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Abstract This paper presents a new collision avoidance strat-
egy and its integration with the collision detection for five-axis
NC machining that improves upon the earlier collision detec-
tion algorithm developed by the present authors [T.D. Tang,
Erik L.J. Bohez, Pisut Koomsap (2007) The sweep plane al-
gorithm for global collision detection with workpiece geome-
try update for five-axis NC machining. Computer-Aided De-
sign 39(11):1012–1024]. The proposed algorithm automati-
cally detects and corrects the collision based on the biggest
collision boxes. The collision detection algorithm is based on
the bounding volume and the sweep plane approach. The col-
lision is firstly detected by using the bounding sphere algo-
rithm, and the colliding spheres are then further checked with
the sweep plane algorithm. The change of the workpiece ge-
ometry is included in the detection process. After the collision
detection, the collision data are stored. Only the biggest colli-
sion boxes (the boxes with the biggest edge in the X, Y, or Z
direction) for each type of collisions are stored. The collision
avoidance algorithm corrects the biggest collision based on
heuristic strategy. With this strategy, when the biggest colli-
sion is corrected, most of other collisions will disappear auto-
matically. Therefore, the time complexity of the collision
avoidance strategy is considerably reduced. The algorithm
has been implemented in Visual C++ and OpenGL, demon-
strated for five-axis machine with two rotary axes on the table

(Deckel MAHO 600e) and can be customized to apply for any
five-axis CNC machines.
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1 Introduction

A five-axis machine has two extra rotational axes over a
three-axis machine. These two rotational axes provide users
with great flexibilities and make it possible to machine high
quality complicated free-form shapes which were previously
un-machinable [1]. Therefore, five-axis CNC machines are
widely used in machining of sculptured surfaces such as
turbine blades, impeller, aerospace parts, molds, and dies
[2]. However, because of the two additional rotation axes,
collisions are prone to occur in five-axis machining [3].
These collisions may occur between the tool (or toolholder)
and the workpiece, fixtures (or machine components), be-
tween the workpiece and machine components, or between
moving machine components. These collisions are consid-
ered to be serious as accidents may happen if such collision
occurs; besides the unacceptable workpiece machined, it
may damage the cutter, fixtures, and the machine structure
itself [4]. Therefore, the collision detection and avoidance is
one of the important problems in five-axis NC machining; to
take full advantage of five-axis machining such collision
detection and avoidance problem must be solved.

There have been a lot of research done on collision detec-
tion and collision avoidance, attempting to solve the problem:

Based on the curvature matching technique, Chen et al. [5]
detected the local gouging and then determined an optimal
cutter orientation by matching the instantaneous cutting pro-
file of the cutter and the machined surface as close as possible.
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Rear gouging detection and avoidance were implemented by
calculating the intersection between the offset cylinder of the
cutter and the offset surface of the machined surface for a
simple smooth surface. Whereas for the complex shaped sur-
faces, a search for possible rear gouging is conducted by firstly
dividing the machined surface into a set of triangular facets
and then classifying the relative position of the bottom plane
of the cutter and the vertices of the triangular facets. If one of
the vertices of the triangles under the cutter shadow is above
the bottom plane of the cutter, rear gouging will occur. If so,
the cutter orientation is adjusted to eliminate gouging. Simi-
larly, Du et al. [6] used the method of exact curvature
matching between the cutter and part surface to avoid local
cutter gouging at the cutter contact point. Rear gouging detec-
tion is performed by accurately judging the position of the
each valid checking point relative to the bottom plane of the
cutter. The method can be used in three-, four-, or five-axis
machining. Wang et al. [7] proposed a new three-dimensional
(3D) curvature match and curvature gouge detection and elim-
ination method for five-axis CNC machining of sculpture sur-
face. The method can be applied to all three types of common-
ly used milling cutter (end, torus and spherical mills), and all
concave curved surfaces.

In Kim et al.’s research [8], the cutter interference free
orientation is selected by the collision detection between
the axis line of the cutter and the offset surface (offsetting
the design model by the amount of the cutter radius). This
is a simpler process than a collision check between the
cutter model and the design model. However, it can only
be applied for a ball endmill.

Gain et al. [9] used the concept of open regions and vector
fields to determine the appropriate tool orientation that pre-
vents collisions in five-axis machining of cavity regions with
undercut areas.

