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Highlights of "Higher-order Dirac solitons in binary waveguide arrays" by Truong 
X. Tran and Dũng C. Duong  

 

 Higher-order Dirac solitons in nonlinear binary waveguide arrays are 
numerically demonstrated.  

 Amplitude profiles of higher-order Dirac solitons are periodic during 
propagation. 

 The period of higher-order Dirac solitons decreases when the soliton 
order increases.  
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Abstract

We study optical analogues of higher-order Dirac solitons (HODSs) in binary
waveguide arrays. Like higher-order solitons obtained from the well-known
nonlinear Schrödinger equation governing the pulse propagation in an optical
fiber, these HODSs have amplitude profiles which are numerically shown to
be periodic over large propagation distances. At the same time, HODSs
possess some unique features. Firstly, the period of a HODS depends on its
order parameter. Secondly, the discrete nature in binary waveguide arrays
imposes the upper limit on the order parameter of HODSs. Thirdly, the
order parameter of HODSs can vary continuously in a certain range.

Keywords:
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Quantum-optical analogies.

1. Introduction

Waveguide arrays (WAs) have been used intensively to simulate the evolu-
tion of a non-relativistic quantum mechanical particle in a periodic potential
[1]. Many fundamental phenomena in non-relativistic classical and quan-
tum mechanics such as Bloch oscillations [2, 3] and Zener tunneling [4, 5]
have been investigated both theoretically and experimentally by using WAs.
It was shown in recent studies that most of nonlinear phenomena usually
associated to fiber optics (such as the emission of resonant radiation from
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solitons and soliton self-wavenumber shift) can also take place in specially
excited WAs, but in the spatial domain rather than in the temporal domain
[6, 7]; and the supercontinuum in both frequency and wave number domains
can be generated in nonlinear WAs [8]. Binary waveguide arrays (BWAs)
have been used to mimic relativistic phenomena typical of quantum field
theory, such as Klein tunneling [9, 10], Zitterbewegung (trembling motion of
a free Dirac electron) [11, 12], and fermion pair production [13], which are all
based on the properties of the Dirac equation [14]. The discrete gap solitons
in BWAs in the classical context have been investigated both numerically
[15, 16, 17] and experimentally [18]. Gap and out-gap solitons and breathers
in BWAs have been investigated in great detail both analytically and numer-
ically [19, 20, 21]. These gap solitons were already known in [22] in 1992 for
diatomic lattices, and later explicitly derived (in their exact continuum-limit
form) for the BWA system in [19] in 2011. Recently, the explicit sugges-
tion to use BWAs to simulate a quantum nonlinear Dirac equation has been
put forward in [23] where the gap solitons in BWAs have been shown to be
connected to Dirac solitons (DSs) in a nonlinear extension of the relativis-
tic one-dimensional (1D) Dirac equation describing the dynamics of a freely
moving relativistic particle. Other soliton solutions have been found for the
nonlinear 1D Dirac equation [24], but with a different kind of nonlinearity,
in the context of quantum field theory. The 1D DS stability, its dynamics
and different scenarios of soliton interaction have been systematically investi-
gated in [25]. The formation and dynamics of two-dimensional DSs in square
binary waveguide lattices have been investigated in [26]. Although there
is currently no evidence for fundamental quantum nonlinearities, nonlinear
versions of the Dirac equation have been studied since a long time. One of
the earlier extensions was investigated by Heisenberg [27] in the context of
field theory and was motivated by the question of mass. In the quantum
mechanical context, nonlinear Dirac equations have been used as effective
theories in atomic, nuclear and gravitational physics [28, 29, 30, 31]. To this
regard, BWAs can offer a unique platform to simulate nonlinear extensions
of the Dirac equation when probed at high light intensities. One of these
possibilities is to use BWAs as a classical simulator of the Dirac equation to
mimic the two-body Dirac model, i.e. the Dirac equation for two interact-
ing relativistic particles, which has attracted interest of researchers since the
early days of quantum mechanics [32, 33].

