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Abstract—There have been numerous studies on using the
FCM algorithm in clustering and collaboration clustering, es-
pecially in data analysis, data mining and pattern recognition.
In this study, we present new methods involving interval Type-
2 fuzzy sets to realize collaborative clustering. Data in which
the clustering results realized at one data site impact clustering
carried out at other data sites. Those methods endowed with
interval type-2 fuzzy sets help cope with uncertainties present in
data. The experiment with weather data sets has shown better
results in comparison with the previous approaches.

Index Terms—Fuzzy clustering; Collaborative Clustering;
Fuzzy C-Means; Type-2 Fuzzy Sets; Cluster Validity Measures

I. INTRODUCTION

Clustering is used to detect a sound structure or patterns in
the data set, in which objects positioned within the cluster level
data show a substantial level of similarity. This unsupervised
technique has a long history in machine learning, pattern
recognition, data mining, and many algorithms have been
exploited in various applications. Clustering algorithms comes
in numerous varieties including k-means and its variants [1]-
[2], and a family of Fuzzy C-Mean (FCM) [3]-[5].

Pattern recognition comes with various facets of uncertainty
that have be appropriately managed in real-world data. Type-2
fuzzy sets (T2 FSs) have received increased research interest
over the past decade, primarily due to their potential to model
aspects of uncertainty. This has led to the extension of several
type-1 fuzzy clustering algorithms to Interval Type-2 Fuzzy C-
Means (IT2FCM) and Interval Type-2 Possibilistic C-Means
(IT2PCM) [7]-[15],[32]-[34] or some combinations of IT2
FCM and IT2PCM [16]. [30] also presented hybrid clustering
algorithms by combination of IT2FCM and multiple kernels
methods to enhance data classification. Sanchez et al. proposed
methods for information granule formation via the concept of
uncertainty-basedinformation with Interval Type-2 Fuzzy Sets
[32]

Collaborative fuzzy c-means clustering was introduced by
Pedrycz [17]-[20] as a vehicle to determine a structure and
reveal similarity among separate data sets. There are two es-
sential characteristics of collaborative data clustering. The first
one is that the individual data cannot be transferred. Second,
we can only exchange findings about the structure. Through
the process of interaction in this manner, the results obtained at

one site can impact clustering realized at other data site [17]-
[18]. In the sequel, Coletta et al [20] extend Pedryczs method
to optimize the parameters including the interaction level for
all pairs of peers and the number of clusters at each place.
In [23] when data sets described by multiple views, with each
view having its own characterization of the data to be clustered
take this advantage by applying Collaborative fuzzy c-means
clustering so that we combine individual views coming from
multiple clustering. M. Prasad [24] overcome some of the
drawbacks of the method of Pedryczs method by introducing
preprocessing phase before running collaborative phase. Zhou
et al [22] proposed a novel collaborative clustering algorithm
over a distributed P2P network. This algorithm searches the
optimized clusters at each data site by collaborating only with
prototypes of the neighboring data site. The clustering solution
could be improved by applying partial supervision, which
involves a subset of labeled data augmented with their class
membership. This knowledge-based hints have to be included
into the objective function and reflect a fact that some patterns
have been labeled [19]-[25].

Another development of data collaboration clustering re-
search is to combine the advantages of fuzzy sets and rough
sets was presented by by S. Mitra et al [29]. Fu, , Tang and
Cai focused on Horizontal Collaborative Fuzzy Clustering with
spatial attributes data collection. The identification of data site
and regional data is involved in realizing collaboration with
the use of some threshold level of the membership function or
entropy-based approach [25]-[26]. The assessment of the level
of collaboration can be determined based on the similarity
of the data between the cluster regions. The corresponding
coefficient can be decided in advance or automatically adjusted
after each phase of collaboration [20]-[25]. Some research was
completed to handle the problem of identifying the number
of clusters based on an assessment of clustering results [20]-
[25] and eventually adjusting the number of clusters, remove
clusters based density and the size of the cluster. Yu et al
[27] presented a new approach to implementing horizontal
collaborative fuzzy clustering with the knowledge provided by
the prototypes instead of partition matrixes.

