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Abstract Considered here is the first initial boundary value problem for the 2D non-
autonomous g-Navier-Stokes equations in bounded domains. We prove the existence of a
pullback attractor in Vg for the continuous process generated by strong solutions to the prob-
lem. We also prove the exponential growth in Vg and in H 2(�, g) for the pullback attractor,
when time goes to −∞.
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1 Introduction

Let � be a bounded domain in R
2 with smooth boundary �. In this paper, we study the

long-time behavior of strong solutions to the following 2D nonautonomous g-Navier-Stokes
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
− ν�u + (u · ∇)u +∇p = f (t) in (τ,+∞) × �,

∇ · (gu) = 0 in (τ,+∞) × �,

u = 0 on (τ,+∞) × �,

u(τ, x) = uτ (x), x ∈ �,

(1.1)

where u = u(t, x) = (u1, u2) is the unknown velocity vector, p = p(t, x) is the unknown
pressure, ν > 0 is the kinematic viscosity coefficient, and uτ is the initial velocity.
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The g-Navier-Stokes equation is a variation of the standard Navier-Stokes equations.
More precisely, when g ≡ const, we get the usual Navier-Stokes equations. The 2D g-
Navier-Stokes equations arise in a natural way when we study the standard 3D problem in
thin domains. We refer the reader to [17] for a derivation of the 2D g-Navier-Stokes equa-
tions from the 3D Navier-Stokes equations and a relationship between them. As mentioned
in [17], good properties of the 2D g-Navier-Stokes equations can lead to an initial study of
the Navier-Stokes equations on the thin 3D domain �g = � × (0, g). In the last few years,
the existence and long-time behavior of weak solutions to 2D g-Navier-Stokes equations
have been studied extensively in both autonomous and nonautonomous cases (see, e.g., [3,
7–9, 13, 14, 16, 18]). In a recent work [4], we proved the existence and numerical approx-
imation of strong solutions to the 2D g-Navier-Stokes equations. The long-time behavior
of the strong solutions was studied more recently in [5] in the autonomous case in terms of
existence of a global attractor and stability of a unique stationary solution.

In this paper, we continue in studying the long-time behavior of strong solutions to 2D
g-Navier-Stokes equations in the nonautonomous case, i.e., when the external force f may
depend on time t , in terms of existence and exponential growth of a pullback attractor. To
do this, we make the following assumptions:

(G) g ∈ W 1,∞(�) such that:

0 < m0≤g(x)≤M0 for all x = (x1, x2) ∈ �, and |∇g|∞ < m0λ
1/2
1 ,

where λ1 > 0 is the first eigenvalue of the g-Stokes operator in � (i.e., the operator
A defined in Section 2 below);

(F) f ∈ L2
loc(R;Hg) and satisfies

∫ 0

−∞
eμs |f (s)|2ds < +∞ for some μ ∈ (0, 2νγ0λ1), (1.2)

where γ0 = 1 − |∇g|∞
m0λ

1/2
1

> 0.

When the external force f is time-dependent, to study the long-time behavior of strong
solutions to problem (1.1), we will use the theory of pullback attractors. This theory is a nat-
ural generalization of the theory of global attractors for autonomous dynamical systems and
allows considering a number of different problems of nonautonomous dynamical systems
under a large class of nonautonomous forcing terms. The existence of pullback attractors
has been proved for many dissipative partial differential equations. Recently, the regularity
and tempered behavior in various function spaces of pullback attractors have been proved
for the reaction-diffusion equations in [1, 2] and for 2D Navier-Stokes equations in [11,
12]. In this paper, using some ideas in those papers, we study the existence and exponential
growth of a pullback attractor for the continuous process generated by strong solutions to
problem (1.1).

The paper is organized as follows. In Section 2, we prove the existence of a pullback
attractor in Vg by using an energy method which relies on the continuity of strong solutions.
The exponential growth of the pullback attractor in Vg and in H 2(�, g) is studied in the last
section under some suitable additional assumptions of the external force.

In the rest of this section, we recall some notations frequently used in the paper (see
[4] for more details). Let L2(�, g) = (L2(�))2 and H 1

0 (�, g) = (H 1
0 (�))2 be endowed,

respectively, with the inner products

(u, v)g =
∫

�

u · vgdx, u, v ∈ L2(�, g),
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and

((u, v))g =
∫

�

2∑

j=1

∇uj · ∇vjgdx, u = (u1, u2), v = (v1, v2) ∈ H 1
0 (�, g),

and norms |u|2 = (u, u)g , ||u||2 = ((u, u))g . By Hg, Vg , we denote the completions of

V =
{
u ∈ (C∞

0 (�))2 : ∇ · (gu) = 0
}

in L2(�, g) and H 1
0 (�, g), respectively. We use ||.||∗ for the norm in V ′

g , the dual space of
Vg , and 〈., .〉 for duality pairing between Vg and V ′

g .
Set A : Vg → V ′

g by 〈Au, v〉 = ((u, v))g, B : Vg × Vg → V ′
g by 〈B(u, v), w〉 =

b(u, v, w), where

b(u, v,w) =
2∑

i,j=1

∫

�

ui

∂vj

∂xi

wjgdx.

