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This study deals with the heat conduction within a medium containing cracks that are assumed to be per-
fect insulators. Multi-region boundary element approach is employed to obtain a boundary singular inte-
gral equation governing the steady state thermal transfer within this medium. This equation presents the
temperature field within the whole cracked body as a function of temperature and rate of heat flow on
the domain’s boundary and temperature discontinuity across the cracks. For the particular case of an infi-
nite domain under far-field condition, the temperature field solution is only a function of the cracks tem-
perature’s discontinuity. The basic problem of a single crack in an infinite domain is investigated and a
closed-form solution is derived for a crack of elliptic plane from this analysis. This solution is the key
issue to estimate the effective thermal conductivity of the whole domain by coupling with the classical
homogenization schemes. The arbitrary crack form is covered up by using the excluded volume defini-
tion. Estimations of effective thermal conductivities stemming from diluted, differential and
self-consistent approaches are compared to numerical solution obtained by the finite volume modeling
that is available in literature. This comparison shows that the self-consistent scheme is the most appro-
priate model to estimate the thermal conductivity of materials containing cracks.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The effects of cracks on the thermal conductivity have been
investigated on various materials such as optical coatings [1], gra-
phite materials [2], ceramics [3], thermal barrier coatings [4–6],
fiber-reinforced composites [7], clay [8] and among others. These
studies show that the thermal conductivity of materials decreases
with the presence of cracks due to the very low thermal conductiv-
ity of air void created by cracks. The presence of cracks was evi-
denced by micrograph [3,5], topological sensitivity [9,10] and
was quantitatively characterized to interpret the results on ther-
mal conductivity [6]. X-ray micro-tomography can be considered
as a powerful tool to monitor the 3D spatial distribution of cracks
in materials [11].

To model the heat conduction within materials containing
cracks of complex geometry and to take into account the interac-
tion between the cracks, the numerical method imposes naturally.
The use of volume discretisation methods, such as finite element
method [12,13], finite volume method [14–17] is confronted to a
major difficulty in mesh generation process when the domain
contains a numerous cracks of randomly geometries.
Contrariwise, boundary element method (BEM) presents an impor-
tant advantage in mesh reduction [18–20]. In practice, the classical
BEM becomes also inefficiently a for high crack density by the fact
of complicated numerical implementation compared to standard
BEM for the intact domain.

Atalay et al. [21] employed the multi-region boundary element
method (MR-BEM) to modeling the steady-state heat conduction
in a heterogeneous system constituted by several homogeneous
piecewise functions. This technique has been also applied for other
types of heterogeneous media such as materials in the presence of
cracks, in particular in the linear fracture mechanics [20,22].
However, only a single or a few cracks are treated and the crack
intersection is not considered in this application field. Recently,
Pouya [24] and Pouya and Vu [23,25] proposed the closed-form
expressions of mass exchange between matrix and cracks at crack
intersections for fluid flow modeling. Then, Vu [26] associated this
advanced theoretical formulation with MR-BEM to develop the
integral boundary equation and its numerical resolution for mod-
eling the fluid flow within a porous domain containing numerous
intersecting cracks. This method is now employed to study heat
conduction within the cracked media where the crack filled by
air whose conductivity is neglected in compared to one of its
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Notations

X micro-cracked domain
C, Ci cracks set and crack number i
k thermal conductivity tensor of matrix without cracks
keff effective thermal conductivity tensor of cracked media
k thermal conductivity of isotropic matrix
keff effective thermal conductivity of isotropic cracked med-

ia
q(x) local rate of heat flow at a point x
T(x) local temperature at a point x
s(s1, s2) curvilinear abscise of smooth crack surface
½½TðzÞ�� ¼ TþðzÞ � T�ðzÞ temperature discontinuity across crack

surface
c, ci boundary factors of whole and sub-domain respectively
G fundamental solution

q crack density
m dimensionless crack density
Q average rate of heat flow
G average temperature gradient
A far-field temperature gradient
» gradient operator
D Laplace operator
» divergence operator
d Dirac distribution
@sf derivation of function f with respect to variable s
a � b the scalar product of two vectors a and b
|A| the determinant of matrix A
Aa the product operator between matrix A and vector a

Fig. 1. Heat conduction within a medium embedding cracks.
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surrounded material. Therefore, the cracks could be considered as a
barrier to the heat flow that is naturally contrary to the case of fluid
flow where the crack is more conductive than the porous embed-
ding matrix.