Soliton solutions to the well-known nonlinear Schrödinger equation (NLSE)
governing the pulse propagation in an optical fiber have been thoroughly in-
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vestigated among various classes of solitons [34, 35, 36]. The shape of the
fundamental temporal soliton obtained from the NLSE (further referred to as
NLS solitons) is described by the hyperbolic function u(τ) = sech(τ). This
shape is absolutely retained during propagation of the fundamental NLS soli-
ton along the optical fiber. In light of this, the DS investigated in [23] can
also be termed as the fundamental DS, cause its profile is also conserved
during propagation along the longitudinal axis of BWAs. However, apart
from the fundamental soliton solution, the NLSE also has so-called higher-
order (HO) soliton solutions with initial shapes being described by Nsech(τ)
where N is an arbitrary integer provided that N ≥ 2 [35, 37, 38] (further re-
ferred to as HONLS solitons). Unlike the fundamental NLS soliton, HONLS
solitons have profiles which repeat periodically during propagation. Thus, it
is natural to expect that in addition to the fundamental DS, one can also
have HODSs in BWAs whose profiles repeat periodically during propagation.
The aim of this work is to investigate the properties and dynamics of these
HODSs and to compare them with HONLS solitons. This paves the way for
using BWAs to simulate nonlinear extensions of the Dirac equation, as well
as other solitonic and non-solitonic effects of nonlinear Dirac equations.

2. Higher-order Dirac solitons

Light propagation in a binary array of Kerr nonlinear waveguides can
be described, in the continuous-wave regime, by the following dimensionless
coupled-mode equation (CME) [15]:

i
dan(z)

dz
= −κ[an+1(z) + an−1(z)] + (−1)nσan − γ|an(z)|2an(z), (1)

where an is the electric field amplitude in the nth waveguide, z is the longi-
tudinal spatial coordinate, 2σ and κ are the propagation mismatch and the
coupling coefficient between two adjacent waveguides of the array, respec-
tively, and γ is the nonlinear coefficient of the waveguides. In the dimension-
less form, in general, one can normalize variables in the above equation such
that both γ and κ are equal to unity. However, throughout this work we
will keep these parameters explicitly in Eq. (1). The form of the analytical
fundamental DS solution to the CME investigated in [23] is following:

[
a2n(z)

a2n−1(z)

]
=




i2n 2κ
n0
√

σγ sech(2n
n0

)e
iz( 2κ2

n2
0σ
−σ)

i2n 2κ2

n2
0σ
√

σγ
sech(2n−1

n0
)tanh(2n−1

n0
)e

iz( 2κ2

n2
0σ
−σ)


 . (2)

3



It was demonstrated in [23] that with the found soliton solution in the
form of Eq. (2), Eq. (1) can be converted into the nonlinear relativistic 1D
Dirac equation. Unlike the exact NLS soliton solution u(τ) = sech(τ) in
optical fibers, the analytical soliton solution in the form of Eq. (2) is just
approximate under certain conditions [23]. This solution is an approximation
of the more general exact continuum-limit solution obtained in [22], also dis-
cussed in [19]. Nevertheless, this approximate DS solution has been proved
to be excellent, cause the DS with this initial profile almost completely con-
serves its shape during propagation [23]. This analytical fundamental DS
solution in BWAs is a one-parameter family where one parameter such as
soliton peak amplitude or width can be arbitrary, provided that the soliton
width is large enough (the beam width parameter n0 ≥ 3.5, see [23] for more
details). The fundamental DS solution in the form of Eq. (2) is valid in the
case when γ and σ are positive. However, with this solution one can easily
construct other Dirac soliton solutions for any sign of each parameter γ and
σ [23].

Supposing that ψn is the analytical fundamental DS solution in the form
of Eq. (2), we investigate the propagation of the initial beam an = rψn, where
r = 2. Of course, one can use the exact continuum-limit solution studied in
[19, 22] for constructing the beam initial conditions. However, this solution
is only exact in the continuum-limit regime, and thus, also approximate in
the discrete model for BWAs (like the solution we use here). Moreover, one
goal of this work is to show that HODSs are robust, even when the input
is not the ”exact”. Therefore, here we use the solution given in the form of
Eq. (2). In analogy to HONLS solitons, one can expect that a beam with
this initial profile shows the distinguishing feature of HO solitons, i.e., its
profile changes in a periodic manner during propagation. Indeed, this is the
case as shown in Fig. 1. The propagation of this beam is illustrated in Fig.
1(a) where one can see that the main body of the beam changes periodically
during propagation. At first, the beam is compressed in space, then after the
maximum compression it broadens again, and after reaching the maximum
broadening it gets compressed. The amplitude |an(z)| is periodic in z with
the period length L = 12.6 for the specific set of parameters used in Fig. 1.
In Fig. 1(a) one can also see weak radiations emitted from the body of the
beam. This radiation is relativistic Zitterbewegung found in BWAs [12].