Morishige et al. [10] apply the configuration space (C-
space) method to five-axis machining. The idea of the C-
space method is to represent a moving object as a point in
an appropriate space in which the obstacles are mapped. This
mapping transforms the complex problem of planning the
motion of an object into a simpler one of planning the motion
of a point in the C-space. In Morishige’s approach, the cutting
tool is the moving object and the workpiece is the obstacle,
and collision-free access can be inferred by simply navigating
the point in the C-space around the obstacles in the C-space.
To deal with the collision avoidance problem in five-axis ma-
chining, Morishige employed a 2D C-space to enable auto-
matic judgment of the possibility of collision avoidance at
each cutting point. In the case where the whole definition area
on the C-space is occupied by the projected collision areas,
collision avoidance is considered to be impossible at any cut-
ting point. On the other hand, if some free areas exist on the C-
space, the process of collision avoidance is immediately car-
ried out. The point corresponding to the tool with collision is

modified to the nearest point on the boundary between the
collision area and the free area in the C-space. This modified
point indicates a new pair of parameters of the tool orientation
for which the tool is free of collision.

Zhiwei et al. [11] utilized the idea of admissible area inter-
polation for the whole designed free-form surface and pro-
posed an algorithm to generate tool posture collision-free area
for the free-form surface during five-axis CNC finishing peri-
od. The algorithm consists of two phases. In the first phase, a
few points are picked on the surface, and the admissible area
of tool posture is calculated at each point. In the second phase,
the admissible area of the sampling points is interpolated with
cubic B-surface interpolation technique, forming an expres-
sion as Q(u,v), through which, when the parameters u and v
are assigned, the global collision-free area for the correspond-
ing surface point can be easily calculated. The algorithm can
detect any kind of global collision between the cutting tool
and a workpiece surface and can be extended to any kind of
cutting tool.

Based on the distance calculation method, You and Chu
[12] firstly subdivide the surfaces to be machined into discrete
sample points. Then, the tool interference detection is con-
ducted between discrete tool positions, and these sample
points on the machined surface by calculating the relative
distance from the sample points and the tool axis. Before the
calculation, the tool geometry is projected onto the XYplane,
and the sample points which are covered in the shadow of the
tool projection are considered as possible interference points.
To locate these points, a bounding box is calculated to approx-
imate the tool projection area, and only sample points in this
bounding box need further interference detection. In this
method, since the interference detection is conducted only at
discrete sample points, not for the polyhedral model, there-
fore, it is possible that the cutter does not interfere with the
discrete sample points while it protrudes into the surface be-
tween the sample points.

Kiswanto et al. [13] have detected gouges by projecting
the triangles of the faceted model and the cutting tool to a
projection plane (e.g., the XY plane of the workpiece coor-
dinate system). On the projection plane, the region covering
all the triangles which are intersected by the shadow of the
extended cutting tool projection is called possible interfer-
ence region (PIR). All triangles in the PIR are then trans-
ferred to the tool coordinate system. Only triangles which
are in the interference region are really checked for gouging
at the rear-bottom side of the cutting tool and near the CC
(cutter contact) point. In the proposed algorithm, if five-axis
milling is using constant tool orientation, then gouging is
eliminated by simply lifting the tool immediately when the
gouging occurs. If varying optimal tool orientation is ap-
plied, the cutting tool will firstly try to find the minimum
rotation angle to avoid gouging. If the gouging still occurs,
e.g., when the specified maximum inclination angle at a CC
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point is exceeded, then the tool is lifted. In both methods,
the tool is lifted until it is gouge free.

Wang et al. [14] proposed a graphics-assisted approach to
rapid collision detection for multi-axis machining by integrat-
ing machining environment culling and a two-phase collision
detection strategy. In this approach, the machining environment
is initially subdivided and organized hierarchically using a bi-
nary space partitioning (BSP) tree structure. The machining
environment is culled conservatively to remove the irrelevant
geometries from further checking steps. Then, in the precise
collision detection stage, a two-phase collision detection strat-
egy is used. In the first phase, based on the extracted portions of
machining environment and the viewing volumes which are
modeled according to the cutting tool’s geometry, a collision
map is generated to determine the collision. The second phase
of detection will be invoked only for some ambiguous cases,
where vector-based calculation is adopted to precisely check
the collision between the cutting tool geometry and a couple
of ambiguous triangles which have been located by phase one.
Since this approach utilizes the graphics processing unit in
graphics hardware to assist computation in its main steps, the
computational efficiency of the algorithm is improved. Howev-
er, checking the accuracy of the algorithm is subject to the size
of the cutting tool and the graphics hardware’s specification. In
addition, the algorithm only detects collisions between the cut-
ting tool and workpiece or machine parts, collisions among
machine parts was not taken into account.