The present work focuses on the steady-state heat flow within a
three dimension finite domain containing numerous cracks and its
effective thermal conductivity. We make assumption that crack
has zero thickness and an infinitely cross thermal resistance, i.e.
it acts as a barrier to heat flow. Therefore, the rate of heat flow van-
ishes on the crack surfaces in its normal direction; and there exists
a temperature discontinuity across it. MR-BEM is employed to
derive the boundary integral equation that governs heat conduc-
tion through the whole domain presenting a high crack density.
For this end, the domain is split into several sub-domains by exist-
ing cracks and fictitious surfaces, such that a fictitious surface does
not intersect cracks and other fictitious surfaces. The unknown
temperature on the each face of crack is considered as the bound-
ary condition for the sub-domains. Boundary integral formulation
for fluid flow is written for each sub-region and then assembled
to obtain only one potential solution for the whole body. In this
solution, the temperature field is expressed as function of temper-
ature and heat flow on the domain’s boundary and temperature
discontinuity across the cracks.

This theoretical solution is used subsequently to estimate of
effective thermal conductivity of the material with the presence
of void cracks. For this purpose, infinite domain is considered.
The closed-form solution of temperature discontinuity is derived
from the singular integral equation writing for the case of a crack
with elliptic shape. The arbitrary crack shape is covered in this
study by having recourse to excluded volume definition [27–
30]. The irregular shape of cracks could be also taken into account
by analyzing the strength of the heat flux singularity in vicinity of
crack front [31]. The analytical solution of temperature disconti-
nuity allows estimating the effective thermal conductivity in the
framework of various homogenization schemes: dilute, differen-
tial and self-consistent. The details of these techniques for ther-
mal properties of porous geomaterial were synthesized in Do
et al. [32–34], To et al. [35,36], Nguyen [37] and Chen [38].
Effective properties of micro-cracked viscoelastic materials are
also successfully estimated by coupling the solution of a single
crack in infinite domain and the homogenization schemes
(Nguyen et al. [39,40]). The finite volume solution, obtained by
Bogdanov et al. [14], is finally used to evaluating the accuracy
of these three schemes for the material that contains insulating
cracks.
2. Thermal conduction equations

Let us consider a three-dimensional domain X embedding m
cracks numbered by j and denoted by Cj (j = 1, m) (Fig. 1). In the
mathematical model, cracks are represented by a smooth surface

function zj(s) from R3 ? R2, where s = (s1, s2) is the curvilinear
parameters. C designates the set of cracks C = [Cj. The matrix
without cracks corresponds to O–C that is assumed to be homoge-
neous with a conductivity tensor k.

The heat conduction in the matrix is governed by Fourier’s law:

8x 2 X—C qðxÞ ¼ �k � rTðxÞ ð1Þ

where q(x) and T(x) are local rate of heat flow and temperature
fields, respectively.

The conservation of energy in the matrix reads:

8x 2 X—C r � qðxÞ ¼ 0 ð2Þ

Substituting (1) into (2) yields Laplace’s equation for the case of
an isotropic matrix, i.e. k = kd:

8x 2 X—C DTðxÞ ¼ 0 ð3Þ
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Solving this equation gives the solution of steady state heat dif-
fusion in the matrix X–C. This solution must verify the condition
on the cracks and the boundary conditions. As the cracks are
non-conducting and act as barriers to thermal flow, the conditions
on the crack surfaces are given as:

8x 2 C qðxÞ � nðxÞ ¼ 0 or rTðxÞ � nðxÞ ¼ 0 ð4Þ

where n(x) is the unit normal vector at point x on cracks.
Two boundary conditions, namely Dirichlet and Neumann condi-

tions are prescribed respectively on oX1, oX2 of the domain bound-
ary oX (oX = oX1 + oX2):

8x 2 @X1 TðxÞ ¼ T0ðxÞ ð5Þ

8x 2 @X2 � krTðxÞ � nðxÞ ¼ q0ðxÞ ð6Þ
3. Potential solution

3.1. Multi-region boundary elements approach

This sub-section is devoted to establish a singular integral equa-
tion for the temperature field in the whole domain X that satisfies
the Laplace equation (3), the condition on crack surfaces (4) and
the boundary conditions (5), (6). For this purpose, the MR-BEM is
had recourse. As mentioned in the introduction section, this
approach exhibits a great advantage in mesh generation term for
three-dimensional domain in the presence of numerous surfaces
of discontinuities.