Denote D(A) = {
u ∈ Vg : Au ∈ Hg

}
, then D(A) = H 2(�, g) ∩ Vg and Au = −Pg�u

for every u ∈ D(A), where Pg is the ortho-projector from L2(�, g) onto Hg .

2 Existence of a pullback attractor in Vg

Definition 2.1 Given f ∈ L2(τ, T ;Hg) and uτ ∈ Vg , a strong solution on (τ, T ) of prob-
lem (1.1) is a function u ∈ L2(τ, T ;D(A)) ∩ L∞(τ, T ;Vg) with u(τ) = uτ , such that for
all v ∈ Vg,

d

dt
(u(t), v)g + ν ((u(t), v))g + ν (Cu(t), v)g + b (u(t), u(t), v) = (f (t), v)g (2.1)

where the equation must be understood in the sense of D′(τ, T ).

Remark 2.1 From the above definition, we see that if u is a strong solution of (1.1) on (τ, T ),
then u′ ∈ L2(τ, T ;Hg) and u ∈ C([τ, T ];Vg). Moreover, u satisfies the energy equality

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2dr + 2ν

∫ t

s

b

(∇g

g
, u(r), u(r)

)

dr

= |u(s)|2 + 2
∫ t

s

(f (r), u(r))g dr. (2.2)

The following existence theorem was proved in [4].

Theorem 2.1 Suppose that f ∈ L2
loc(R;Hg) and uτ ∈ Vg are given. Then for any T > τ ,

there exists a unique strong solution u of problem (1.1) on (τ, T ). Moreover, the map uτ �→
u(t) is continuous on Vg for all t ∈ [τ, T ], that is, the strong solution depends continuously
on the initial data.

Under assumptions of Theorem 2.1, we can define a continuous process U(t, τ ) : Vg →
Vg as follows

U(t, τ )uτ = u(t; τ, uτ ) ∀ uτ ∈ Vg ∀ τ ≤ t.
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Denote by DHg
μ , the class of all families of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(Hg)

such that

lim
τ→−∞

(

eμτ sup
v∈D(τ)

|v|2
)

= 0.

We now prove the following result.

Lemma 2.1 For any t ∈ R and D̂ ∈ DHg
μ , there exists τ1(D̂, t) < t − 3, such that for any

τ ≤ τ1(D̂, t) and any uτ ∈ D(τ), it holds

⎧
⎪⎪⎨

⎪⎪⎩

|u(r)|2 ≤ ρ1(t) for all r ∈ [t − 3, t],
||u(r)||2 ≤ ρ2(t) for all r ∈ [t − 2, t],∫ r

r−1 |Au(θ)|2dθ ≤ ρ3(t) for all r ∈ [t − 1, t],
∫ r

r−1 |u′(θ)|2dθ ≤ ρ4(t) for all r ∈ [t − 1, t],
(2.3)

where

ρ1(t) = 1 + eμ(3−t)

2νγ0λ1 − μ

∫ t

−∞
eμθ |f (θ)|2dθ, (2.4)

ρ2(t) = max
r∈[t−2,t]

{[
ρ1(r)

νγ0
+
(

1

ν2γ 2
0 λ1

+ 2

ν

)∫ r

r−1
|f (θ)|2dθ

]

(2.5)

× exp

[
ν|∇g|∞λ

1/2
1

m0
+ 2c′2ρ1(r)

(
ρ1(r)

νγ0
+ 1

ν2γ 2
0 λ1

)∫ r

r−1
|f (θ)|2dθ

]}

,

ρ3(t) = 1

ν
[ρ2(t) + 2c′2ρ1(t)ρ

2
2 (t) + ν|∇g|∞λ

1/2
1

m0
ρ2(t) + 2

ν

∫ t

t−2
|f (θ)|2dθ ], (2.6)

ρ4(t) = νρ2(t) + 3c2
1ρ2(t)ρ3(t) + 3ν2|∇g|2∞

m2
0

ρ2(t) + 3
∫ t

t−2
|f (θ)|2dθ. (2.7)

Proof For each integer n ≥ 1, we denote by un(s) = un(s; τ, uτ ) the Galerkin
approximation of the solution u(s; τ, uτ ) of (1.1), which is given by

un(s) =
n∑

j=1

γnj (s)vj ,

and is the solution of

d

dt

(
un(s), vj

)

g
+ ν

(
Aun(s), vj

)

g
+ ν

(
Cun(s), vj

)

g
+b

(
un(s), un(s), vj

) = (f (s), vj )g,

(2.8)
for any j = 1, . . . , n, and (un(τ ), vj )g = (uτ , vj )g .

Multiplying by γnj (s) in (2.8), and summing from j = 1 to n, we obtain

d

dθ
|un(θ)|2+2ν||un(θ)||2 = 2

(
f (θ), un(θ)

)

g
−2ν

(
Cun(θ), un(θ)

)

g
, a.e. θ > τ, (2.9)
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and therefore

d

dθ
(eμθ |un(θ)|2) + 2νeμθ ||un(θ)||2

= μeμθ |un(θ)|2 + 2eμθ (f (θ), un(θ))g − 2νeμθ (Cun(θ), un(θ))g

≤ 1

λ1
μeμθ ||un(θ)||2 + 2νeμθ |∇g|∞

m0λ
1/2
1

||un(θ)||2 + 2eμθ (f (θ), un(θ))g.