Figure 1(b) shows the two components of the beam profile at odd and even
waveguide positions n. The strong component with solid curves and square
markers represents the field profile |a2n| at even waveguide positions, whereas
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Figure 1: (Color online) (a) The propagation of a higher-order Dirac soliton with
the parameter r = 2. (b) Profiles of the higher-order Dirac soliton at three specific
propagation distances within one period: blue curves - the beginning of one period,
black curves - the middle of this period, and red curves - the end of this period.
(c) The propagation of intense even component |a2n| for two periods. (d) The
propagation of weak odd component |a2n+1| for two periods. (e) The same as (a),
but with much longer propagation distance. Parameters: κ =1; γ =1; σ = -1.2;
the beam width parameter n0 = 5; and the order parameter r = 2. The array
consists of 641 waveguides.

the weak component with dashed curves and round markers represents the
field profile |a2n+1| at odd waveguide positions. Field profiles in Fig. 1(b) are
taken at three values of propagation distance within one period: z1 = 119.2
(blue curves - the beginning of one period); z2 = z1 + 0.5L = 125.5 (black
curves - the middle of this period); and z3 = z1 +L = 131.8 (red curves - the
end of this period). One can see that the red curves (profiles at the end of one
period) completely coincide with the blue curves (profiles at the beginning
of this period), as a result, one can hardly see the blue curves cause they
are hidden behind the red curves. Note that in Fig. 1(b) we intentionally
select the greater thickness for the blue curves as compared to other curves
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such that one can still recognize them behind the thinner red curves. From
Figs. 1 (a) and (b) one can clearly see that at the beginning and the end
of one period most of light energy is localized in the central waveguide with
position n = 0; then during propagation the beam gradually broadens, as a
result the light energy is transferred to other waveguides at two sides of the
central waveguide; at the middle of this period represented by black curves in
Fig. 1(b) most of light energy now is located at two waveguides with position
n = ±2. Note that the initial input profile most resembles the black curves
with the only significant exception that the black curve for even component
|aan| has a dip in the center (n = 0), whereas the even component of the
initial input curve is monotonically decaying from the center. This feature
shows that the established periodic pattern is very robust and can be formed
from the initial condition which is not the ”exact” oscillatory solution.

In Figs. 1(c) and (d) we show the propagation of intense even component
|a2n|, and weak odd component |a2n+1|, respectively, for two periods where
the periodic pattern during propagation is also clearly illustrated. In Fig.
1(e) we show the propagation of the central part of the beam in Fig. 1(a),
but with much longer propagation distance which exceeds any length of a
BWA implementation for all current practical purposes. Our simulations
show that after radiating some extra energy to the periphery of the BWA
at the beginning of the propagation, the periodic regime of the beam is
established over long propagation distances without any loss of energy due
to radiation. So, this kind of beams can be called higher-order Dirac solitons
(HODSs) in BWAs in analogy to higher-order NLS solitons in optical fibers
[35, 37, 38]. Like the soliton order N for HONLS solitons, the parameter
r can also be called the ”order” of HODSs. It is worth noting that, like
the fundamental DS in the form of Eq. (2), those HODSs also satisfy all
necessary conditions to convert Eq. (1) into the nonlinear relativistic 1D
Dirac equation (see [23] for more details). The total size of the BWA used
for simulations in this work is large with M = 641 waveguides, and we do
not impose any periodic boundary conditions in simulations such as aM+1 =
a1 as done for closed chains in [19, 20].

It is interesting to note that there are other periodic solutions to Eq.
(1) which have been numerically found in [21] and termed ”pulsons”. By
comparing the pulsons shown in Fig. 1 in [21] with the HODS shown in Fig.
1 of this work one can say that the profile of the pulson are smoother than
the one of the HODS. Indeed, as shown in Fig. 1 of this work for the HODS
one can see that apart from tiny regions where the spatial compression of the
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HODS takes place the transverse profile of the HODS shown in Fig. 1 is like
a saw blade, i.e., |a2n| is greater than both |a2n−1| and |a2n+1|, whereas this
is not the feature of the pulson. For instance, for the pulson shown in Fig.
1(a) in [21] at t = 0 (when the pulson is broadened) one has the following
relations: |ψ27| < |ψ28| < |ψ29| and |ψ33| < |ψ32| < |ψ31|. Moreover, for the
broadened pulson at t = 0 the two symmetric peaks are located at the two
neighboring sites (n = 29 and 31) of the center (n = 30), whereas for the
HODS represented by the black curves in Fig. 1(b) two symmetric peaks are
located at two waveguides with position n = ±2, i.e., one site farther from
the center (n = 0) as compared to the pulson (see also Fig. 1(e)).