The domain X is first partitioned into n sub-domains Xi by the
fictitious boundaries that pass through the crack parts, as seen in

Fig. 2. A crack C of normal n is constituted by two parallel surfaces

C+ and C�with two normal vectors n+, n� (n+ = �n� = n) (Fig. 3). On
the crack surface, the temperature is discontinuous between its

two faces and the normal heat rate vanishes, i.e. q � n = 0.
½½TðzÞ�� ¼ TþðzÞ � T�ðzÞ designates the temperature discontinuity
across the crack surface. A fictitious surface C0 is assumed to have
two coincidental faces C0+ and C0� through which the temperature
and the heat rate are continuous. As showed latterly, the fictitious
surfaces appear only in the developed step equations but have no
contribution in the final boundary integral equation for the whole
domain.

The boundary oXi of subdomain Xi could be consisted of a por-
tion of the boundary of whole domain denoted by @Xs

i , n1i positive
crack surfaces, n2i negative crack surfaces, n3i positive fictitious
surfaces and n4i negative fictitious surfaces. The subdomains,
non-connected to the boundary oX, are bounded only by the cracks
and or fictitious surfaces.

As sub-domain Xi does not contain the crack, therefore, Eq. (3)
governs the heat conduction within it. Applying the BEM proce-
dure [18–20] for this Laplace’s equation yields:

8n 2 Xi ciðnÞTðnÞ

¼
Z
@Xi

TðxÞrGðx; nÞ � nds�
Z
@Xi

Gðx; nÞrTðxÞ � nds ð7Þ

where n is the normal to the subdomain boundary oXi;

ci(n) is a coefficient that depends on the position of n relative to

the subdomain Xi: ci(n) = 1 if n � Xi � @Xi; ci(n) = 0 if n � Xi and

0 < ci(n) < 1 if n � @Xi. For the latter case when the field point on
the boundary of subdomain, the coefficient ci depends on the local
boundary geometry at this point and it takes the value of 1/2 for
smooth boundary. In general, this coefficient can be determined
by the following equation:
8n 2 Xi ciðnÞ ¼ lim
e!0

Z
Se

Gðx; nÞdx ð8Þ

where Se is an infinitesimal spherical surface of center n and radius e
enclosed in the solid Xi.

The fundamental function G(x, n) and its derivations for
three-dimensional steady-state heat transfer are expressed such
as [18–20]:

Gðx; nÞ ¼ 1
4pr

@Gðx; nÞ
@nx

¼ 1
4p

nx � R
r3

@2Gðx; nÞ
@nx@nn

¼ 1
4p

nn � nx

r3 � 3
ðnn � RÞðnx � RÞ

r5

� � ð9Þ

with R = n � x; r = ||R|| = ||n � x||, nx and nn the normal to crack sur-

face at x and n.
The integrals on the right hand side of Eq. (7) are the sum of this

integral on the different parts of boundary of this subdomain, i.e.
on the @Xs

i , n1i positive fracture surface segments Cþk , n2i negative
fracture surface segments C�k , n3i fictitious positive lines C0þk and
n4i fictitious negative lines C0�k .

