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Abstract—Transfer learning is a process in which a system
can apply knowledge and skills learned in previous tasks to novel
tasks. This technique has emerged as a new framework to en-
hance the performance of learning methods in machine learning.
Surprisingly, transfer learning has not deservedly received the
attention from the Genetic Programming research community.
In this paper, we propose several transfer learning methods for
Genetic Programming (GP). These methods were implemented
by transferring a number of good individuals or sub-individuals
from the source to the target problem. They were tested on
two families of symbolic regression problems. The experimental
results showed that transfer learning methods help GP to achieve
better training errors. Importantly, the performance of GP on
unseen data when implemented with transfer learning was also
considerably improved. Furthermore, the impact of transfer
learning to GP code bloat was examined that showed that limiting
the size of transferred individuals helps to reduce the code growth
problem in GP.

I. INTRODUCTION

Transfer learning has been considered as an emerging re-
search topic in machine learning [1]. Transfer learning attempts
to mimic the process in which human beings learn [2]. Human
beings learn and solve new problems based on the knowledge
that they perceived via solving the similar problems in the
past [3]. Conversely, common machine learning techniques
are not designed to do this. In other words, machine learning
algorithms are often applied separately when dealing with a
new problem [4]. This implementation of machine learning is
unnatural and less effective in solving real-world applications.
This is particularly true when machine learning is applied to
dynamic environments where the objectives and the parameters
of the problems are changed during the learning process. In
order to amend this, transfer learning has been proposed and
investigated recently [5]. The previous research showed that
transfer learning approaches help to leverage and widen the
ability of machine learning in real-world applications [5].

The goal of transfer learning is to improve learning in
the target task by leveraging knowledge from the source task.
There are three common beneficial aspects of applying transfer
learning [1]. First is the initial performance in the target task.
Thanks to the knowledge from the source problem, the starting
performance of transfer learning is often better compared
to the initial performance of a traditional learner. Second
is the amount of time to fully learn the target task. Given
the transferred knowledge, it is often possible that transfer
learning can learn faster than learning from scratch. Third is
the final performance achieved by transfer learning in the target

task compared to the final level without transfer. Three these
advantages of transfer learning methods have been evidenced
in a number of preceding researches [6], [7].

In the field of evolutionary algorithms, Genetic Program-
ming (GP) [8], [9] is a paradigm with the objective of evolving
computer programs that perform a user-defined task. GP has
often been seen as a machine learning method, as it aims
to induce a functional expression or program that presents
relations between input and output data. Various learning
schemes for GP have been proposed and investigated [10],
[11]. However, examining the efficiency of transfer learning
in GP has not been known to date. This paper aims to propose
several techniques to implement transfer learning in GP. These
schemes are based on transferring a number of good solutions
or sub-solutions from the source to the target problem. The
experiments were conducted on two families of symbolic
regression problems showing the advantages of implementing
transfer learning in GP.

The remainder of the paper is organized as follows. In the
next section, we present the background of transfer learning.
A short review of the previous research on transfer learning in
evolutionary algorithms is given in Section III. The proposed
transfer learning methods are described in Section IV. The
experimental settings are detailed in Section V. The perfor-
mance of transfer learning methods is examined and compared
with standard GP in Section VI. Section VII analyzes some
limitations of the paper. Section VIII concludes the paper and
highlights some potential future work.

II. TRANSFER LEARNING

Transfer learning attempts to enhance learning performance
in the target problem based on the knowledge from the
previous solved problems [1]. Usually, there are two tasks in
transfer learning: the source and the target task. The source
task is a classical machine learning task which is often simpler
and has been learned previously. The target task is often more
complex and is the task to learn. In fact, we can address the
target task separately from the source task. However, due to
the difficulty of this task and the relationship between the
source and the target task, it is often easier if the knowledge
and experiences gained in the source task can be applied to
the target task. Formally, the definition of transfer learning is
follows [1]:

Definition 1: Given a source domain DS and learning task
TS , a target domain DT and learning task TT , transfer learning
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aims to help improve the learning of the target predictive
function fT (.) in DT using the knowledge in DS and TS ,
where DS ≠ DT , or TS ̸= TT .