Today, many commercially available CAM software for
five-axis machining such as Mastercam, UGS NX, CATIA,
and Delcam’s PowerMILL provide gouge detection and correc-
tion. However, an intensive user interaction is still neededwhile
using this software to avoid collisions. These CAM systems are
unable to accomplish the collision avoidance autonomously.

MasterCAM does not perform collision avoidance on the
machine level. Actually, the software only avoids collisions
between the tool and the stock or chuck by simply defining an
area around the stock or chuck to allow the tool to retract to a
safe position outside of this area.

UGS NX offers the full 3D motion of the machine tool and
allows the system to detect and respond to collisions with the
machining part and check the geometry of the part. If a colli-
sion is detected, it may modify the tool path to eliminate the
collision by lifting along the tool axis to a safe level or alter the
tool path to contour around the geometry to avoid the collision
while maintaining the desired travel.

In CATIA, collisions between the tool or toolholder and
part or fixtures are detected and graphically visualized. The
system provides several display options such as the collision
point, tool, or toolholder sweep for the cut which caused the
collision or the tool position at the start and end of the cut
which caused the collision. Collisions are avoided by a dy-
namic inclination of the tool axis. Users can interactively edit
machining operations or modify tool paths.

Delcam’s PowerMILL offers gouge checked and detects
collisions of the toolholder and machine tool. It tilts the tool
away from an obstacle by a specified clearance. Once the ob-
stacle is cleared, the tool returns to the original cutting angle.

VERICUT is a machine simulation and verification soft-
ware (not real CAM system) that provides realistic 3D simula-
tion of entire CNC machines and detect collisions between all
machine tool components such as rotary tables, spindles, work-
piece, and fixtures. However, the task of collision avoidance is
left to the user.

A state-of-the art review on the algorithms for collision
detection and avoidance for five-axis NC machining has
been also carried out by the author in the previous work
[15]. Through the analysis and comparison of algorithms,
it is clear that most of available algorithms in the literature
only focused on collision detection and avoidance at the
finishing operation; especially, the change of the workpiece
geometry during the machining process was not taken into
account. Most of the algorithms only detect the collision
between the tool and workpiece; possible collisions between
the machine and part, the machine and tool, or among mov-
ing machine components as well as complete machine
modeling have not been considered yet.

In earlier research, the author has proposed the sweep plane
algorithm for global collision detection for five-axis NC ma-
chining [16]; the collision avoidance has not been proposed
yet. This paper presents a new collision avoidance strategy
and its integration with the above sweep plane collision detec-
tion algorithm. The proposed algorithm automatically detect
and correct the collision based on the biggest collision boxes.
The algorithm takes into account not only collisions between
the tool and the workpiece but also collisions between the
other parts of the CNC machine; especially, the change of
the workpiece geometry is included in the detection process.

The rest of the paper is organized as follows. An overview
of the proposed algorithm is presented in Section 2. Section 3
presents the algorithm for collision detection. A new collision
avoidance strategy is presented in Section 4. The time com-
plexity of the proposed algorithm is discussed in Section 5,
and Section 6 is the conclusion.

2 Algorithm overview

The flowchart of the proposed algorithm for collision detec-
tion and avoidance is presented in Fig. 1. The input data for
the algorithm is a NC program that needs to be checked for
collisions. The output is a NC program free of collisions or the
information about the failure to find collision-free solutions.

The NC program is inputted into the algorithm. The algo-
rithm reads the first block of the NC program and interpolates
the swept motion between two consecutive blocks. Then, the
algorithm simulates the movement of the machine axes

Int J Adv Manuf Technol



according to G-code block and updates the workpiece geom-
etry. At the same time, the collision detection algorithm
checks for possible collisions. If there is no collision, the

algorithm goes to the next step. If there are collisions detected,
the algorithm computes and compares the current collision
boxes with stored biggest collision boxes in the collision data.
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In case the current collision boxes are bigger, then these col-
lision boxes are updated in the collision data. This process is
repeated until the end of the NC program. Then, the algorithm
searches for the box with the biggest dimension (ΔX, ΔY, or
ΔZ max) and corresponding collision type in the collision
data. If the collision occurs in the G-code (G00), the algorithm
finds the corresponding solution as presented in Table 1. If the
collision occurs in the G-code (G01), the algorithm finds the
corresponding solution as presented in Table 2.