ciðnÞTðnÞ ¼
Z
@Xs

i

TðxÞrGðx; nÞ � nds�
Z
@Xs

i

Gðx; nÞrTðxÞ � nds

þ
X
n1i

Z
Cþ

k

TþðxÞrGðx; nÞ � nþds�
X
n1i

Z
Cþ

k

Gðx; nÞrTþðxÞ � nþds

þ
X
n2i

Z
C�k

T�ðxÞrGðx; nÞ � n�ds�
X
n2i

Z
C�k

Gðx; nÞrT�ðxÞ � n�ds

þ
X
n3i

Z
C0þ

k

TðxÞrGðx; nÞ � nþds�
X
n3i

Z
C0þ

k

Gðx; nÞrTðxÞ � nþds

þ
X
n4i

Z
C0�k

TðxÞrGðx; nÞ � n�ds�
X
n4i

Z
C0�k

Gðx; nÞrTðxÞ � n�ds ð10Þ

As a matter of fact, the field point n can be located inside, out-
side or on the boundary of domain Xi. The relative position of this
point relative to the subdomain is represented by the factor ci.
Therefore, we can repeat the Eq. (10) for all subdomains but for a

field point n to obtain n boundary integral equations. The sum of
these n equations results in:

Xn

i¼1

ciðnÞTðnÞ ¼
Z
@X

TðxÞrGðx; nÞ � nds�
Z
@X

Gðx; nÞrTðxÞ � nds

þ
Xm

k¼1

Z
Ck

TþðxÞ � T�ðxÞ
� �

rGðx; nÞ � nds ð11Þ

To show how we obtain Eq. (11), we consider a fictitious surface
C0ij that are shared by two subdomains Xi and Xj. Across the ficti-
tious surface, the temperature and its gradient or thermal flux rate
are continuous, therefore, the seventh, eighth, ninth, tenth terms in

the boundary integral equation writing at the field point n for the
subdomain Xi will be eliminated by the same terms in the one
writing for its adjacent subdomain Xj. Moreover, the rate of heat
flow is none on the crack surface, thus the fourth and sixth terms
in the boundary integral equation for each subdomain are
vanished.

By noting c ¼
Pn

i¼1ci, it is easy to see that the coefficient c is
always equal to 1 when the field point is inside the whole cracked
domain. Therefore, the factor c of the cracked domain X can be rep-
resented by one of the un-cracked domain bounded by oX.

Introducing the temperature discontinuity across the cracks
into Eq. (11) yields the boundary integral equation for temperature
field within the cracked media:



s

(a)   (b) 

Fig. 2. MR-BEM approach to study heat conduction within cracked media.

Fig. 3. Temperature discontinuity on the crack surface.
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cðnÞTðnÞ ¼
Z
@X

TðxÞrGðx; nÞ � nds�
Z
@X

Gðx; nÞrTðxÞ � nds

þ
Xm

k¼1

Z
Ck

½½TðxÞ��rGðx; nÞ � nds ð12Þ

Let us consider now the particular case of infinite medium sur-

rounding cracks under the far-field condition T1(x). As the field

point n always inside the domain, thus the boundary factor c is
equal to 1. Eq. (12) reduces to:

TðnÞ ¼ T1ðnÞ þ
Xm

k¼1

Z
Ck

½½TðxÞ��rGðx; nÞ � nxds ð13Þ

In numerical point of view, numerical resolving equation (12)
covers Eq. (13) by making a large domain’s boundary, where the

far-field condition T1(x) is prescribed, compared to cracked zone.
The heat conduction solution is used then to calculate the effective
thermal conductivity of cracked domain. However, the direct
derivation of Eq. (13) that reduce the complication of numerical
implementation in comparison with the one of Eq. (12), allows also
the determination of thermal conductivity for a cracked zone [23].

The general solution (12), obtained under a singular integral
equation form, is suitable for both numerical simulation of heat
conduction and analytical estimation of effective conductivity for
cracked media. This provides an interesting material that can be
useful for those who performs numerical simulation based on
boundary element method by beneficing the mesh reduction from
3D to 2D. Indeed, this method is truly efficient when modeling the
heat conduction and effective conductivity of a domain containing
high crack density. Besides, this solution allows deriving the
closed-form solution of heat conduction in some particular cases.
As showed subsequently, the analytical resolution of Eq. (13) in
the case of a single fracture within an infinite medium, coupling
with homogenization-based methods affords us another ways to
estimate the thermal conductivity of material with the presence
of cracks.
3.2. Closed-form solution of temperature discontinuity

This section is devoted to derive the closed-form solution of
temperature discontinuity across the a single crack with in an infi-

nite matrix under far-field condition T1(n) = A � n. Deriving Eq. (13)

with respect to n variable reads:

@TðnÞ
@nn

¼
@T1ðnÞ
@nn

þ
Xm

k¼1

Z
Ck

½½TðxÞ��
@2Gðx; nÞ
@nn@nx

ds ð14Þ

Considering the field point n located on the fracture surfaces at

curvilinear parameter s, the left hand side of Eq. (14) vanishes
according to the condition (4). Thus, the Eq. (14) becomes:

uðxÞ ¼ 1
4p
X

j

Z
C j

xðsÞ �nðsÞ � nðxÞ
r3ðs; xÞ þ 3

ðnðsÞ � Rðs; xÞÞðnðxÞ � Rðs; xÞÞ
r5ðs; xÞ

� �
d

ð15Þ

with

uðxÞ ¼ @T1ðxÞ
@nx

; xðxÞ ¼ ½½TðxÞ�� ð16Þ

This equation is a hyper-singular integral equation in which the

temperature discontinuity on the fractures x(x) is unknown func-
tion and the hyper-singular kernel behaves as r�3 at the singular

point (s = x). The hyper-singular kernels in Eq. (15) are also arisen
in symmetry Galerkin boundary element approximation for solv-
ing two or three-dimensional Laplace’s equations. The algorithms
based on limit process are presented in Sutradhar et al. [41] for
evaluating these hyper-singular integrals. In such process, the inte-
gral involving derivatives of the fundamental solution are defined
as limits from the interior.

In order to upscale the effective permeability, a basic problem is
considered. This is to derive the temperature field around a single
insulating crack within an infinite matrix under far-field condition.
The crack is modeled by an elliptic plane D with half-diameters
designated by d1, d2 (d1 P d2) and two corresponding principal

directions e1, e2 denote elliptic fracture principal directions and

its unit normal e3. A local coordinate system is defined such as
the origin located at the center of the crack and its axes parallel

to e1, e2 and e3. The equation of ellipse D in this coordinate system
reads (Fig. 4):

x � B � x ¼ 1 ð17Þ

with x � e3 = 0 or x = (x1, x2, 0) and

k1 ¼ 1=d2
1; k2 ¼ 1=d2

2; B ¼ k1e1 � e1 þ k2e2 � e2 ð18Þ

For a single planar crack, nðsÞ � Rðs; xÞ ¼ nðxÞ � Rðs; xÞ ¼ 0 and

n(s) � n(x) = 1, thus, Eq. (15) is rewritten as follows:



Fig. 4. An elliptic penny-shaped crack within an infinite matrix.

M.N. Vu et al. / International Journal of Heat and Mass Transfer 89 (2015) 1119–1126 1123
8x 2 D uðx1; x2Þ ¼ �
1

4p

Z
D

xðs1; s2Þ

ðs1 � x1Þ2 þ ðs2 � x2Þ2
h i3=2 ds1ds2

ð19Þ

This equation is equivalent to:

8x2D �4puðx1;x2Þ¼
Z

D
xðs1;s2ÞDs

1

ðs1�x1Þ2þðs2�x2Þ2
h i1=2 ds1ds2

ð20Þ

Since the temperature is continuous at the crack border, i.e.
x(x1, x2) subject to the following condition:

8x 2 @D xðx1; x2Þ ¼ 0 ð21Þ

Integrating by part and the condition (21) lead to:

8x 2 D 4puðx1; x2Þ ¼
Z

D
rxðs1; s2Þ � r

1

ðs1 � x1Þ2 þ ðs2 � x2Þ2
h i1=2 ds1ds2

ð22Þ

In the case that the far-field condition is a constant pressure

gradient A, i.e. T1(x) = A � x, hence, uðxÞ ¼ A � e3, Eq. (22) is rewrit-
ten as:

8x 2 D 4pA � e3 ¼
Z

D
rxðs1; s2Þ � r

1

ðs1 � x1Þ2 þ ðs2 � x2Þ2
h i1=2 ds1ds2

ð23Þ

This equation is well-known in fracture mechanic (Bui [42];
Guidera and Lardner [43]) and its solution is expressed as follows:

8x 2 D xðxÞ ¼ 2d2

EðkÞA � e3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x � B � x

p
ð24Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

d1

� �2
r

and E(k) is the complete elliptic integral of

the second kind:

EðkÞ ¼
Z p=2

h¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p
dh ð0 6 k 6 1Þ ð25Þ

The semi-analytical or iterative numerical expression of the
complete elliptic integrals can be found in mathematical hand-
books of Abramowitz and Stegun [44].