Collaborative fuzzy clustering algorithms using type 1 fuzzy
set are not able to handle uncertainty and noise found during



the process of data clustering. Uncertainty related to the input
data themselves (e.g., clustering heterogeneous input data such
as real numbers, intervals, and linguistic terms), it also related
to the interpretation of the computed result. The collaboration
has examined the impact of the data on the content area of
a sector of data that can be developed in the direction of
using fuzzy type 2 [19], but this is a new direction. The paper
presents a new method that applies Interval Type-2 Fuzzy sets
to collaborative clustering with intent to cope with uncertainty.

The paper is organized as follows: Section II offers a brief
introduction to type 2 fuzzy set, interval type 2 fuzzy set and
collaborative clustering; Section III proposes interval type 2
collaborative fuzzy clustering; Section 4 show the experimental
results. Conclusion and future studies are covered in Section
V.

II. BACKGROUND

A. Type-2 Fuzzy Sets

A type-2 fuzzy set in X is denoted Ã, and its membership
grade of x ∈ X is µÃ(x, u), u ∈ Jx ⊆ [0, 1], which is a type-
1 fuzzy set in [0, 1]. The elements of domain of µÃ(x, u)
are called primary memberships of x in Ã and memberships
of primary memberships in µÃ(x, u) are called secondary
memberships of x in Ã .

Definition 2.1: A type− 2 fuzzy set, denoted Ã, is char-
acterized by a type-2 membership function µÃ(x, u) where
x ∈ X and u ∈ Jx ⊆ [0, 1], i. e. ,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

or
Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u))/(x, u), Jx ⊆ [0, 1] (2)

in which 0 ≤ µÃ(x, u) ≤ 1, see [1], [2], [31].
At each value of x, say x = x′, the 2-D plane whose axes
are u and µÃ(x

′, u) is called a vertical slice of µÃ(x, u). A
secondary membership function is a vertical slice of µÃ(x, u).
It is µÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i. e.

µÃ(x = x′, u) ≡ µÃ(x
′) =

∫
u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (3)

in which 0 ≤ fx′(u) ≤ 1. In manner of embedded fuzzy sets,
a type-2 fuzzy sets is union of its type-2 embedded sets, i. e

Ã =

n∑
j=1

Ãje (4)

where n ≡
N∏
i=1

Mi and Ãje denoted the jth type-2 embedded

set of Ã, i. e. ,

Ãje ≡ {
(
uji , fxi

(uji )
)
, i = 1, 2, ..., N} (5)

where uji ∈ {uik, k = 1, ...,Mi}. Type-2 fuzzy sets are called
an interval type-2 fuzzy sets [3] if the secondary membership
function fx′(u) = 1 ∀u ∈ Jx i. e. a type-2 fuzzy set are
defined as follows:

Definition 2.2: An interval type-2 fuzzy set Ã is character-
ized by an interval type-2 membership function µÃ(x, u) = 1
where x ∈ X and u ∈ Jx ⊆ [0, 1], i. e. ,

Ã = {((x, u), 1)|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (6)

Fig. 1. The membership function of an interval type 2 fuzzy set [4]

Uncertainty of Ã, denoted FOU, is union of primary func-
tions i. e. FOU(Ã) =

⋃
x∈X Jx. Upper/lower bounds of

membership function (UMF/LMF), denoted µÃ(x) and µ
Ã
(x),

of Ã are two type-1 membership function and bounds of FOU
which is limited by two membership functions of an type-1
fuzzy set are UMF and LMF (see Fig.1).