Then, we have

d

dθ
(eμθ |un(θ)|2) + 1

λ1
eμθ (2νγ0λ1 − μ)||un(θ)||2

≤ 2eμθ (f (θ), un(θ))g ≤ eμθ

2νγ0λ1 − μ
|f (θ)|2 + eμθ

λ1
(2νγ0λ1 − μ)||un(θ)||2,

where γ0 = 1 − |∇g|∞
m0λ

1/2
1

> 0. Hence, we deduce that

d

dθ

(
eμθ |un(θ)|2

)
≤ eμθ

2νγ0λ1 − μ
|f (θ)|2,

and therefore

eμr |un(r)|2 ≤ eμτ |uτ |2 + 1

2νγ0λ1 − μ

∫ r

−∞
eμθ |f (θ)|2dθ ∀ r ≥ τ. (2.10)

From (2.10), we see that for each t ∈ R and D̂ ∈ DHg
μ , there exists τ1(D̂, t) < t − 3 such

that for any n ≥ 1,

|un(r; τ, uτ )|2 ≤ ρ1(t) ∀ r ∈ [t − 3, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (2.11)

where ρ1(t) is given by (2.4).
Now, multiplying in (2.8) by λjγnj (s), where λj is the eigenvalue associated to the

eigenfunction vj , and summing from j = 1 to n, we obtain

1

2

d

dθ
||un(θ)||2 + ν|Aun(θ)|2 + ν

(
Cun(θ), Aun(θ)

)

g
+ b

(
un(θ), un(θ), Aun(θ)

)

= (f (θ), Aun(θ)), a.e. θ > τ. (2.12)

By Lemmas 2.1 and 2.3 in [4], (2.12) implies that

1

2

d

dθ
||un(θ)||2 + ν|Aun(θ)|2 ≤ ν

4
|Aun(θ)|2 + 1

ν
|f (θ)|2

+ c2|un(θ)|1/2|Aun(θ)|3/2||un(θ)|| + ν|∇g|∞
m0

||un(θ)|||Aun(θ)|.

Using Young’s inequality and Cauchy’s inequality, we obtain

1

2

d

dθ
||un(θ)||2 + ν|Aun(θ)|2

≤ ν

4
|Aun(θ)|2 + 1

ν
|f (θ)|2 + ν

4
|Aun(θ)|2 + c′2|un(θ)|2||un(θ)||4

+ ν|∇g|∞
2m0λ

1/2
1

|Aun(θ)|2 + ν|∇g|∞λ
1/2
1

2m0
|un(θ)|2.
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Then, we have

d

dθ
||un(θ)||2 + ν(1 − |∇g|∞

m0λ
1/2
1

)|Aun(θ)|2

≤ 2

ν
|f (θ)|2 +

(

2c′2|un(θ)|2||un(θ)||2 + ν|∇g|∞λ
1/2
1

m0

)

||un(θ)||2, a.e. θ > τ. (2.13)

From this inequality, in particular, we get

||un(r)||2 ≤ ||un(s)||2 + 2

ν

∫ r

r−1
|f (θ)|2dθ

+
∫ r

r−1

(

2c′2|un(θ)|2||un(θ)||2 + ν|∇g|∞λ
1/2
1

m0

)

||un(θ)||2dθ

for all τ ≤ r − 1 ≤ s ≤ r , and therefore, by Gronwall’s inequality,

||un(r)||2 ≤
(

||un(s)||2 + 2

ν

∫ r

r−1
|f (θ)|2dθ

)

× exp

(∫ r

r−1

(

2c′2|un(θ)|2||un(θ)||2 + ν|∇g|∞λ
1/2
1

m0

)

dθ

)

for all τ ≤ r − 1 ≤ s ≤ r . Integrating this inequality for s between r − 1 and r , we obtain

||un(r)||2 ≤
(∫ r

r−1
||un(s)||2ds + 2

ν

∫ r

r−1
|f (θ)|2dθ

)

× exp

(∫ r

r−1

(

2c′2|un(θ)|2||un(θ)||2 + ν|∇g|∞λ
1/2
1

m0

)

dθ

)

. (2.14)

By (2.9), we have

d

dθ
|un(θ)|2 + 2ν||un(θ)||2 ≤ 2ν|∇g|∞

m0λ
1/2
1

||un(θ)||2 + γ0ν||un(θ)||2 + 1

γ0νλ1
|f (θ)|2,

or
d

dθ
|un(θ)|2 + νγ0||un(θ)||2 ≤ 1

γ0νλ1
|f (θ)|2,

where γ0 = 1 − |∇g|∞
m0λ

1/2
1

> 0. Hence,

νγ0

∫ r

r−1
||un(θ)||2dθ ≤ |un(r − 1)|2 + 1

γ0νλ1

∫ r

r−1
|f (θ)|2dθ.