There are three important research issues in transfer learn-
ing: 1) what to transfer, 2) how to transfer, and 3) when to
transfer [1]. “What to transfer” asks which part of knowledge
can be transferred from the source to the target problem.
Some knowledge is specific for the source task and should
not be re-used. Other knowledge may be common between
different domains and potentially help improve performance
for the target domain. After transferred knowledge has been
discovered, a learning algorithm need to be devised to transfer
the knowledge to the target problem, which corresponds to the
issue “How to transfer”.

“When to transfer” asks in which situations, transferring
skills will be beneficial and when knowledge should not be re-
used. In some situations, when the source problem and target
problem are entirely different, brute-force transfer may not
be successful. In the worst case, it may even deteriorate the
performance of learning in the target domain. This situation is
referred to as negative transfer. Most previous work on transfer
learning focused on two first issues: ”What to transfer” and
”How to transfer”. They implicitly assumed that the source
and target domains be related to each other. Recently, how to
avoid negative transfer became an important issue that attracted
more and more attention from the research community [12].

Based on “What to transfer”, transfer learning methods
can be classified into four categories. The first method is
instance-based transfer learning which transfers some parts of
the data in the source domain to the target domain [13], [14]. A
second case is called feature-representation-transfer approach.
In this approach, the knowledge transferred across problems
is the learned feature representation [15], [16]. With the new
knowledge presented in the form feature representation, the
performance of the target problem is expected to enhance
significantly.

The third approach can be referred to as the relational
knowledge-transfer problem in which the relationship among
the data is transferred [17]. The basic assumption behind this
approach is that the data in the source and target domains
share some common relationship. The last case is the approach
used in this paper. This method is called parameter-transfer
approach which assumes that the source tasks and the target
tasks share some parameters of the learned models [18]. The
transferred knowledge is the shared parameters. Thus, when
the shared parameters are discovered, they can be transferred
across problems.

III. RELATED WORK

Although, transfer learning has received a considerable at-
tention from the machine learning community, few researchers
in evolutionary computation (EC) have addressed this research
strand. As far as we know, there was only one related publi-
cation in the literature [19]. The authors proposed a transfer
learning scheme for genetic algorithm (GA) where the knowl-
edge from multi-source problems is transferred to one target
problem [19]. When GA is applied to the source problems,
some individuals (the best, middle and worst individuals) in
each generation are copied to a pool. The individuals in the

pool are then used to replace some of the randomly generated
individuals at the first generation in the target problem. The
results reported in [19] were promising.

In the field of GP, there has not be any report on the
study of transfer learning to date. The closest research to
transfer learning in GP was focused on its reuse ability. These
researches are summarized into two classes: Developmental
evaluation in GP and GP in dynamic environments. In devel-
opmental evaluation based GP, the objective is to evaluate the
fitness of individuals during development. In other words, a
part of individuals is evaluated on a simpler problem first.
Only if this part is considered as a good solution for the
simpler problem, it is developed (grew) to be come the solution
for a more complex problem. The developmental evaluation
has been widely studied in GP, their advantages have been
evidenced by a number of research [20], [21]

In the second class, GP is adapted to apply to dynamic en-
vironments [22]. In dynamic environments, some components
of the problems like objective function are changed during the
evolutionary process. Traditionally, GP researchers adapted GP
to dynamic environments by transferring (copying) the whole
population when there is a change in the environments [23],
[24]. In order to avoid the deterioration of GP performance
when the environments are altered, some schemes such as
memory call or diversity promoting are often used. These
methods allow GP to better cope with the changing environ-
ments [25], [26].

Although, the method of applying GP to dynamic envi-
ronments is similar to transfer learning, examining transfer
learning has not clearly been addressed in GP. First, the
objective of implementing transfer learning in GP is different
from their usage in dynamic environments. In transfer learning,
the objective is to enhance GP performance on a novel prob-
lem with the knowledge perceived from the previous solved
problems but not to cope with changing environments. Second,
three important questions in transfer learning has not fully been
addressed when applying GP to dynamic environments. In the
following section, we will propose some schemes that allow
us to study the effectiveness of transfer learning in GP.