In the case that there is only a single collision and the type
of collision is τ=1 (the tool collides with B-axis), or type τ=5
(the tool collides with A-axis), or type τ=8 (the tool collides
with the clamping), after the tool is retracted along the Z-axis,
this single collision will be corrected without any need to
further check for other collisions. Otherwise, the loop for
checking and correcting the collision is repeated. After several
iterations of correction (pre-defined by the user), if there is no
collision-free solution, the system informs the user the failure
to find collision-free solutions. The user then can interactively
correct the collision, and return to the loop to check for colli-
sion again, or regenerate the CL file with CAM software.

3 Algorithm for collision detection

The algorithm is divided into two phases. In phase I, the bod-
ies of the machine and workpiece are approximated by an
octree of spheres. The collisions among these machine bodies
are then conducted by checking interferences between their
bounding spheres. If there is no interference between these
bounding spheres, there is no collision between the enclosed
bodies, and no further collision testing is needed. In contrast,
the checking process is continued with phase II.

In phase II, the bodies contained within the colliding spheres
are checked by using the sweep plane algorithm. These bodies
are sliced by parallel planes called sweep planes. The intersec-
tions of the sweep planes with the tool and workpiece are com-
puted to find out the slice polygons of the machined part. The
collision detection is then conducted by checking the interfer-
ence between these polygons. If there is any intersection between
these slice polygons, a real collision between the machine bodies
is found and finally reported for correction of the NC program.

Concretely, the STL files of all bodies are sliced in the
reference position in the horizontal plane of the machine co-
ordinate system (MCS) which is fixed to the machine frame.
The workpiece is sliced in the vertical plane of the workpiece
coordinate system (WCS) (Fig. 2). Then, each body is approx-
imated by a hierarchy of bounding spheres. For each NC pro-
gram block, the swept motion is interpolated in the small
discrete steps based on the required accuracy that is compat-
ible with the slice distance, and the position of all bodies and
slices after each motion step is computed.

To calculate the geometry of the workpiece, a memory
plane (M-plane) file is computed based on the CL (cutter
location) file. The M-plane file contains all necessary infor-
mation for computing the intersections of the sweep planes
with the tool (the detail of the M-plane file is available in
Ref. [17]). Then, at each incremental tool position, the inter-
sections of the tool slices with corresponding workpiece slices
are computed, and the slices of the updated workpiece (in
WCS) are obtained. The location of the updated workpiece
slices in MCS is finally calculated by the direct kinematics.

Most of the slices of the moving bodies stay parallel to each
other, and checking the interference between these parallel slices
is easily done by using Polygon Clipper [18]. In the case of
MAHO 600e five-axis machine, only the slices of the work-
piece, clamping, and A-axis do not stay parallel to the initial
slicing direction (in the horizontal plane); the interference detec-
tion between these non-parallel slices is implemented by exam-
ining overlaps of their projections on the three perpendicular
planes XY, YZ, and ZX. The detail of the sweep plane collision
detection algorithm was presented in our previous paper [16].

4 Collision avoidance strategy

4.1 Collision geometry data structure

The collision data is stored as follows: At the current interpo-
lation step, the biggest collision box or boxes (the boxes with
the biggest edge in the X, Y, or Z direction) is computed for
each type of collision. These current collision boxes are then
compared with the biggest collision boxes which were stored
over all previous blocks and steps to find out the biggest

Table 1 Collision avoidance strategy for the collisions that occur in G-code G00

Type of collision (1) ΔX Max (2) ΔY Max (3) ΔZ Max (4)

Type of collision
τ=1,2,3,5,6,7,8,9,10,11,12,14

Translate X-axis byΔX (Insert extra
block G00 X+ΔX Y Z A B)

Translate Y-axis byΔY (Insert extra
block G00 X Y+ΔY Z A B)

Translate Z-axis byΔZ (Insert extra
block G00 X Y Z+ΔZ A B)

Type of collision τ=4 Rotate B-axis byΔB
(Updated workpiece/frame)

Type of collision τ=13
(updated workpiece/B-axis)