B. Interval Type-2 Fuzzy C-Means Clustering

In general, fuzzy memberships in interval type-2 fuzzy C
means algorithm (IT2FCM) [8] is achieved by computing the
relative distance among the patterns and cluster centroids.
Hence, to define the interval of primary membership for a
pattern, we define the lower and upper interval memberships
using two different values of m . In (7), (8) and (9), m1 and
m2 are fuzzifiers which represent different fuzzy degrees. We
define the interval of a primary membership for a pattern,
as the highest and lowest primary membership for a pattern.
These values are denoted by upper and lower membership for a
pattern, respectively. IT2-FCM is extension of FCM clustering
by using two fuzziness parameters m1, m2 to make FOU,
corresponding to upper and lower values of fuzzy clustering.
The use of fuzzifiers gives different objective functions to be
minimized as follows:{

Jm1
(U, v) =

∑N
k=1

∑C
i=1(uik)

m1d2ik
Jm2

(U, v) =
∑N
k=1

∑C
i=1(uik)

m2d2ik
(7)

in which dik =‖ xk − vi ‖ is Euclidean distance between the
pattern xk and the centroid vi, C is number of clusters and
N is number of patterns. Upper/lower degrees of membership,
uik and uik are determined as follows:

uik =



1
C∑
j=1

(
dik
djk

)2/(m1−1)
if

1
C∑
j=1

(
dik
djk

) < 1

C

1
C∑
j=1

(
dik
djk

)2/(m2−1)
otherwise

(8)



uik =



1
C∑
j=1

(
dik
djk

)2/(m1−1)
if

1
C∑
j=1

(
dik
djk

) ≥ 1

C

1
C∑
j=1

(
dik
djk

)2/(m2−1)
otherwise

(9)

in which i = 1, C, k = 1, N . Because each pattern has
membership interval as the upper u and the lower u, each
centroid of cluster is represented by the interval between vL

and vR. Cluster centroids is computed in the same way of
FCM as follows:

vi = (

N∑
k=1

(uik)
mxk)/(

N∑
k=1

(uik)
m) (10)

in which i = 1, C. After obtaining vRi , vLi , type-reduction is
applied to get centroid of clusters as follows:

vi = (vRi + vLi )/2 (11)

For membership grades:

ui(xk) = (uRi (xk) + uLi (xk))/2, j = 1, ..., C (12)

in which

uLi =

M∑
l=1

uil/M, uil =

{
ui(xk) if xil uses ui(xk) for vLi
ui(xk) otherwise

(13)

uRi =

M∑
l=1

uil/M, uil =

{
ui(xk) if xil uses ui(xk) for vRi
ui(xk) otherwise

(14)
Next, defuzzification for IT2FCM is made as if ui(xk) >
uj(xk) for j = 1, ..., C and i 6= j then xk is assigned to
cluster i.

C. Collaborative Fuzzy Clustering

Suppose there is ”P” data sets D[1], D[2], ..., D[P ], which
contains N [1], N [2], ..., N [P ] patterns data defined in the same
feature space X . Each data site we group all patterns into
”c” clusters. Clustering results in every area of data back to
the clustering effect in the rest area, we call this process is
collaborative and collaborative clustering.

The objective function for each data site when using the
standard FCM algorithm comes in the well-known form

N [ii]∑
k=1

C∑
i=1

(uik)
2[ii](dik)

2 (15)

with ii = 1, 2, ..., P .
The collaboration among each data site is done with other

data site. The intensity of the interaction is described by factor
β. To accommodate the collaboration effect in the optimization
process, the objective function is extended into the form

Q[ii] =
N [ii]∑
k=1

∑C
i=1(uik)

2[ii](dik)
2 +

β
P∑

jj=1

N [ii]∑
k=1

C∑
i=1

(uik[ii]− (uik) [ii|jj])2(dik)2 (16)

In the above formula, the first part is the ”standard” objec-
tive function of the FCM algorithm. The second part reflects
the impact of structural clustering of data from other sites.
Among them (uik) [ii|jj] is called the induced matrix caused
by the impact of the data site ii to data site jj, calculated by
the following formula:

(uik) [ii|jj] = 1/

C∑
j=1

(|xk[ii]−vi[jj]|/|xk[ii]−vj [jj]|)2 (17)