IV. METHODS

This section presents a method to implement transfer learn-
ing in GP. This method aims to answers two above questions:
“what to transfer” and “how to transfer”. The question: “when
to transfer” is not addressed in this paper. Based on “what
to transfer”, we classify our method into three schemes. The
first schema is called FullTree and is presented in Figure 1. In
this technique, a number of good individuals (solutions) in the
last generation of the source problem are copied to the first
generation of the target problem. This technique is similar to
the method where GP is applied to dynamic environments.
However, the difference lies in the amount of knowledge
transferred. In dynamic environments, the whole population is
re-used when the environments are changed. In FullTree, only
k% best individuals in the last population is transferred. The
goal is to avoid the problem of negative transferring when the
target problem and the source problems is not strongly related.

The second transferring learning technique is called Sub-
Tree. The idea behind this method is that there is some com-
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Fig. 1. Transferring by copy good individuals from the last generation of
the source problem.

mon good subtree structures sharing between related problems.
Moreover, we assume that these structures will exist in the last
generation of the source problem. With this analysis, SubTree
transferring learning method is implemented by randomly
choosing a subtree in each solution at the end of evolutionary
process (the last generation) in the source problem. These
subtrees are added to a pool and then transferred to the target
problem. They become the individuals in the first generation
for the target problem. This scheme is presented in details in
Figure 2.

The last transferring learning technique for GP is based on
the assumption that good solutions for the target problem may
appear in certain generations during the evolutionary process
of the source problem. Therefore, if we can sample and store
these solutions, they can be transferred to the target problem.
This scheme is named BestGen. The detailed description of
BestGen is presented in Figure 3. In each generation of the
source problem, k best individuals are sampled and stored in
a pool. The individuals in the pool are then copied to the first
generation of the target problem.

V. EXPERIMENTAL SETTINGS

In order to evaluate the performance of the transferring
techniques, we tested them on two families of symbolic
regression problems. These families include polynomial and
trigonometric functions. The source problems is selected to be
a simple function in each family. The target functions consist

Fig. 2. Transferring by selecting a subtree in the individuals at the last
generation of the source problem.

of four functions in each class. The target functions are always
more complex than the source function. The source and the
target function and their training and testing Data are presented
in Table I. In this table, Poly-0 is the source problem for
the polynomial functions and Trig-0 is the source task for
trigonometric tasks. We assume that the target problems have a
correlation to the source problem since their structure is similar
to but more complex than the source problem.

The GP parameters used for our experiments are follows.
The function set includes eight functions that are widely used
by the GP research community [9], [27]. The terminal set for
each problem includes one variable X . The raw fitness is the
mean of absolute error on all fitness cases. Therefore, smaller
values are better. Other parameters are presented in Table II.
They are typical values for the experiments based on GP.

For each transfer learning technique, four configurations
were tested. For FullTree method, k% (k=25, 50, 75 and
100) of the individuals in the last generation of the source
problem was transferred to the the target problem. These
configurations of FullTree method will be abbreviated as
FullTree25,...,FullTree100. Similarly, k% (k =25, 50, 75, 100)
of the individuals in the last generation was selected in
SubTree technique. After than, a subtree in each individual was
randomly selected and then transferred to the target problem.
These schemes of SubTree technique will be referred to as
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TABLE I. PROBLEMS FOR TESTING TRANSFER LEARNING METHODS.

Name Definition Training Set Testing Set

Poly-0 x4 + x3 + x2 + x U[-1,1,100] U[-3,3,100]

Poly-1 x6 + x5 + x4 + x3 + x2 + x U[-1,1,100] U[-3,3,100]
Poly-2 2x4 + 3x3 + 2x2 + x U[-1,1,100] U[-3,3,100]
Poly-3 2x5 + 3x4 + 2x3 + 3x2 + x U[-1,1,100] U[-3,3,100]
Poly-4 x6 + 2x5 + x4 + 3x3 + 2x2 + 5x U[-1,1,100] U[-3,3,100]
Poly-5 x7 + 2x6 + 3x5 + 4x4 + x3 + x2 + 3x U[-1,1,100] U[-3,3,100]