Rotate A-axis byΔA
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collision boxes up to the present step. The process is repeated
until the end of the NC program. Finally, for each type of
collision, only the biggest collision boxes are stored, the others
are discarded. Therefore, for each type of collision, if collisions
occur at multiple locations and steps, only the biggest collision
boxes are stored. The time complexity of the collision avoid-
ance strategy will be considerably reduced. This is because in
many cases, when the biggest collision is corrected, the other
collisions automatically disappear. The algorithm does not have
to calculate and correct for all collisions. The pseudo code of
the algorithm, to compute and store the biggest collision boxes
for each type of collision, is given as follows

Pseudo code: computing and storing the
collision data of two colliding bodies (de-
note: body1 and body2)

//body1 and body2 Z {machine bodies to be
checked for collision}

{
For (m=1 to M) //M is the number of blocks of

NC program
{
For (n=1 to N) //N is the number of steps

between two consecutive blocks
{
Collision_Index=0; //Collision_Index is

used to number collisions in the current in-
terpolation step

For (i=1 to Number_of_slices_ body1)
{
For (j=1 to Number_of_slices_ body2)
{
If (slice Si intersects with slice Sj)

Fig. 2 Reference position and slicing direction
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{
Store block number (m), step number (n),

and X, Y, Z, A, B values, G00/G01;
If (slice Si−1 does not intersect with slice

Sj−1)
{
Collision_Index=Collision_Index+1;
}
- Store the intersection polygon of two

intersecting slices Si and Sj (or intersecting
polygons of the projections of two slices);

- Calculate and add elements (Min_Xi,j,
Max_Xi,j), (Min_Yi,j, Max_Yi,j), (Min_Zi,j,
Max_Zi,j) of the intersection polygon to the
set Collision[Collision_Index];

- Compute the collision box of the
intersecting slices of the set

Collision[Collision_Index]; //this is to
determine collision box of each collision

}
}
}
//After checking possible interferences

of all slices at a step
Compute the biggest collision boxes (in

the X, Y, and Z directions) over all colli-
sions (all Collision_Index) for the current
step;

Compare the biggest collision boxes of the
current step with the biggest collision box-
es which were computed over all previous
blocks and steps and store the biggest ones;

}
}
}
The storage of the biggest collision boxes for each type of

collision is as below: if one collision box with three edges in
the X, Y, and Z direction are biggest, then only one collision
box is stored. If one box with two edges are biggest, the other
edge is not, then two collision boxes need to be stored. In the
case of three boxes, each box has one biggest edge (one box
has the biggest edge in the X direction, one box has the biggest
edge in the Y direction, and the other has biggest edge in the Z
direction), then three collision boxes need to be stored.
Figure 3 illustrates the case of three boxes.

4.2 Collision avoidance strategy

From the collision data finds the biggest collision box (ΔX,
ΔY, orΔZmax) and corresponding type (τ) of collision (type
of collision τ ∈{(1) Tool collides with B-axis, (2) Toolholder
collides with B-axis, (3) Z-axis collides with B-axis, (4) Work-
piece collides with Frame, (5) Tool collides with A-axis, (6)

Toolholder collides with A-axis, (7) Z-axis collides with A-
axis, (8) Tool collides with clamping, (9) Toolholder collides
with clamping, (10) Z-axis collides with clamping, (11) Tool-
holder collides with update workpiece, (12) Z-axis collides
with update workpiece, (13) Update workpiece collides with
B-axis, (14) Tool collide with workpiece}). Based on the value
of (ΔX,ΔY, orΔZ max), a strategy for collision avoidance is
proposed. There are three cases:

If the biggest collision box is in the X di-
rection (ΔXτ Max)

{
The collision avoidance strategy for col-

lision type (τ) is shown in Tables 1 and 2,
column 2.

}
If the biggest collision box is in the Y di-

rection (ΔYτ Max)
{
The collision avoidance strategy for col-

lision type (τ) is shown in Tables 1 and 2,
column 3.

}
If the biggest collision box is in the Z di-

rection (ΔZτ Max)
{
The collision avoidance strategy for col-

lision type (τ) is shown in Tables 1 and 2,
column 4.

}
The methods to remedy each type of collision correspond-

ing to the biggest of (ΔX,ΔY, orΔZmax) are presented in the
following tables. The methods to correct the collisions that
occur in G-code G00 are presented in Table 1. Table 2 shows
the methods to correct the collisions that occur in G-code G01.