Considering the particular case of a circle of radius d1 = d2 = R,
Eq. (24) reads:

8x 2 D xðxÞ ¼ 4
p

A � e3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x � x

q
ð26Þ
By noting W the integral of discontinuity temperature function
over the crack, we obtain:

W ¼
Z

D
½½TðxÞ�� � ndx ¼ 8

3
R3ðn� nÞ � A ð27Þ

This closed-form solution is an important element to evaluate
the effective thermal conductivity of cracked media by using the
homogenization approaches. Three schemes, namely dilute, differ-
ential and self-consistent, will be considered in the Section 4.

4. Thermal conductivity

This section presents the homogenization schemes to estimate
the effective thermal conductivity of a medium embedding cracks
that are non-conducting and acts as barriers to the heat flow. For
this purpose, a domain X, containing several cracks Cj prescribed

on its boundary by a linear temperature T = A � x, i.e. a constant

temperature gradient rT = A, is considered.
The average rate of heat flow and average temperature gradient

over X are formulated as:

Q ¼ 1
X

Z
X

qðxÞdx; G ¼ 1
X

Z
@X

TðxÞ � nðxÞdx ¼ A ð28Þ

The effective thermal conductivity keff is given globally by
Fourier’s law:

Q ¼ �keff � G ð29Þ

The divergence theorems for the temperature function in a
domain containing discontinuities Cj reads:Z

X
rT dx ¼

Z
@X

T � n dx�
X

j

Z
C j
½½T�� � n dx ð30Þ

Substituting Eqs. (1) and (30) into the average rate of heat flow

Q yields

Q ¼ �k A� 1
X

X
j

Z
C j
½½T�� � n dx

" #
ð31Þ

Eqs. (29) and (31) implies the reduction of thermal flow rate, by
the temperature discontinuities across cracks 1

X

P
j

R
C j ½½T�� � n dx, is a

linear function of average gradient of temperature G, i.e. there
exists a tensor W such as:

1
X

X
j

Z
C j
½½T�� � n dx ¼ W � G ð32Þ
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Replacing Q in Eq. (29) by its expression in Eqs. (31) and (32)
gives

keff ¼ kðd�WÞ ð33Þ

Therefore, the effective thermal conductivity can be determined
when the temperature discontinuity on cracks are known. For the
general case, solving Eq. (12) by numerical methods, such colloca-
tion method [20], Symmetry Galerkin Boundary Element method
[41], etc, allows obtaining the solution of temperature discontinu-
ity field on cracks. Besides, the effective thermal conductivity keff

can be estimated by using the theoretical up-scaling scheme based
on the analytical solution (27). Three schemes are considered in
the following and its results are then analyzed and compared with
numerical solution in the literature.

4.1. Dilute scheme

Let us consider m fracture families are embedded in a porous
domain X. Each family Ci has a density qi = Ni/X (i.e. Ni fractures

within X), orientation ni (unit normal vector) and radius Ri

(Fig. 5). In the dilute framework, each crack is supposed to be sub-
jected to the same far-field condition, i.e. undisturbed by the pres-
ence of other cracks. This approach presents a simple and accurate
estimation of equivalent properties for material containing inho-
mogeneities when the crack density is small.