Trig-0 sin(x) + cos(x) U[-1,1,100] U[-3,3,100]

Trig-1 sin(x) + cos(x) + sin2(x) + sin3(x) U[-1,1,100] U[-3,3,100]
Trig-2 sin(x) + cos(x) + sin2(x) + sin3(x) + sin4(x) U[-1,1,100] U[-3,3,100]
Trig-3 sin(x) + cos(x) + sin2(x) + sin3(x) + sin4(x) + sin5(x) U[-1,1,100] U[-3,3,100]
Trig-4 sin(x) + cos(x) + sin(2x) + sin(3x) U[-1,1,100] U[-3,3,100]
Trig-5 sin(x) + cos(x) + sin(2x) + sin(3x) + sin(4x) U[-1,1,100] U[-3,3,100]

Fig. 3. Transferring by copy k best individuals at each generation of the
source problem.

SubTree25, ..., SubTree100.

For BestGen method, we designed two experiments. In the
first experiment, k (k=1, 2) best individuals in each generation
of the source problem were transferred to the target problem.
These schemes are shorted as BestGen1 and BestGen2. The
second experiment was similar to the first one except that k
(k=1, 2) best individuals are transferred to the target problems
only if the size (the number of nodes) of these individuals is
smaller than a threshold. In this experiment, the threshold was
set at 50. The results of all experiments will be presented in
the next section.

TABLE II. EVOLUTIONARY PARAMETER VALUES.

Parameter Value

Population size 500
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.1
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected version),

sin, cos, exp, log (protected version)
Terminals X
Raw fitness mean absolute error on all fitness cases
Trials per treatment 30 independent runs for each value

VI. RESULTS AND DISCUSSION

This section aims to analyze the performance of transfer
learning techniques and to compare them with the standard
GP where transfer learning techniques are not used. Three
metrics were used for analyzing the effectiveness of transfer
learning methods. The first metric is the mean best fitness on
the training data. The second metric is the ability of transfer
learning techniques to generalize on the unseen data. The last
metric is the code bloat effect of these methods. They are
detailed below.

A. Training Error Analysis

Although, the testing error is the most important indicator
for the performance of a learner, the training error also
provides some useful insight into the learning process. Thus,
it is first analyzed in this section. The mean best fitness values
of standard GP and transfer learning techniques are presented
in Table III. The results for two source problems, Poly-0 and
Trig-0 are not presented in this section since transfer learning
methods were not executed on these problems.

It can be seen from Table III that most transfer learning
technique helps GP to achieve better training errors. Appar-
ently, the training errors obtained by transfer learning methods
are often smaller than those of standard GP. However, the
performance of transfer learning techniques are not consistent.
Amongst three transfer learning techniques, the performance of
SubTree and BestGen are usually better than the performance
of FullTree.

Comparing between four configurations, we can see that
transferring 25% the best individuals in the last generation

1148



TABLE III. MEAN BEST FITNESS ON TRAINING DATA. LOWER IS BETTER. IF A RESULT OF TRANSFER LEARNING METHODS IS SIGNIFICANTLY BETTER
THAN STANDARD GP, IT IS PRINTED BOLD FACE. IF IT IS SIGNIFICANTLY WORSE, IT IS PRINTED ITALIC FACE.

XOvers Poly-1 Poly-2 Poly-3 Poly-4 Poly-5 Trig-1 Trig-2 Trig-3 Trig-4 Trig-5

GP 0.008 0.011 0.020 0.045 0.041 0.013 0.0124 0.014 0.023 0.056

FullTree25 0.005 0.009 0.022 0.039 0.035 0.013 0.019 0.021 0.019 0.042
FullTree50 0.008 0.011 0.020 0.045 0.040 0.026 0.020 0.019 0.031 0.055
FullTree75 0.006 0.009 0.020 0.034 0.037 0.020 0.018 0.015 0.039 0.065
FullTree100 0.008 0.011 0.020 0.045 0.040 0.028 0.016 0.022 0.040 0.054