Therefore, from (2.11) and (2.14), we deduce that for any n ≥ 1,

||un(r; τ, uτ )||2 ≤ ρ2(t) for all r ∈ [t − 2, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (2.15)

where ρ2(t) is given by (2.5).
Now, by (2.13),

d

dθ
||un(θ)||2 + νγ0|Aun(θ)|2

≤ 2

ν
|f (θ)|2 + 2c′2|un(θ)|2||un(θ)||4 + ν|∇g|∞λ

1/2
1

m0
||un(θ)||2, a.e. θ > τ.
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Hence

νγ0

∫ r

r−1
|Aun(θ)|2dθ ≤ ||un(r − 1)||2 + 2

ν

∫ r

r−1
|f (θ)|2dθ + 2c′2

×
∫ r

r−1
|un(θ)|2||un(θ)||4dθ + ν|∇g|∞λ

1/2
1

m0

∫ r

r−1
||un(θ)||2dθ

for all τ ≤ r − 1 and therefore, by (2.11) and (2.15), for every n ≥ 1,

∫ r

r−1
|Aun(θ; τ, uτ )|2dθ ≤ ρ3(t) (2.16)

for all r ∈ [t − 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), where ρ3(t) is given by (2.6).
On the other hand, multiplying by the derivative γ ′

nj (s) in (2.8), and summing from j = 1
until n, we obtain

|(un(θ))′|2 + ν

2

d

dθ
||un(θ)||2 + ν(Cun(θ), (un(θ))′)g

+ b(un(θ), un(θ), (un(θ))′) = (f (θ), (un(θ))′)g, a.e. θ > τ.

(2.17)

By Lemmas 2.1 and 2.3 in [4], and Cauchy’s inequality, (2.17) implies that

2|(un(θ))′|2 + ν
d

dθ
||un(θ)||2 ≤ 1

3
|(un(θ))′|2 + 3|f (θ)|2

+1

3
|(un(θ))′|2 + 3c2

1|Aun(θ)|2||un(θ)||2

+1

3
|(un(θ))′|2 + 3ν2|∇g|2∞

m2
0

||un(θ)||2 a.e. θ > τ,

hence

|(un(θ))′|2 + ν
d

dθ
||un(θ)||2 ≤ 3|f (θ)|2 + 3c2

1|Aun(θ)|2||un(θ)||2 + 3ν2|∇g|2∞
m2

0

||un(θ)||2.

Integrating this last inequality, we deduce that
∫ r

r−1
|(un(θ))′|2dθ ≤ ν||un(r − 1)||2 + 3

∫ r

r−1
|f (θ)|2dθ

+3c2
1

∫ r

r−1
|Aun(θ)|2||un(θ)||2dθ + 3ν2|∇g|2∞

m2
0

∫ r

r−1
||un(θ)||2dθ,

and therefore, by (2.11), (2.15), and (2.16), we obtain
∫ r

r−1
|(un(θ))′|2dθ ≤ ρ4(t) (2.18)

for all r ∈ [t − 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), where ρ4(t) is given by (2.7).
From the facts that un converges to u(.; τ, uτ ) weakly in L2(t − 3, t;D(A)), (un)′ con-

verges to u′(.; τ, uτ ) weakly in L2(t − 3, t;Hg), and u(.; τ, uτ ) ∈ C([t − 3, t];Vg), using
Lemma 11.2 in [15], we can pass to the limit when n → +∞ in (2.11), (2.15), (2.16), and
(2.18), and it turns out that (2.3) holds.
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Remark 2.2 It is clear that under the assumptions of Lemma 2.1,

lim
t→−∞ eμtρ1(t) = 0.

In other words, the family {BHg (0, ρ
1/2
1 (t)) : t ∈ R}, where BHg (0, ρ

1/2
1 (t)) is the closed

ball in Hg of center zero and radius ρ
1/2
1 (t), with ρ1(t) given by (2.4), belongs to DHg

μ .

We will denote by DHg,Vg
μ the class of all families D̂Vg of elements of P(Vg) of the form

D̂Vg = {D(t) ∩ Vg : t ∈ R}, where D̂ = {D(t) : t ∈ R} ∈ DHg
μ . Now, the following result

is immediate.

Lemma 2.2 Under the assumptions of Lemma 2.1, the family

D̂0,Vg =
{
BHg (0, ρ

1/2
1 (t)) ∩ Vg : t ∈ R

}

belongs to DHg,Vg
μ and satisfies that for any t ∈ R and any D̂ ∈ DHg

μ , there exists τ(D̂, t) <

t such that

U(t, τ )D(τ) ⊂ D0,Vg (t) f or all τ ≤ τ(D̂, t).

In particular, the family D̂0,Vg is pullback DHg,Vg
μ -absorbing for the process U in Vg .

Now, we apply an energy method with continuous function in order to obtain the pullback

asymptotic compactness in Vg for the universe DHg,Vg
μ .

Lemma 2.3 Suppose that f ∈ L2
loc(R;Hg) satisfies the condition (1.2). Then, the process

U(t, τ ) in Vg is pullback DHg,Vg
μ -asymptotically compact.