It is well-known that if the NLSE in optical fibers is presented in the
dimensionless canonical form, then the period for HONLS solitons is π/2
in dimensionless unit where the length scale is the dispersion length LD =
T 2

0 /|β2| with T0 being the pulse duration and β2 being the group velocity
dispersion parameter of the fiber [35]. As mentioned above, in the case of NLS
solitons in optical fibers, the true HONLS solitons have the order N which
is an arbitrary integer provided that N ≥ 2. In that case the shape of the
solitons absolutely repeats after each period π/2. When the parameter N is
not an integer, some weak radiation is emitted continuously from the body of
solitons during propagation, but the shape of the central part of solitons also
practically repeats after the period π/2 which is independent of the specific
value of N . For HODSs, when the parameter r (which plays the role of the
parameter N for HO NLS solitons) varies continuously in a certain range the
main part of the solitons also repeats periodically during propagation like in
the case with r = 2 shown in Fig. 1(a), however, the period L does depend
on the specific value of r. This nontrivial feature of HODSs is illustrated in
Figs. 2(a), (b), and (c) where we show their propagation with different values
of the parameter r = 1.5, 1.8, and 2.2, respectively. All other parameters in
Fig. 2 are the same as in Fig. 1. It is clear that all features in Fig. 1(a)
(where the case with r = 2 is presented) are reproduced in Figs. 2(a), (b),
and (c) (where scenarios with r not being an integer are presented) with the
only exception that the period L in these Figures is different depending on
the parameter r. It is important to emphasize that unlike HONLS solitons,
in order to obtain HODSs in BWAs the parameter r cannot be too large,
otherwise, the periodic change of the HODS amplitudes during propagation
will cease to exist from the very beginning as clearly demonstrated in Fig.
2(d) where the propagation of a beam with r = 3 (all other parameters
are also the same as in Fig. 1) is illustrated. In this case, after a certain
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propagation distance [z ≃ 20 in Fig. 2(d)] most of light energy is just locked
in the central waveguide. This feature is due to the discrete nature in WAs.
It is well-known that the discreteness in WAs can create a periodic potential
which is known from solid state physics as the Peierls-Nabarro (PN) potential
[1]. At high powers like the case shown in Fig. 1(d) the increase of the PN
potential results in a strong localization of the beam, mainly in a single
waveguide which is effectively decoupled from the rest of the array. This
discreteness induced effect in WAs was experimentally demonstrated in [39].
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Figure 2: (Color online) (a,b,c) The propagation of higher-order Dirac solitons with
the order parameter r = 1.5, 1.8, and 2.2, respectively. (d) The propagation of a
beam with r = 3.0. All other parameters are exactly the same as in Fig. 1.

Now we investigate the period L of HODSs in more detail. In Figs.
3(a) and (b) we show the dependence of the period L as a function of the
parameter r and σ, respectively. The green dotted, solid blue, and red dashed
curves in Fig. 3(a) correspond to different values of the parameter σ = 3, 2,
and 1, respectively, whereas in Fig. 3 (b) they correspond to different values
of the parameter r = 2, 1.75, and 1.5, respectively. All other parameters
are the same as in Fig. 1. It is clear from Fig. 3(a) that if the parameter
r increases continuously and all other parameters are kept fixed, then the
period L of HODSs will decrease. As mentioned above, this is a distinguishing
feature between HODSs and HONLS solitons. The periodic change of HODS
profiles also takes place for smaller values of r, provided that r > 1. When r
gets closer to unity, the spatial broadening and compression of HODSs during
propagation will be less and less pronounced. In this case, the amplitude
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oscillation along the z-axis is also much weaker. Of course, when r < 1
the diffraction prevails over the self-focussing of the beam, and as a result,
the beam will continuously broaden during propagation. In general, one can
expect that the weak amplitude oscillation along the z-axis (when r is close to
unity) is related to excitations of linear eigenmodes of the stationary soliton
as shown in [40] for several discrete models (including the CME in the form
of Eq. (1), but without the binary character, i.e., σ = 0). The full analysis
of the eigenmodes of the discrete solitons/breathers for Eq. (1) when σ 6= 0
was given in [20]. However, the question as to whether HODSs with weak
oscillation is associated with any of these eigenmodes analyzed in [20] is still
open for discussion.