The collision correction strategy is as follows: suppose at a
specific block and interpolation step in the G-code G00 of a
NC program, the collisions occur between the workpiece and
B-axis (type τ=13) and between the tool and the workpiece
(type τ=14), as shown in Fig. 4a. It can be seen from Fig. 4a
that the biggest collision dimension isΔX—the intersection of
the workpiece with B-axis in the X direction. This collision
gets the highest priority for the correction. After the collision
between the workpiece and B-axis is corrected, the collision
between the tool and the workpiece automatically disappears,
as shown in Fig. 4b. Therefore, by this strategy, the number of
collisions that need to be corrected will be reduced.

The same strategy is applied for the collisions that occur in
G-code G01. The biggest dimension (ΔX, ΔY, or ΔZ max)
gets the highest priority for the collision correction. Based on
the type of the collision, the corresponding correction method
is chosen, as presented in Table 2. Six types of collision avoid-
ance method are used in the algorithm: (1) select alternative
solutions of the inverse kinematics, (2) extend the tool length,
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(3) change clamping position, (4) change lead/lag or tilt angle,
(5) change setup, and (6) combination of change setup and
change lead/lag and/or tilt angle.

4.3 Example scenario

Suppose that a NC program consists of 1000 blocks, with the
number of interpolation steps between two consecutive blocks
is 10. Check this NC program for the collision and correct the
collision. Suppose also that after the first iteration of the col-
lision check, there are three collisions detected in the initial
program, as below:

& At block 500th (m=500), step 3rd (n=3), there are two
types of collision (as shown in Table 3):

– The collision between the updated workpiece and B-axis
(type τ=13); this collision has two boxes: the first one
with ΔX=4, ΔY=2, ΔZ=5 (mm) and the second box
with ΔX=3, ΔY=10, ΔZ=4 (mm).

– The collision between the tool and the updated workpiece
(type τ=14); this collision has one box withΔX=5,ΔY=
1, ΔZ=3 (mm).

& At block 650th (m=650), step 8th (n=8), there is one type
of collision: the collision between the toolholder and B-
axis (type τ=2); this collision has three boxes: the first one
with ΔX=6, ΔY=2, ΔZ=4 (mm), the second box with
ΔX=3, ΔY=7, ΔZ=2 (mm), and the third collision box
with ΔX=5, ΔY=1, ΔZ=8 (mm), as shown in Table 3.

Before correcting the collisions, the collision table is as
in Table 3.

The collision avoidance algorithm finds the biggest colli-
sion box in the collision data. The collision box of the colli-
sion between the updated workpiece and B-axis (type τ=13)
with ΔY=10 is the biggest one. Therefore, this collision gets
the highest priority for the avoidance. The solution for this
type of collision is to rotate the A-axis (refer to Table 1). After
this collision is corrected, the NC program is checked again.
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The collision types τ=13 (collision between the updated
workpiece and B-axis) and type τ=14 (collision between the
tool and the updated workpiece) disappeared. The collision
type τ=2 (collision between the toolholder and the updated
workpiece) still remains. The collision table after the first cor-
rection is shown in Table 4:

The collision correction algorithm finds the biggest colli-
sion box in the collision table. The biggest box for this colli-
sion is ΔZ=8. And the avoidance algorithm finds the corre-
sponding solution for this type of collision—extend the tool
length (refer to Table 2). After the correction of this collision,
the NC program is checked again, and in the third iteration, no
more collision is detected.

4.4 Numerical example

The same example presented in [16] is continued here, given
two consecutive blocks of NC program, N01 and N02:

N01 G01 X134.407 Y80 Z-244.294 A0 B-45

N02 G01 X110.273 Y35.355 Z-231.178 A-45 B-35.264

Its two CL points:

x y z i j k

CL point 1: 80 160 100 1 0 1

CL point 2: 80 130 130 −1 1 1

A collision between the toolholder and the workpiece has
been detected at both blocks [16]. The biggest collision box
found at block N02, withΔXmax=14.9408,ΔYmax=51.7563,
ΔZmax=21.1297, and the biggest dimension of (ΔXmax,
ΔYmax, ΔZmax) is ΔYmax. With the proposed collision avoid-
ance strategy, the alternative solution of inverse kinematics is
selected first (refer to Table 2). By doing the inverse kinemat-
ics, G-code blocks of the NC program for solutions 2, 3, and 4
are obtained as below:

Solution 2 N01 G01 X134.407 Y80 Z-244.294 A-360 B-405

N02 G01 X110.273 Y35.355 Z-231.178 A-405 B-395.264

Solution 3 N01 G01 X-134.294 Y-80 Z-244.407 A-180 B225

N02 G01 X-110.181 Y-35.355 Z-231.309 A-225 B215.264

Solution 4 N01 G01 X-134.294 Y-80 Z-244.407 A180 B-135

N02 G01 X-110.181 Y-35.355 Z-231.309 A135 B-144.736

For the five-axis machine, MAHO 600e in the exam-
ple, the range of the rotation B is ± 1050. In this exam-
ple, the workpiece is set up at the position where the
center line of the A-axis perpendicular to the Z-axis;
therefore, the range of the rotation B must be −1950≤
B≤150, as shown in Fig. 5.

By checking the rotation limit of the B-axis, the solutions 2
and 3 are eliminated, and the alternative solution 4 is selected.
The NC program is checked again for collision by using the
sweep plane algorithm. The result shows that the collision still
occur between the toolholder and the workpiece, as shown in
Fig. 6. Therefore, another method needs to be applied. The
choice is applied with ΔZmax (the second big value), and the
tool length extension method is used.

After extending the tool length by ΔZmax (21.1297),
the NC program is checked again. The result shows that
the collision at block N02 has been corrected, and the
smaller collision at the block N01 automatically disap-
pears (Fig. 7).

5 Time complexity of the proposed algorithm

The time complexity of the whole collision detection and
avoidance algorithm can be calculated as:

T ¼ i� TΦ þ Ni � tc þ TΨð Þ ð1Þ

where i is the number of iterations (as described in Fig. 1), TΦ
is the time complexity of the collision detection algorithm, Ni

is the number of steps in which a collision is detected in the

Table 3 Table of the biggest collision boxes at the iteration i=1

Y = 2 Y = 10

Z = 5

Two boxes

Z = 4

Three boxes

X = 3

Z = 2

Y = 7 Y = 1

X = 5

Z = 8

X = 6

Z = 4

Y = 2

X = 4 X = 3

Y = 45

X = 100

Coordinate Collision

type

= 13

n
Step

m
Block G

code

Y = 1

X = 5

Z = 3

B =   5

A = 55

X = 130

Y = 85

Z =   245

Z =   205

=2

= 14

B = 5

A = 30

650 8 G01

500 3

One box

Table of the biggest collision boxes (iteration i = 1)

Types of the biggest collision boxes

G00

τ

τ

Δ
Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ
Δ

Δ

Δ
Δ

Δ Δ

Δ
Δ

τ

Δ

Int J Adv Manuf Technol



iteration i, tc is the average time for a collision data stor-
age, and TΨ is the time complexity of the collision
avoidance method.

The time complexity of the collision detection algorithm is
a trade-off between the time complexity of the bounding
sphere algorithm and the time complexity of the sweep plane
algorithm. It is expressed in the following equation:

TΦ ¼ Tb þ Tu þ Ts ð2Þ

where Tb is the time complexity of the bounding sphere algo-
rithm, Tu is the time complexity of the workpiece geometry
update, and Ts is the time complexity of the sweep plane col-
lision detection algorithm. The relevant terms for calculating
these times are described below [1, 19, 20].

The worst time for the bounding sphere algorithm is:

Tb ¼ M � N � tb � ∑
m

j¼08
j

� �
� n−1ð Þ! exponential factorialð Þ

ð3Þ

where M is the number of blocks of NC program, N is the
average number of interpolation steps between two consecu-
tive blocks, tb is the time for one pair of bounding spheres test,
m is the number of levels of the octree, and n is the number of
machine bodies that need to be checked for collisions.

The time for the workpiece geometry update is:

Tu ¼ M � N � tu � Sw linearð Þ ð4Þ

whereM and N are the same as in Eq. 3, tu is the average time
for updating one slice, and Sw is the number of slices of the
workpiece.