Proof Let us fix t ∈ R, a family D̂Vg ∈ DHg,Vg
μ , a sequence {τn} with τn → −∞, and

a sequence {uτn} ⊂ Vg with uτn ∈ DVg (τn) for any n. We must prove that the sequence
{un(t) = un(t; τn, uτn)} is relatively compact in Vg .

By Lemma 2.1, we know that there exists a τ1(D̂Vg , t) < t−3, such that the subsequence

{un : τn ≤ τ1(D̂Vg , t)} ⊂ {un} is uniformly bounded in L∞(t−2, t;Vg)∩L2(t−2, t;D(A))

with {(un)′} also uniformly bounded in L2(t − 2, t;Hg). Then, according to Aubin-Lions
lemma [10, Chapter 1], there exists an element u ∈ L∞(t − 2, t;Vg) ∩ L2(t − 2, t;D(A))

with u′ ∈ L2(t − 2, t;Hg), such that for a subsequence (relabelled the same) the following
convergences hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un �
⇀ u weak-star in L∞(t − 2, t;Vg),

un ⇀ u weakly in L2(t − 2, t;D(A)),

(un)′ ⇀ u′ weakly in L2(t − 2, t;Hg),

un → u strongly in L2(t − 2, t;Vg),

un(s) → u(s) strongly in Vg, a.e. s ∈ (t − 2, t).

(2.19)

Observe that u ∈ C([t − 2, t] : Vg). Due to (2.19), u satisfies (2.1) in the interval (t − 2, t).



PULLBACK ATTRACTORS FOR STRONG SOLUTIONS

From (2.19), we also deduce that {un} is equicontinuous in Hg on [t − 2, t]. Thus, tak-
ing into account that the sequence {un} is uniformly bounded in C([t − 2, t];Vg), by the
compactness of the injection of Vg into Hg , and Ascoli-Arzela theorem, we obtain that

un → u strongly in C
([t − 2, t];Hg

)
. (2.20)

Again, by the uniform boundedness of {un} in C([t − 2, t];Vg), we have that for all
sequences {sn} ⊂ [t − 2, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in Vg, (2.21)

where we have used (2.20) to identify the weak limit.
Actually, we claim that

un → u strongly in C([t − 1, t];Vg), (2.22)

which in particular will imply the relative compactness. Indeed, if (2.22) does not hold,
there exist ε > 0, a sequence {tn} ⊂ [t − 1, t] converging to some t∗, such that

||un(tn) − u(t∗)|| ≥ ε ∀ n ≥ 1. (2.23)

From (2.21), we have

||u(t∗)|| ≤ lim inf
n→∞ ||un(tn)||. (2.24)

On the other hand, using the energy equality (2.2) for u and all un, and reasoning as for the
derivation of (2.13), we have that for all t − 2 ≤ s1 ≤ s2 ≤ t,

||un(s2)||2 + νγ0

∫ s2

s1

|Aun(r)|2dr ≤ ||un(s1)||2 + 2

ν

∫ s2

s1

|f (r)|2dr

+ 2c′2
∫ s2

s1

|un(r)|2||un(r)||4dr + ν|∇g|∞λ
1/2
1

m0

∫ s2

s1

||un(r)||2dr,

(2.25)

and

||u(s2)||2 + νγ0

∫ s2

s1

|Au(r)|2dr ≤ ||u(s1)||2 + 2

ν

∫ s2

s1

|f (r)|2dr

+ 2c′2
∫ s2

s1

|u(r)|2||u(r)||4dr + ν|∇g|∞λ
1/2
1

m0

∫ s2

s1

||u(r)||2dr.

(2.26)

Then, we can define the functions

Jn(s) = ||un(s)||2 − 2

ν

∫ s

t−2
|f (r)|2dr − 2c′2

∫ s

t−2
|un(r)|2||un(r)||4dr

−ν|∇g|∞λ
1/2
1

m0

∫ s

t−2
||un(r)||2dr,

J (s) = ||u(s)||2 − 2

ν

∫ s

t−2
|f (r)|2dr − 2c′2

∫ s

t−2
|u(r)|2||u(r)||4dr

−ν|∇g|∞λ
1/2
1

m0

∫ s

t−2
||u(r)||2dr.
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It is clear from the regularity of u and un that these functions are continuous on [t − 2, t].
Moreover, from the definition of Jn and (2.25), we have