From Fig. 3(b) it is clear that if the absolute value of the parameter
σ increases and all other parameters are kept fixed, then the period L of
HODSs will also increase except for |σ| in a narrow range of small values. It
is worth mentioning that the analytical solution for the fundamental DS in
the form of Eq. (2) is derived under condition that |σ| > 2κ/n0. Therefore,
one cannot use Eq. (2) to construct HODSs when |σ| < 2κ/n0 (or σ < 0.4
for parameters used in this work) [23]. As a result, there is a certain lower
limit (but not upper limit) for |σ| in Fig. 3(b). This lower limit also depends
on the parameter r. As mentioned above, one can always normalize variables
in Eq. (1) such that both γ and κ are equal to unity. So, it is unnecessary
to investigate the influence of two latter parameters on the period L.
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Figure 3: (Color online) (a,b) The period L as a function of the order parameters
r and σ, respectively. The green dotted, solid blue, and red dashed curves in
(a) correspond to different values of the parameter σ = 3, 2, and 1, respectively,
whereas in (b) they correspond to different values of the parameter r = 2, 1.75,
and 1.5, respectively. All other parameters are the same as in Fig. 1.
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Figure 4: (Color online) (a,b,c) The propagation of higher-order Dirac solitons with
the order parameter r = 2.0, 2.2, and 2.5, respectively. (d) The propagation of a
beam with r = 3.0. All other parameters are exactly the same as in Fig. 2 except
for a much greater width with n0 = 20.

3. Discussions

A natural question is what makes HODSs different from HONLS solitons
in the sense that the period of the HODSs depends substantially on the order
parameter, whereas the period of the HONLS solitons remains constant. One
may think that the discreteness of BWAs is the major contributing factor
in this matter. It is well-known that when the beam width increases, the
discreteness in WAs and BWAs will gets less and less pronounced, thus, WAs
and BWAs will behave like bulk media. For instance, one can convert the
coupled-mode equation governing the beam propagation in WAs (consisting
of identical waveguides) into the NLSE when beam width is large enough
(see how Eq. (2.5.3) is converted into Eq. (2.5.4) in [41]). Another example
can be found in [42] where we show that the light bullets in WAs have the
same profile as in the bulk media if the beam width is large enough. So,
in order to check whether the dependence of the HODS period on the order
parameter is mainly due to the discrete nature of BWAs or not, one just
needs to take a much larger width (represented by the width parameter n0)
of the HODS. However, our analysis shows that this is not the case. In Fig.
4 we use n0 = 20 for beam propagation simulations. By comparing Fig. 4
(where n0 = 20) with Fig. 2 (where n0 = 5) one can see clearly that main
features of these two Figures are the same independent of the beam width:

10



(i) the period of HODSs decreases when the order parameter r increases and
all other parameters are kept constant, (ii) when r is too large (r = 3) the
periodicity of the beam profile is broken during propagation. Our numerical
simulations with much larger n0 (not shown here) give the same features as
in Figs. 2 and 4. So, we conjecture that the binary character (represented by
the parameter σ) plays the key role to make the period of HODSs depend on
the order parameter. In addition, when the beam width is large enough, one
can convert the CME in WAs (Eq. (1), but with σ = 0) into the NLSE as
shown in [41, 42]; however, in BWAs where σ 6= 0, one can only convert Eq.
(1) into the relativistic Dirac equation [23, 26], but not into the NLSE. Note
also that the NLSE is integrable [35], whereas as far as we know the Dirac
equation with Kerr nonlinearity is non-integrable. This fact is probably the
fundamental reason why HODSs are different from HONLS solitons.

4. Conclusions

In conclusion, we investigate higher-order Dirac solitons in BWAs - optical
analogues of relativistic higher-order Dirac solitons in a nonlinear extension of
the 1D Dirac equation describing the dynamics of a freely moving relativistic
particle. Like HONLS solitons - which are obtained from the well-known
nonlinear Schrödinger equation governing the pulse propagation in an optical
fiber - HODSs in BWAs have amplitude profiles which repeat periodically
over large propagation distances. The main difference between HODSs and
HONLS solitons is that the period of HODSs does depend substantially on
the parameter r which plays the role of the order N of HONLS solitons,
whereas the period of HONLS solitons does not depend on the soliton order
N . We believe that the integrable nature of the NLS and the non-integrable
nature of the Dirac equation with Kerr nonlinearity is the fundamental reason
of this difference. In addition, the parameter r of HODSs can be any real
number r > 1 in a certain range. The discrete nature in BWAs dictates the
upper limit of this range for r in the sense that above this limit analyzed
HODSs cease to exist. Our results suggest that BWAs can be used as a
classical simulator to investigate not only fundamental, but also higher-order
relativistic Dirac solitons.

This work is supported by the German Max Planck Society for the Ad-
vancement of Science (MPG) via the program for Max Planck Partner Groups.
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and A. Szameit, Phys. Rev. Lett. 105 (2010) 143902.

[13] S. Longhi, Appl. Phys. B 104 (2011) 453.

[14] J.M. Zeuner, N.K. Efremidis, R. Keil, F. Dreisow, D.N. Christodoulides,
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