The worst time for the sweep plane collision detection al-
gorithm is:

Ts ¼ M � N � ts �
X
k;l

Sk � Sl
l quadraticð Þ ð5Þ

where M, N are the same as in Eqs. 3 and 4, ts is the average
time for one pair of slices test; Sk and Sl are the number of slices
within the colliding sphere of bodies k and l, respectively; k and
l ∈ {machine bodies that need to be checked for collision}

The time complexity for collision correction is:

TΨ ¼ tτυ linearð Þ ð6Þ

where tυ
τ is the average time for correcting a collision of type τ

by method υ; method υ∈ {(1) Translate X, or Y, or Z-axes; (2)
Rotate A-axis; (3) Rotate B-axis; (4) Inverse kinematics; (5)
Extend tool length; (6) Change clamping position; (7) Change
lead/lag and/or tilt angle; (8) Change setup without changing
CL file; (9) Combination of change setup and change lead/lag
and/or tilt angle} (Tables 1 and 2)

Table 4 Table of the biggest collision boxes at the iteration i=2
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Fig. 5 Rotation limit of the B-axis—MAHO 600e
Fig. 6 Collision between the toolholder and workpiece at block: N02
G01 X-110.181 Y-35.355 Z-231.309 A135 B-144.736
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Equation 3 shows that the time complexity of the bounding
sphere algorithm is exponential in the number of octree levels
(m) multiplied by a factorial of the number of bodies (n−1).
The time for updating the workpiece geometry is a linear
function of the number of slices of the workpiece as in
Eq. 4. The time for the sweep plane collision detection is
quadratic with respect to the number of slices within the col-
liding spheres as in Eq. 5. However, the worst case will rarely
occur for the bounding sphere algorithm; this is because if
there is no collision between the bounding spheres, the calcu-
lation will terminate at the first level of the octree. If there are a
small number of collisions, fewer branches of the octree will
need to be processed, thus resulting in shorter processing time.
In addition, for the case of the sweep plane collision detection,
we just take the number of slices within the colliding spheres;
therefore, the number of slices to be tested will be consider-
ably reduced, and the calculation speed of the proposed colli-
sion detection algorithm is fast. The integration of the sweep
plane with the bounding sphere algorithm considerably re-
duces the time complexity of the algorithm from an exponen-
tial function of the number of octree level m (Eq. 3) to a
quadratic function with respect to the number of slices within
the colliding spheres of the octree (Eq. 5).

If there are many steps in which a collision is detected
and the number of iterations is large, then the time complex-
ity of the whole algorithm will be increased. Nevertheless,
by correcting the biggest collision, most of the small colli-
sions are automatically removed. Therefore, the number of
steps in which collisions occur will be considerably reduced
after each iteration.

For example, in Section 4.4, the number of levelsm=2was
selected, one block to be checked (M=1), and the number
interpolation steps between two consecutive blocks is 12
(n=12). The number of bodies that needs to be checked for
collisions in five-axis CNC machine-Maho 600e is 7 (n=7).
The time for the bounding algorithm in this case is Tb=1×12×

tb×8
2×(7–1)!=552960×tb. The number of slices of the work-

piece is 6 (Sw=6), and the time for the workpiece geometry
update is Tu=1×12×tu×6=72×tu. A collision occurred be-
tween the first octant bounding sphere of the workpiece (the
number of slices within this sphere is 2 (Sk=2)) and the fifth
octant bounding sphere of the toolholder (the number of slices
within this sphere is 2 (Sl=2)); therefore, the time for the
sweep plane collision detection is Ts=1×12×ts×2×2=48×
ts. The number of steps in which the collision detected is 12
(Ni=12); hence, the time for storage of collision data is 12×tc.
There are two iterations (i=2) needed to check and correct the
collision (the first one corrects the collision by an alternative
solution of inverse kinematics; the second one corrects the
collision by extending the length of the tool). The time of
the collision correction algorithm is TΨ=t4

τ+t5
τ (where t4

τ and
t5
τ are the time to correct the collision by the inverse kinematics
method and extending the tool length at the first and second
iteration). In the above equations tb, tu, ts, tc, and tυ

τ depend on
the computer configuration and are of the order of
microsecond.

6 Conclusion

A new collision correction strategy and its integration with the
collision detection for five-axis NC machining has been pre-
sented. The proposed algorithm automatically detect and cor-
rect for the collisions. The collision detection algorithm is
based on the bounding volume and the sweep plane approach.
After the collision is detected, the biggest collision boxes for
each type of collisions are stored and the others are discarded.
The collision correction based on the heuristic strategy where
the biggest collision boxes are corrected first. This newly pro-
posed strategy reduces the time complexity of the collision
avoidance algorithm since most of the other collisions auto-
matically disappear when the biggest collision is corrected.
The proposed algorithm can be customized to apply for any
type of five-axis CNC machines.
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