Jn(s2) − Jn(s1) = ||un(s2)||2 − 2

ν

∫ s2

t−2
|f (r)|2dr − 2c′2

∫ s2

t−2
|un(r)|2||un(r)||4dr

−ν|∇g|∞λ
1/2
1

m0

∫ s2

t−2
||un(r)||2dr

−||un(s1)||2 + 2

ν

∫ s1

t−2
|f (r)|2dr + 2c′2

∫ s1

t−2
|un(r)|2||un(r)||4dr

+ν|∇g|∞λ
1/2
1

m0

∫ s1

t−2
||un(r)||2dr

= ||un(s2)||2 − ||un(s1)||2 − 2

ν

∫ s2

s1

|f (r)|2dr

−2c′2
∫ s2

s1

|un(r)|2||un(r)||4dr − ν|∇g|∞λ
1/2
1

m0

∫ s2

s1

||un(r)||2dr

≤ −νγ0

∫ s2

s1

|Aun(r)|2dr

≤ 0 for all t − 2 ≤ s1 ≤ s2 ≤ t,

and therefore all Jn are non-increasing functions in [t − 2, t]. Arguing similarly as above,
we deduce that J is also a non-increasing function in [t − 2, t]. Observe now that by
the last convergence in (2.19) and (2.20), ||un(s)|| → ||u(s)|| and |un(s)|2||un(s)||4 →
|u(s)|2||u(s)||4, a.e. s ∈ (t − 2, t). Moreover, as the sequence {un} is bounded in
L∞(t − 2, t;Vg) ⊂ L∞(t − 2, t;Hg), we have that the sequence {|un(s)|2||un(s)||4} is
bounded in L∞(t − 2, t). Therefore, from the Lebesgue dominated convergence theorem,
we deduce that

∫ s

t−2
|un(s)|2||un(s)||4 →

∫ s

t−2
|u(s)|2||u(s)||4 for all s ∈ [t − 2, t].

Thus
Jn(s) → J (s) a.e. s ∈ (t − 2, t).

Hence, there exists a sequence {̃tk} ⊂ (t − 2, t∗), such that t̃k → t∗ as k → +∞, and

lim
n→+∞ Jn(̃tk) = J (̃tk) for all k.

Fix an arbitrary value δ > 0. By the continuity of J , there exists kδ , such that

|J (̃tk) − J (t∗)| <
δ

2
∀ k ≥ kδ.

Now consider n(kδ) such that for all n ≥ n(kδ) it holds

tn ≥ t̃kδ and |Jn(̃tkδ ) − J (̃tkδ )| <
δ

2
.

Then, since all Jn are non-increasing, we deduce for all n ≥ n(kδ) that

Jn(tn) − J (t∗) ≤ Jn(̃tkδ ) − J (t∗)
≤ |Jn(̃tkδ ) − J (t∗)|
≤ |Jn(̃tkδ ) − J (̃tkδ )| + |J (̃tkδ ) − J (t∗)| < δ.
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Thus
lim

n→∞ sup Jn(tn) ≤ J (t∗);
therefore, by (2.19),

lim
n→∞ sup ||un(tn)|| ≤ ||u(t∗)||,

which joined to (2.24) and (2.21) implies that un(tn) → u(t∗) strongly in Vg , in contradic-
tion with (2.23). Thus, (2.22) holds and the relative compactness of {u(t; τn, uτn)} in Vg is
proved.

Theorem 2.2 Assume that f ∈ L2
loc(R;Hg) satisfies (1.2). Then, the process U(t, τ )

defined in Vg has a pullback DHg,Vg
μ -attractor

ÂDHg,Vg
μ

=
{

ADHg,Vg
μ

(t) : t ∈ R

}

.

Proof The existence of the pullback attractor is a direct consequence of Theorem 7 in [6],
Lemmas 2.2 and 2.3.

3 Exponential growth of the pullback attractor

We now prove the exponential growth of the pullback attractor

ÂDHg,Vg
μ

=
{

ADHg,Vg
μ

(t) : t ∈ R

}

in the spaces Vg and H 2(�, g) = (H 2(�)
)2

.

Theorem 3.1 Suppose that f ∈ L2
loc(R;Hg) satisfies

sup
s≤0

(

e−μs

∫ s

−∞
eμθ |f (θ)|2dθ

)

< +∞. (3.1)

Then

lim
t→−∞

⎛

⎜
⎝eμt sup

v∈A
DHg,Vg

μ

(t)

||v||2
⎞

⎟
⎠ = 0.

Proof First, note that ÂDHg,Vg
μ

∈ DHg
μ . The result is now a consequence of the invariance

of ADHg,Vg
μ

, the second estimate in (2.3) and the tempered character of the expression (2.5).

Since f ∈ L2
loc(R;Hg), condition (3.1) is equivalent to

sup
s≤t

∫ s

s−1
|f (θ)|2dθ < +∞ ∀t ∈ R.

Lemma 3.1 If f ∈ W
1,2
loc (R;Hg) and satisfies (1.2), then for each t ∈ R and D̂ ∈ DHg

μ

there exists τ1(D̂, t) < t − 3 such that

|AU(r, τ )uτ |2 ≤ ρ6(t) for all r ∈ [t − 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(t),
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where

ρ6(t) = 4

ν2γ 2
0

(

ρ5(t) + max
r∈[t−1,t]

|f (r)|2
)

+ 2c′1
νγ0

ρ1(t)ρ
2
2 (t) + |∇g|∞λ

1/2
1

2m0γ0
ρ2(t), (3.2)

and

ρ5(t) =
(

ρ4(t) + 1

νγ0λ1

∫ t

t−2
|f ′(θ)|2dθ

)

exp

(
c2

1

νγ0
ρ2(t)

)

. (3.3)

Proof As f ∈ W
1,2
loc (R;Hg), we can differentiate with respect to time in (2.8), and then

multiply by γ ′
nj (s), and sum from j = 1 to n to obtain

d

dθ
|(un(θ))′|2 + 2ν||(un(θ))′||2

= 2
(
f ′(θ), (un(θ))′

)

g
− 2ν

(
C(un(θ))′, (un(θ))′

)

g
− 2b

(
(un(θ))′, un(θ), (un(θ))′

)