SubTree25 0.004 0.008 0.026 0.039 0.033 0.012 0.013 0.012 0.017 0.031
SubTree50 0.005 0.002 0.018 0.024 0.030 0.009 0.015 0.015 0.014 0.027
SubTree75 0.007 0.004 0.017 0.026 0.035 0.016 0.013 0.015 0.008 0.021
SubTree100 0.005 0.004 0.020 0.024 0.031 0.011 0.014 0.014 0.007 0.036

BestGen1 0.006 0.010 0.027 0.042 0.026 0.013 0.006 0.007 0.007 0.019
BestGen2 0.006 0.008 0.014 0.031 0.030 0.011 0.012 0.007 0.008 0.028
BestLimit1 0.007 0.008 0.016 0.037 0.039 0.007 0.007 0.006 0.007 0.011
BestLimit2 0.006 0.006 0.015 0.034 0.048 0.008 0.007 0.006 0.002 0.010

TABLE IV. MEDIAN OF TESTING ERROR. LOWER IS BETTER. IF A RESULT OF TRANSFER LEARNING METHODS IS SIGNIFICANTLY BETTER THAN
STANDARD GP, IT IS PRINTED BOLD FACE. IF IT IS SIGNIFICANTLY WORSE, IT IS PRINTED ITALIC FACE.

XOvers Poly-1 Poly-2 Poly-3 Poly-4 Poly-5 Trig-1 Trig-2 Trig-3 Trig-4 Trig-5

GP 116.7 23.8 105.1 138.1 509.1 1.45 2.69 4.67 1.58 2.34

FullTree25 86.5 32.8 100.3 100.3 485.6 1.06 2.53 3.81 0.91 1.11
FullTree50 89.1 44.3 97.3 168.7 429.0 0.94 2.22 3.37 1.04 0.91
FullTree75 113.6 39.1 116.1 127.1 402.9 0.80 1.44 2.21 0.83 1.10
FullTree100 93.9 33.4 91.5 148.9 423.5 1.01 1.18 2.24 1.22 1.15

SubTree25 1.9E-07 2.1E-07 87.5 125.2 384.9 1.09 2.28 3.12 1.22 1.09
SubTree50 1.9E-07 2.0E-07 48.1 106.5 380.0 1.03 1.74 2.23 0.63 0.78
SubTree75 1.8E-07 2.1E-07 34.1 92.0 304.9 1.19 2.57 2.4E-07 2.5E-07 0.65
SubTree100 1.8E-07 2.0E-07 69.6 89.0 170.3 1.93 1.15 2.01 2.5E-07 0.72

BestGen1 290.8 83.4 137.6 137.6 409.8 1.03 2.52 2.32 0.54 1.03
BestGen2 95.9 29.5 131.8 134.1 397.9 1.56 2.75 4.41 0.94 1.19
BestLimit1 35.9 6.64 67.2 140.1 355.6 0.83 3.29 2.75 2.5E-07 0.57
BestLimit2 1.9E-07 2.1E-07 36.1 142.5 488.1 1.02 1.02 2.23 0.12 0.59

is the most successful schema for FullTree. When too much
information was transferred like FullTree75 and FullTree100,
the performance of FullTree is worse on some problems e.g.
Trig-2, Trig-3 and Trig-4. Perhaps, the correlation between the
source and the target problems is not strong on these problems.

For SubTree transferring technique, its performance is
much consistent than FullTree method. On most problem,
SubTree technique achieved better training error than stan-
dard GP. Moreover, two configurations of SubTree50 and
SubTree75 are better than SubTree25 and SubTree100. It is
understandable since in SubTree method, a subtree in each
individual (not the individual itself) is transferred to the target
problem. This helps SubTree technique to avoid the problem
of negative transfer when the target problem is not strongly
correlated to the source problem. The performance of BestGen
method is also as convincing as SubTree method. For BestGen
technique, its performance is consistent on all four settings.
Particularly, the performance of BestGen technique is very
good on trigonometric problems. On these problems, the best
results (the smallest training error) always belong to one of
the BestGen configurations.