The collaborative clustering problem is converted to the op-
timization problem with the following membership constraints:
MinQ[ii]
s.t. U [ii] ∈ U
where U is a family of all fuzzy partition matrices,namely
U = uk[ii] ∈ [0, 1],

∑C
i=1 uik = 1∀k and 0 <∑N [ii]

k=1 uik[ii] < N [ii]fori
Using the Lagrange method to optimize the objective func-

tion, we find the matrix u and the prototypes v as the follows:

urs =
1∑C

j=1
d2rs
d2js

[1−
C∑
j=1

β
∑P
jj=1,jj 6=ii ujs[ii|jj]
1 + β(P − 1)

] +

β
∑P
jj=1,jj 6=ii urs[ii|jj]
1 + β(P − 1)

(18)

vrt =

N [ii]∑
k=1

u2rkxkt + β
P∑

jj=1,jj 6=ii

N [ii]∑
k=1

crkxkt

N [ii]∑
k=1

u2rk + β
P∑

jj=1,jj 6=ii

N [ii]∑
k=1

crk

(19)

in which crk = (urk[ii]− (urk) [ii|jj])2.
The parameter β[ii|jj] denotes the level of collaboration

between the data site ii and jj, β becomes greater, the more
level of collaboration and vice versa. When the data sites
similar structure, the level of collaboration will be greater or
higher β values. The value of β can be acquired from experts
given or calculated based on the similarity of the structure of
the site. In collaborative model, the prototypes v[jj] were send
from data site jj to data site ii and we can compute the value
of the induced objective function:

J [ii|jj] =
N [ii]∑
k=1

C∑
j=1

(uik)
2[ii|jj])|xk − vi[jj]|2 (20)

The interaction level β[ii|jj] between two data sites ii and
jj, at the collaboration stage, can be defined as



β[ii|jj] = min[1,
J [ii]

J [ii|jj]
] (21)

Subsequently, the membership function and cluster centroid
matrix are calculated as the equations (22) and (23).

urs =
1∑C

j=1
d2rs
d2js

[1−
C∑
j=1

P∑
jj=1,jj 6=ii

β[ii|jj]ujs[ii|jj]
1 + β[ii|jj](P − 1)

] +

P∑
jj=1,jj 6=ii

β[ii|jj]urs[ii|jj]
1 + β[ii|jj](P − 1)

(22)

vrt =

N [ii]∑
k=1

u2rkxkt +
P∑

jj=1,jj 6=ii

N [ii]∑
k=1

brkxkt

N [ii]∑
k=1

u2rk +
P∑

jj=1,jj 6=ii

N [ii]∑
k=1

brk

(23)

in which brk = β[ii|jj](urk[ii]− (urk) [ii|jj])2.

III. COLLABORATIVE IT2 FUZZY CLUSTERING

A. Collaborative IT2 Fuzzy Clustering

In order to solve the case of the number of clusters on the
data sites are different. Before each phase of collaboration,
we calculate v as the new prototypes from the prototypes
communicated by all remaining data sites, the number of items
are the same with number of cluster of data site ii. Besides,
in an effort to prove the noise reduction and uncertainty. We
generalize the objective function as following form:

Q[ii] =

N [ii]∑
k=1

C∑
i=1

(uik)
m[ii](dik)

2+β

N [ii]∑
k=1

C[ii]∑
i=1

umik(vi[ii]−vi [ii])2

(24)
The minimization of Q[ii] is carried out with respect to the

fuzzy partition U [ii] and the prototypes, vi[ii]. The distance
dik concerns the kth data (pattern) in D[ii] and the ith

prototype, d2ik =
∑n
j=1(xkj−vij [ii])2, v∼ is the new prototype

determined in form:

v∼i [ii] =

∑P
jj=1,jj 6=ii β[ii|jj]v∼i [ii|jj]∑P

jj=1,jj 6=ii β[ii|jj]
(25)

with v∼i [ii|jj] = {vk|min(
∑n
j=1(vij [ii] − vkj [jj])2)|k =

1, ..., C}.
The factor β is an average of β[ii|jj], the interaction

level β[ii|jj] between two data sites ii and jj, at a given
collaboration stage, can be defined as:

β =

∑P
jj=1,jj 6=ii β[ii|jj]

(P − 1)

β[ii|jj] = min{1, fracJ [ii|jj]J∼[ii|jj]}

J∼[ii|jj] =
N [ii]∑
k=1

C[jj]∑
j=1

u 2
ik [ii|jj](xk − v∼[jj])2

u 2
ik [ii|jj] =

1∑C[jj]
j=1

xk[ii]−vi[ii]
xk[ii]−vi[ii]

(26)

v∼[jj] =

∑C[jj]
j=1 vj

c[jj]

We confine ourselves to the use of the technique of La-
grange multipliers. For any data point k, k = 1, 2, ..., N [ii],
we reformulate the objective function to be in the form:

V[ii] =

N [ii]∑
k=1

C∑
i=1

(uik)
m[ii](dik)

2 +

β

N [ii]∑
k=1

C[ii]∑
i=1

umik(vi[ii]− vi [ii])2 − λ(
C[ii]∑
i=1

uik[ii]− 1) (27)

The necessary conditions for the minimum of V [ii] are
expressed as ∂V

∂urs
= 0 with r = 1, 2, ..., c; s = 1, 2, ..., N [ii].

After computing the derivative with respect to the elements of
the partition matrix we have

∂V
∂urs

= mum−1rs [ii]d2rs +mβum−1rs (vr[ii]− vr[ii])2 − λ

urs = [
λ

m(d2rs + β(vr[ii]− vr[ii])2)
]1/(m−1) (28)

Given the constraint in the form
∑C[ii]
j=1 ujs[ii] = 1

we obtain

C[ii]∑
j=1

[
λ

m(d2rs + β(vr[ii]− vr[ii])2)
]1/(m−1) = 1 (29)

λ =
m

[ 1
m(d2rs+β(vr[ii]−vr [ii])2)

]1/(m−1)]

m−1
(30)

By plugging 40 into 39 one has:

urs =
1

[m(d2rs + β(vr[ii]− v∼r [ii])2)][ 1
m(d2rs+β(vr[ii]−v∼r [ii])2) ]

1
m−1

(31)
Proceeding with the optimization of the objective function

with regard to the prototypes, we consider now the Euclidean
distance. Given the form of the distance, let us rewrite the
objective function in an explicit manner.



Q[ii] =

N [ii]∑
k=1

C[ii]∑
i=1

(uik)
m[ii]

n∑
j=1

(xkj − vij [ii])2 +

β

N [ii]∑
k=1

C[ii]∑
i=1

umik(vi[ii]− vi [ii])2 (32)

∂Q

∂vrt
= 0 (33)

−2
N [ii]∑
k=1

(urk)
m(xkt − vrt[ii]) +

2β

N [ii]∑
k=1

(urk)
m(vrt[ii]− vrt[ii]) = 0 (34)

N [ii]∑
k=1

xkt −
N [ii]∑
k=1

vrt[ii]− β
N [ii]∑
k=1

vrt[ii] + β

N [ii]∑
k=1

vrt[ii] = 0 (35)

vrt =

∑N [ii]
k=1 (urk)

mxkt + β
∑N [ii]
k=1 (urk)

mvrt[ii]

1 + β)
∑N [ii]
k=1 (urk)m

(36)

We consider two different parameter m1,m2 with the
proposed membership functions, the parameters responsible
for the width of uncertainty and the parameters responsible
for the center and the support of the proposed membership
function are decoupled from each other in the interval type-2
membership function, such that:

urs =
1

[m(d2rs + β(vr[ii]− vr[ii])2)][ 1
m(d2rs+β(vr[ii]−vr [ii])2)

]
1

m1−1

(37)

urs =
1

[m(d2rs + β(vr[ii]− vr[ii])2)][ 1
m(d2rs+β(vr[ii]−vr [ii])2)