≤ νγ0||(un(θ))′||2 + 1

νγ0λ1
|f ′(θ)|2 + 2ν

|∇g|∞
m0λ

1/2
1

||(un(θ))′||2

+2c1|(un(θ))′|||(un(θ))′||||un(θ)||. (3.4)

Thus

d

dθ
|(un(θ))′|2 + 2νγ0||(un(θ))′||2 (3.5)

≤ νγ0||(un(θ))′||2 + 1

νγ0λ1
|f ′(θ)|2 + νγ0||(un(θ))′||2 + c2

1

νγ0
|(un(θ))′|2||(un(θ))||2,

where γ0 = 1 − |∇g|∞
m0λ

1/2
1

> 0. Then, we obtain

d

dθ
|(un(θ))′|2 ≤ 1

νγ0λ1
|f ′(θ)|2 + c2

1

νγ0
|(un(θ))′|2||(un(θ))||2. (3.6)

Integrate the inequality

|(un(r))′|2 ≤ |(un(s))′|2 + 1

νγ0λ1

∫ r

r−1
|f ′(θ)|2dθ + c2

1

νγ0

∫ r

r−1
|(un(θ))′|2||(un(θ))||2dθ

for all τ ≤ r − 1 ≤ s ≤ r . Thus, by Gronwall’s inequality,

|(un(r))′|2 ≤ (|(un(s))′|2 + 1

νγ0λ1

∫ r

r−1
|f ′(θ)|2dθ) exp

(
c2

1

νγ0

∫ r

r−1
||(un(θ))||2dθ

)

for all τ ≤ r − 1 ≤ s ≤ r .
Now, integrating this inequality with respect to s between r − 1 and r , we obtain

|(un(r))′|2 ≤
(∫ r

r−1
|(un(s))′|2ds + 1

νγ0λ1

∫ r

r−1
|f ′(θ)|2dθ

)

× exp

(
c2

1

νγ0

∫ r

r−1
||(un(θ))||2dθ

)
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for all τ ≤ r − 1 and any n ≥ 1. Therefore, by (2.15) and (2.18), we deduce for any n ≥ 1
that

|(un(r))′(r; τ, uτ )|2 ≤ ρ5(t) for all r ∈ [t − 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (3.7)

where ρ5(t) is given by (3.3).
Finally, multiplying again in (2.8) by λjγnj (r), and summing once more from j = 1 to

n, we obtain
(
(un(r))′, Aun(r)

)

g
+ ν|Aun(r)|2 + ν

(
Cun(r), Aun(r)

)

g

+ b
(
un(r), un(r), Aun(r)

) = (f (r), un(r)
)

g
.

Using Lemmas 2.1 and 2.3 in [4], we have

ν|Aun(r)|2 = (
f (r), Aun(r)

)

g
− ((un(r))′, Aun(r)

)

g

−ν
(
Cun(r), Aun(r)

)

g
− b

(
un(r), un(r), Aun(r)

)

≤ (
f (r), Aun(r)

)

g
− ((un(r))′, Aun(r)

)

g

+ν|∇g|∞
m0

||un(r)|||Aun(r)| + c1|un(r)|1/2||un(r)|||Aun(r)|3/2.

Using Cauchy inequality, we obtain

ν|Aun(r)|2 ≤ (
f (r), Aun(r)

)

g
− ((un(r))′, Aun(r)

)

g
+ ν|∇g|∞

m0λ
1/2
1

|Aun(r)|2

+ν|∇g|∞λ
1/2
1

4m0
||un(r)||2 + c1|un(r)|1/2||un(r)|||Aun(r)|3/2,

or

νγ0|Aun(r)|2 ≤ (f (r), Aun(r))g − ((un(r))′, Aun(r))g

+c1|un(r)|1/2||un(r)|||Aun(r)|3/2 + ν|∇g|∞λ
1/2
1

4m0
||un(r)||2,

where γ0 = 1 − |∇g|∞
m0λ

1/2
1

> 0.

Using Cauchy inequality and Young inequality, we have

νγ0|Aun(r)|2 ≤ νγ0

8
|Aun(r)|2 + 2

νγ0
|f (r)|2

+νγ0

8
|Aun(r)|2 + 2

νγ0
|(un(r))′|2 + νγ0

4
|Aun(r)|2

+c′1|un(r)|2||un(r)||4 + ν|∇g|∞λ
1/2
1

4m0
||un(r)||2.

Therefore

νγ0

2
|Aun(r)|2 ≤ 2

νγ0

(
|f (r)|2 + |(un(r))′|2

)

+ c′1|un(r)|2||un(r)||4 + ν|∇g|∞λ
1/2
1

4m0
||un(r)||2

(3.8)
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for all τ ≤ r . Thus, since in particular f ∈ C(R;Hg), from (2.11), (2.15), and (3.7), we
deduce for any n ≥ 1 that

|Aun(r; τ, uτ )|2 ≤ ρ6(t) for all r ∈ [t − 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (3.9)

where ρ6(t) is given by (3.2).
The result now is a consequence of Lemma 11.2 in [15] and (3.9), taking into account

the well-known facts that un(.; τ, uτ ) converges weakly to u(.; τ, uτ ) in L2(t − 1, t;Vg),

and u(.; τ, uτ ) ∈ C([t − 1, t];Vg).