We also conducted a statistical test to compare between the
performance of standard GP with transfer learning methods
using a Wilcoxon signed rank test with a confidence level
of 95%. In Table III if a result of transfer learning methods
is better than standard GP, this result is printed bold faced.
Conversely, if a result of these method is significant worse
than standard GP, it is printed italic faced. The statistical test
shows that FullTree method is ocationally significantly better
than standard GP. This method is even worse than standard
GP on some problems like Trig-2, Trig-3 and Trig-4. In con-

trast to FullTree, two transfer learning methods (SubTree and
BestGen) frequently produce the better results than standard
GP. Moreover, these two methods are not significantly worse
than GP on any problem.

B. Generalization Ability

The second metric used to measure the performance of
the tested methods is their ability to generalize beyond the
training data. The generalization ability is perhaps the most
desirable property of a learner. In each run, the best solution
was selected and evaluated on an unseen data set (the testing
set). The median of these values across 30 runs was calculated
and the results are shown in Table IV.

The results in this table are consistent with those in
Table III, confirming the superiority of transfer learning tech-
niques to standard GP. On the tested problems, the ability of all
transfer learning methods to generalize was often better than
standard GP. Although FullTree transfer learning technique
is sometimes worse than standard GP on the training data
(shown in Table III), its performance was more convincing
on testing data when compared to GP without transferring.
Particularly, on trigonometric problems, the testing errors of
FullTree scheme are often much smaller than those of GP. For
SubTree and BestGen, their performance on the unseen data
was very impressive. On some problems such as Poly-1, Poly-
2, Trig-3 and Trig-4, SubTree and BestGen methods achieved
very small values of testing error (nearly zero). On other
problems, the testing errors of these two methods were also
much smaller than those of GP. Comparing between SubTree
and BestGen, it can been seen that SubTree is slightly better
than BestGen on the testing data.
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TABLE V. AVERAGE OF THE INDIVIDUAL SIZE IN THE LAST GENERATION. IF A RESULT OF TRANSFER LEARNING METHODS IS SIGNIFICANTLY
SMALLER THAN STANDARD GP, IT IS PRINTED BOLD FACE. IF IT IS SIGNIFICANTLY GREATER, IT IS PRINTED ITALIC FACE.

XOvers Poly-1 Poly-2 Poly-3 Poly-4 Poly-5 Trig-1 Trig-2 Trig-3 Trig-4 Trig-5

GP 86.8 92.5 104.6 117.9 119.8 87.2 87.0 80.5 91.3 111.9

FullTree25 128.3 141.0 149.3 154.2 174.0 107.0 118.2 136.2 119.6 145.4
FullTree50 131.6 138.1 155.2 167.2 176.9 96.6 114.1 126.0 144.2 182.9
FullTree75 134.8 155.1 160.4 163.9 175.6 102.8 124.2 140.8 125.2 158.2
FullTree100 126.3 143.4 143.4 179.1 188.8 108.3 130.2 147.2 145.8 169.5

SubTree25 82.5 81.7 100.3 93.3 104.4 79.8 84.0 86.3 80.0 90.9
SubTree50 80.3 81.5 97.4 90.3 98.3 78.7 78.4 85.4 83.4 82.0
SubTree75 84.9 88.8 89.7 85.1 91.1 71.1 78.0 78.7 63.9 76.3
SubTree100 83.2 80.0 84.0 84.5 75.6 54.2 62.4 66.8 53.6 70.8

BestGen1 120.6 125.9 138.6 126.6 138.7 92.4 107.4 110.3 98.1 120.9
BestGen2 113.9 130.4 140.3 150.9 156.0 82.5 100.1 102.9 101.9 131.6
BestLimit1 82.1 76.06 78.9 102.5 82.5 79.0 78.0 75.3 79.1 77.2
BestLimit2 81.7 82.38 77.4 94.1 93.5 74.91 75.4 75.5 80.0 84.1

We also conducted a statistical test for the testing errors
using the Wilcoxon test. Similar to the results on the training
data, if a result of transfer learning methods is better than
standard GP, this results is printed bold face and if it is
worse, italic face is used. The statistical test showed the
superior performance of all transfer learning techniques on
most tested problems. Obviously, transfer learning methods
not only improve GP performance on training data, on unseen
data, their performance is even more convincing.