]
1

m2−1

(38)
The membership function value is calculated as:

urs =
urs + urs

2
(39)

vrt =

∑N [ii]
k=1 (urk)

m1xkt + β
∑N [ii]
k=1 (urk)

m1vrt[ii]

1 + β)
∑N [ii]
k=1 (urk)m1

(40)

vrt =

∑N [ii]
k=1 (urk)

m2xkt + β
∑N [ii]
k=1 (urk)

m2vrt[ii]

1 + β)
∑N [ii]
k=1 (urk)m2

(41)

and the centroid of cluster is calculated as follows:

vrt =
urt + urt

2
(42)

B. Collaborative IT2 Fuzzy Clustering Algorithrm

The essence of collaborative clustering is to explore the
structures of each data site through prototype exchanges. There
are two main phases, clustering data in each site by the
clustering algorithm known as IT2FCM and implementation of
re-clustering based on the collaboration of the data clustering
results from phase 1. A general view of the processing of the
proposed collaborative clustering algorithm is shown in Fig. 1

Fig. 2. The block diagram of the overall collaborative clustering algorithm.

Initially, the FCM-type algorithm is performed indepen-
dently at each data site with its optimization pursuits by
focusing on the local data then the prototypes of each data
site is broadcasted to all other data sites. In each collaborative
step, the prototype and membership matrix of each data site is
recalculate and optimize from others until the end condition is
matched.

CIT2FCM Clustering Algorithm
Input: the number of data site P, the number of item in each

data site ii is N[ii], the number of cluster in each data site ii
is c[ii], the number of attribute of data item is n, the data item
in each data site X[ii] Ouput: Accuracy of the clustering.

Phase 1: locally clustering
Run IT2FCM for each data site
Phase 2: collaboration
Repeat
Communicate cluster prototypes from each data site to all

others
Foreach data site D[ii]
Compute induced partition matrices
Repeat
Compute local partition matrices u by (35,36,37) or

(50,51,52)
Compute local cluster prototypes v by (38,39,40) or

(53,54,55)
Until the objective function is minimized



End for
Until Cluster prototype does not significantly change be-

tween two consecutive iterations

C. Validity Measures for Collaborative Fuzzy Cluster

1) Fuzzy Silhouette Width Criterion for collaborative clus-
tering: a. Average Silhouette Width Criterion for collaborative
clustering

We consider an object j ∈ 1, 2, ..., N belonging to cluster
r ∈ 1, ..., c then the silhouette of object j is defined as follows:

Sj =
brj − arj − drj
max(brj , arj)

(43)

Among them arj is the average distance of the element j
to all elements in the cluster r, dqj is the average distance of
the element j to the all elements in the cluster q, brj is the
smallest value of q where q 6= r or brj is the average distance
to the closest cluster of cluster r. dik is the distance between
element j to vij which is calculated by 3.2 and is the average
of centroid of nearest cluster of cluster r in each remain data
sites.
dik =

√∑n
j=1 (xkj − vij [ii])

2

Obviously the larger value of Sj , in other words the value
of arj and greater, the smaller value of b then the element j
assigned to cluster r are more reasonable.

b. Fuzzy Silhouette Criterion
Follows [17-1], the generalized silhouette criterion for one

data site ii have been defined as follows:

FS[ii] =

∑N
j=1(urj − uqj)Sj∑N
j=1(urj − uqj)

(44)

Where urj and uqj is the largest and second element in
column j of the membership matrix or 2 highest membership
functions of element j.

The global silhouette criterion for all data site is:

FS =

P∑
ii=1

FS[ii] (45)

2) Fuzzy Sum of Squared Error (FSSE) for collaborative
clustering: The one of simplest and most widely used criterion
measure for clustering is Sum of Squared Error (SSE). It is
defined as:

SSE =

C∑
k=1

1

Nk

∑
∀xi∈Ck

|xi − vk|2 (46)

Where c is the number of clusters, Nk is the number of
element in kth cluster and vk is the centroid of kth cluster.