Now, we can obtain a result about exponential growth in H 2(�, g) of the pullback
attractor.

Theorem 3.2 Suppose that f ∈ W
1,2
loc (R;Hg) satisfies (3.1), and moreover

lim
t→−∞

(

eμt

∫ t

t−1
|f ′(θ)|2dθ

)

= 0, (3.10)

and
lim

t→−∞
(
eμt |f (t)|2

)
= 0. (3.11)

Then

lim
t→−∞

⎛

⎜
⎝eμt sup

v∈A
DHg,Vg

μ

(t)

||v||2
H 2(�,g)

⎞

⎟
⎠ = 0.

Proof Observe that

|f (r)| ≤ |f (r − 1)| +
(∫ t

t−1
|f ′(θ)|2dθ

)1/2

for all r ∈ [t − 1, t].

Thus, taking into account (3.10) and (3.11), we get the result from the invariance of ÂDHg,Vg
μ

,

Lemma 3.1, (2.4), (2.5), and (2.7).

Remark 3.1 In fact, we obtain the exponential growth in Vg and H 2(�, g) for any family

D̂ ∈ DHg
μ invariant with respect to process U(t, τ ), not necessary to be a pullback attractor.

Acknowledgments The author would like to thank Cung The Anh for a stimulating discussion on the
subject of the paper.

This research is funded by Vietnam National Foundation for Science and Technology Development
(NAFOSTED) under grant number 101.01-2012.04.

References

1. Anguiano, M., Caraballo, T., Real, J.: H 2-boundedness of the pullback attractor for a non-autonomous
reaction diffusion equation. Nonlinear Anal. 72, 876–880 (2010)

2. Anguiano, M., Caraballo, T., Real, J.: An exponential growth condition in H 2 for the pullback attractor
of a non-autonomous reaction diffusion equation. Nonlinear Anal. 72, 4071–4075 (2010)

3. Anh, C.T., Quyet, D.T.: Long-time behavior for 2D non-autonomous g-Navier-Stokes equations. Ann.
Pol. Math. 103, 277–302 (2012)

4. Anh, C.T., Quyet, D.T., Tinh, D.T.: Existence and finite time approximation of strong solutions of the
2D g-Navier-Stokes equations. Acta Math. Vietnam. 38, 413–428 (2013)



PULLBACK ATTRACTORS FOR STRONG SOLUTIONS

5. Anh, C.T., Quyet, D.T.: Long-time behavior and long-time approximation of strong solutions to
g-Navier-Stokes equations. Submitted

6. Caraballo, T., Lukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact non-autonomous
dynamical systems. Nonlinear Anal. 64, 484–498 (2006)

7. Jiang, J., Hou, Y.: The global attractor of g-Navier-Stokes equations with linear dampness on R
2. Appl.

Math. Comput. 215, 1068–1076 (2009)
8. Jiang, J., Hou, Y.: Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded

domains. Appl. Math. Mech. -Engl. Ed. 31, 697–708 (2010)
9. Jiang, J., Hou, Y., Wang, X.: Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with

linear dampness. Appl. Math. Mech. -Engl. Ed. 32, 151–166 (2011)
10. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris

(1969)
11. Garcı́a-Luengo, J., Rubio, P.M., Real, J.: H 2-boundedness of the pullback attractors for non-autonomous

2D Navier-Stokes equations in bounded domains. Nonlinear Anal. 74, 4882–4887 (2011)
12. Garcia-Luengo, J., Rubio, P.M., Real, J.: Pullback attractors in V for non-autonomous 2D-Navier-Stokes

equations and their tempered behaviour. J. Differ. Equ. 252, 4333–4356 (2012)
13. Kwak, M., Kwean, H., Roh, J.: The dimension of attractor of the 2D g-Navier-Stokes equations. J. Math.

Anal. Appl. 315, 436–461 (2006)
14. Kwean, H., Roh, J.: The global attractor of the 2D g-Navier-Stokes equations on some unbounded

domains. Commun. Korean Math. Soc. 20, 731–749 (2005)
15. Robinson, J.C.: Infinite-dimensional dynamical systems. Cambridge University Press, Cambridge (2001)
16. Roh, J.: Dynamics of the g-Navier-Stokes equations. J. Differ. Equ. 211, 452–484 (2005)
17. Roh, J.: Derivation of the g-Navier-Stokes equations. J. Chungcheon Math. Soc. 19, 213–218 (2006)
18. Wu, D.: The finite-dimensional uniform attractors for the non-autonomous g-Navier-Stokes equations.

2009(150420), 17. doi:10.1155/2009/150420 (2009)

http://dx.doi.org/10.1155/2009/150420

	PULLBACK ATTRACTORS FOR STRONG SOLUTIONS
	Abstract
	Introduction
	Existence of a pullback attractor in Vg
	Exponential growth of the pullback attractor
	Acknowledgments
	References