C. Code Bloat Effect

The last metric used to analyze the effect of transfer learn-
ing techniques is their level of code growth in the evolutionary
process. It is important to examine this property since transfer
learning techniques are implemented by copying good indi-
viduals at the later generations of the source problem. Earlier
researches in GP have shown that the individual size tends
to increase during the evolutionary process [28]. Therefore,
transfer learning methods might incur more code growth in
the target problems. In order to measure the code bloat impact
of transfer learning schemes and compared them with standard
GP, in each run we recorded the mean of the individual size
at the last generation in the target problem. These values are
then averaged over 30 runs and they are presented in Table V.

It can be seen from Table V that FullTree is only the
scheme among three transfer learning methods that often leads
to the increase of code growth compared to standard GP.
Obviously, the average size of individuals of FullTree is much
greater than GP. The statistical test using the Wilcoxon signed
rank test showed that all difference between FullTree and GP is
significant. In contrast to FullTree, SubTree technique does not
incur the code growth to the population. Moreover, this method
often helps to reduce the code growth in GP population. The
statistical test evidenced that SubTree significantly reduced the
average size of individuals in most problem.

For BestGen method, we can observe two different trends.
For two configurations (BestGen1 and BestGen2) where the
selected individuals for transferring are not restricted in size,
they slightly increases the individual size of GP. Conversely,
when they are constrained in size (BestLimit1 and BestLimit2),
they help to significantly reduce GP code bloat. Overall, the
results in this section show that transfer learning techniques
helped GP to achieve better training error. Especially, the
performance of transfer learning methods on unseen data was

also significantly improved. Moreover, if we imposed a size
restriction on transferred individuals, the resulting techniques
often helped to reduce the code growth in GP.

VII. ASSUMPTIONS AND LIMITATIONS

Although this paper has shown that several benefits are to
be gained from implementing transfer learning in GP, there are
some limitations. First, the tested problems are some simple
symbolic regression problems. Moreover, their relationship is
based on the assumption that the target problems have similar
but more complicated structure than the source problem. For
a real-world application, a concrete structure is often not
previously known. In order to apply transfer learning based
GP to that problem, other methods to measure the relationship
between the source and the target task is necessary.

Second, the performance of three transfer learning tech-
niques proposed in this paper depends on some parameters
(the amount of knowledge is transferred or a threshold to
restrict the size of transferred individuals). Although, some
different values for these parameters have been investigated,
better methods such as self-adapting them could lead to a
better performance. Last but not least, the transfer learning
techniques are based on copying the good individuals (or
sub-individuals) from the source to the target problem. This
might result in a decrease in the diversity of the population in
the target problem. Consequently, the negative transfer might
happen. Therefore, the diversity analysis for transfer learning
techniques is important to understand their advantages and
limitations. Based on this, the problem of negative transfer
could be avoided.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, the effectiveness of transfer learning in
Genetic Programming (GP) was examined. Three methods
to implement transfer learning in GP were proposed. These
methods are based on transferring some good individuals (or
sub-individuals) from the source to the target problem. The
performance of transfer learning based GP were tested on two
families of symbolic regression problems. The experimental
results showed that transfer learning techniques helped GP
to obtain better training error and significantly improved GP
performance on unseen data. Moreover, using a scheme to
restrict the size of transferred individuals helped to alleviate
code bloat problem in GP.
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There are a number of research areas for future work which
arise from this paper. First, we would like to study some
techniques to predict the relationship between the source and
the target problems [29]. With this information, it is possible to
select an appropriate amount of knowledge that is transferred
to the target problem. Second, it will be very interesting to
analyze some important aspects of transfer learning techniques
such as diversity. If transfer learning methods affect negatively
to diversity, it is important to use some schemes to maintain
their population diversity. Better diversity preserving might
result in better performance of transfer learning based GP. Last,
we want to test the performance of these methods in some real-
world application domains. In some problem domains such as
time series forecasting and network security, it is natural that
different problems have strong correlations. Thus, applying
transfer learning methods to these domains could be more
beneficial.
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