In collaborative fuzzy clustering, the probability of object
i belongs to cluster k is uik and xi as close to vk as possible
then the element xi assigned to cluster k are more reasonable,
so SSE criterion for collaborative fuzzy clustering (FSSE) of
data site ii be rewritten as:

FSSE[ii] =

C[ii]∑
k=1

1

Nk

∑
∀xi∈Ck

uik[|xi − vk|2 + |xi − vk|
2
]

(47)
The global FSSE criterion for all data site is:

FSSE =

P∑
ii=1

FSSE[ii] (48)

IV. EXPERIMENTS

To evaluate the performance of the proposed algorithm
CIT2FCM, CFCM[26] clustering algorithm are chosen for
comparative analysis and we used two measures in the session
3 for the quantitative assessment of two above algorithms and
following datasets are used in our examples: Canadian weather
energy and engineering data sets, experimental studies used
parameters m1 = 2 and m2 = 3.

That is computer data sets of hourly weather conditions
occurring at 145 Canadian locations for up to 48 years of
records, starting as early as 1953, and ending for most locations
in 2001. The primary purpose of these files is to provide long
term weather records for the use in urban planning, siting and
designing of wind and solar renewable energy systems, and
designing of energy efficient buildings.

The study used Dry bulb temperature and Dew point tem-
perature for clustering and each station data for one data site,
4 data sites and 4 stations respectively are chosen: CowleyA,
EdmontonStonyPlain, EdsonA and FortChipewyanA.

Table I and II shows results of clustering algorithms CFCM
and CIT2FCM and the evaluation results of the FS and FSSE
are presented in the tables III and IV. The efficient algorithms
have larger FS value and smaller FSSE value is CIT2FCM 1
and 2.

TABLE I
RESULTS OF CFCM ALGORITHM

No CowleyA EdmontonStonyPlain EdsonA FortChipewyanA
Class 1 18.15,3.83 19.98,6.83 16.41,7.06 14.43,6.01
Class 2 2.88,-4.26 0.82,-4.51 0.13,-5.44 -0.97,-5.36
Class 3 -4.06,-8.67 -11.81,-14.98 -12.70,-16.11 -18.74,-22.19

TABLE II
RESULTS OF CIT2FCM ALGORITHM

No CowleyA EdmontonStonyPlain EdsonA FortChipewyanA
Class 1 18.63,4.05 20.48,7.11 16.70,7.28 14.80,6.29
Class 2 3.84,-3.77 1.57,-3.99 0.78,-5.00 -0.41,-4.88
Class 3 -4.05,-8.68 -12.82,-15.95 -14.03,-17.37 -20.49,-24.06

V. CONCLUSION

In this study, we reviewed and discussed some algorithms
for collaborative fuzzy clustering. We have developed the
idea of clustering collaboration by introducing fuzzy type 2



TABLE III
COLLABORATIVE FUZZY SILHOUETTE CRITERION FOR WEATHER DATA

SETS

No Data site 1 Data site 2 Data site 3 Data site 4 FS
CFCM 2.23 3.43 3.31 3.33 12.31

CIT2FCM 3.21 2.99 2.98 3.88 13.06

TABLE IV
COLLABORATIVE FUZZY SUM OF SQUARED ERROR FOR WEATHER DATA

SETS

No Data site 1 Data site 2 Data site 3 Data site 4 FSSE
CFCM 96.24 143.35 100.26 150.52 490.37

CIT2FCM 108.40 128.54 115.72 118.82 471.48

which improved results of clustering and helped overcome
the drawbacks of the conventional collaborative clustering
algorithms. Also, we have developed validity measures for
collaborative fuzzy clustering to compare results supplied by
different methods of collaborative clustering. The experimental
results demonstrated that in the experimental, the FS and FSSE
yield better results that the CFCM.

The next goal is extension of various algorithms related
to collaborate clustering and type-2 fuzzy sets, how to apply
the proposed algorithms into other data classification such as
satellite image classification.
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