF(28) and affine transformation 

[12], we can implement the S-Box as shown in Fig. 4a which 

includes the following operations: 

- δ: the isomorphic mapping to composite fields; 

      - x2: the squarer in GF(24); 

- λ: a constant in GF(24),  λ = {1100}; 

      - x-1: multiplicative inversion in GF(24); 

      - δ-1: the inverse isomorphic mapping to composite fields 

GF(28). 

The pipeline registers are used to improve the computation 

speed for the hardware system shown in Fig. 4a. It can be seen 

from this figure that byte inversion is the most complicated 

operation in the GF. Therefore, by combining the circuits that 

can be minimized using AND, OR operations, balancing each 

pipeline stage, we propose the block diagram for this core as 

shown in Fig. 4b. 
 

IV. IMPLEMENTATION RESULTS 

The AES encryption core was implemented with VHDL 

code, simulation in Modelsim tool and then synthesized with a 

90 nm CMOS standard library by Synopsys Design Complier. 

Figure 5 is the simulation model for the 8-bit AES encryption 

core. The input generation block generates the input vector 

values for AES core verification. Figure 6 presents the 

simulation result in Modelsim tool. Table II is an example of a 

test vector for the AES core verification. The AES core designs 

are also implemented and verified the function on Xilinx 

Spartan-3E FPGA as presented in Table III. 

The ASIC implementation results are shown in Table IV in 

which the proposed AES encryption core area can be reduced 

to only 3.8 kgates. Compared with [7], the AES encryption 

core area can also be reduced significantly while achieving the 

maximum clock frequency of 452.5 MHz.  

Moreover, S-Box optimization can lead to a reduction of 

AES core area by 15% compared with the LUT-based S-Box 

architecture. Using the 3-stage pipelined S-Box results in a 

reduction of 8.5% in AES core area compared with the LUT-

based S-Box while the maximum clock frequency is improved 

highly. Figure 7 is the synthesized netlist in the 90 nm CMOS 

standard cell library for the case of non-pipelined S-Box 

architecture. 
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Fig. 5. The simulation model for the 8-bit AES encryption core. 

 

 

 
TABLE II.  AN EXAMPLE OF A TEST VECTOR FOR AES CORE 

VERIFICATION. 

data_in (hexa) key_in (hexa) data_out (hexa) 

0X00,0X11,0X22,0X33, 

0X44,0X55,0X66,0X77, 

0X88,0X99,0XAA,0XBB, 

0XCC,0XDD,0XEE,0XFF 

0X00,0X01,0X02, 

0X03,0X04,0X05, 

0X06,0X07,0X08, 

0X09,0X0A,0X0B, 

0X0C,0X0D, 

0X0E,0X0F 

0X69,0XC4,0XE0,0XD8, 

0X6A,0X7B,0X04,0X30, 

0XD8,0XCD,0XB7,0X80, 

0X70,0XB4,0XC5,0X5A 

 
 

TABLE III.  IMPLEMENTATION RESULTS OF 8-BIT AES ENCRYPTION 
CORE ON XILINX SPARTAN-3E FPGA. 

AES Core 

Architecture 

Number 

of Slices 

Number 

of Slice 

Flip-Flop 

Number 

of 4- input 

LUTs 

Speed 

(MHz) 

Using non-pipelined 

S-box 
280 191 538 50.1 

Using 3-stage 

pipelined S-box 
324 195 627 59.4 

Using LUT-based S-

box 
452 190 842 88.0 
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V. CONCLUSIONS 

This paper has presented an area efficient 8-bit AES 
encryption core for emerging wireless networks. The 
implementation results in ASIC show that by using S-Box 
optimization, the AES core area can be reduced significantly. 
The proposed AES encryption core has the maximum clock 
frequency of 452.5 MHz and high resource usage efficiency. 
Therefore, this AES encryption core is highly potential to be 
used in wireless network nodes such as in WSN for 
environment monitoring which requires low power, compact 
encryption cores. In the future, we will optimize the power 
consumption for the proposed AES core and apply it for a 
wireless network application. 

 

 

Fig. 7. Synthesized netlist of the AES encryption core in a 90 nm CMOS 
library for the case of non-pipelined S-box architecture. 

 

TABLE IV.  IMPLEMENTATION RESULTS OF 8-BIT AES ENCRYPTION 
CORE IN A 90NM CMOS ASIC LIBRARY. 

AES Core Architecture Area (kgates) Speed (MHz) 

In [7] 3.9 290.0 

Using non-pipelined S-box 3.5 452.5 

Using 3-stage pipelined S-box 3.8 526.3 

Using LUT-based S-box 4.1 584.8 
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Fig. 6. Simulation results in Modelsim tool (a) Data and key input; (b) Data output. 
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