By neglecting fracture interaction, the term W in Eq. (32) is
expressed such as:

W ¼
Xm

i

8
3
qiR

3
i ðni � niÞ ð34Þ

The dimensionless crack density is introduced to cover other
fracture shapes:

mi ¼ qiV0i ð35Þ

In this relation, V0i is a reference volume around a fracture of
family i. Since the effective conductivity resulted in the current
work will be compared to one obtained by Bogdanov et al. [14],
we take thus V0i ¼ p2R3

i to unify the notation of dimensionless
crack density between these two work. According to Adler and
Thovert [27] and Charlaix et al. [28], for an isotropic distribution
of fractures having the same circular shape of radius R, the volume
Vex ¼ p2R3 is the excluded volume that is defined as one around an
object of the system where other objects do not appear in order not
to intersect it. As the exclusion volume characterizes all objects in
the system as an ensemble, i.e. it is not given for each family inde-
pendently; the volume V0i does not have sense of excluded volume
Fig. 5. Medium containing a weak crack density.
with the presence of several fracture families of different sizes and
orientations. A general expression of Vex for an anisotropic system
could be referred in Mourzenko et al. [29,30], where its calculation
includes orientations, shapes and sizes of all fractions within the
fracture network.

Substituting (35) into (34) yields:

W ¼
Xm

i

8
3p2 miðni � niÞ ð36Þ

In order to compare the homogenization models numerical
model proposed by Bogdanov et al. [14] for random networks of
equally sized polygonal fractures, an isotropic cracks distribution,
with density m having identical radius R, is considered in the fol-
lowing. The excluded volume concept allows covering arbitrary
crack shapes. For this case, the average value hn� ni ¼ 1

3 d and
the effective conductivity tensor is isotropic keff = keffd, thus:

keff

k
¼ 1� 8

9p2 m ð37Þ

This formulation is identical to one given by Shafiro and
Kachanov [47].

4.2. Differential scheme

It is worth noting that the crack density q is a discrete function,
however, the dimensionless crack density m is a continuous func-
tion since the crack size, i.e. R varies from zero. Therefore, differen-
tial scheme can be applied to upscale the effective thermal
conductivity of cracked materials. This method consists in estimate
the thermal conductivity explicitly from an initial material through
a series of incremental additions [45,46]. Supposing dm the adding
crack density, the effective thermal conductivity at a considered
step is determined from one at the previous step by Eq. (37):

kiþ1 ¼ ki 1� 8
9p2 dm

	 

ð38Þ

Furthermore,

kiþ1 � ki

dm
¼ �ki

8
9p2 ð39Þ

and then,

dk
dm
¼ �k

8
9p2 ð40Þ

Integration the later gives:

keff ¼ k exp � 8
9p2 m

	 

ð41Þ
4.3. Self-consistent scheme

As seen in Eq. (31) the average rate of heat flow Q is reduced by

Q⁄ = kWA vis-a-vis one of un-cracked medium. Regardless the two
previous approaches, the self-consistent scheme considers the
cracks surrounding by matrix having the effective conductivity.

In other words, Q⁄ = keffWA. Replacing Q⁄ by this expression into
(31) and then (29) yields:

keff

k
¼ 1

1þ 8
9p2 m

ð42Þ

For the case m << 1, the first order expansion of Eq. (42) results
the formulation (37). The results stemming from differential
scheme (Eq. (41)) and self-consistent one (Eq. (41)) are compared



Fig. 6. Comparison homogenization models of effective thermal conductivity of
cracked medium (developed within this paper) with results obtained by using the
finite volume approach proposed by Bogdanov et al. [14].
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with numerical result obtained by Bogdanov et al. [14]. This com-
parison allows choosing which theoretical approach is better in the
case of media containing insulating crack.

Bogdanov et al. [14] investigated the effective property of finite
porous media embedding an isotropic distribution of hexagonal
fracture network based on a three-dimensional finite volume
method. Consider the insulating fracture have a conductivity <<1
and a cross section resistance >>1. A least squares fit of all numer-
ical result allows them to introduce an expression of effective
property versus m as follows:

keff

k
¼ 1:0010� 0:0604mþ 0:0014m2 ðm 6 8Þ ð43Þ

According to Eqs. (37) (41)–(43), variations of effective thermal
conductivities as function of crack density m are presented in Fig. 6.
Obviously, two approximated curves, namely differential model
(41) and self-consistent one (42), are tangent to the curve of
Shafiro and Kachanov [47] at m = 0. It can be observed that the
self-consistent model (42) is better than differential one (41) and
diluted one (37) in comparison with numerical model of
Bogdanov et al. [14].

In practical point of view, the characterization of crack system
(size, distribution, orientation, connectivity) is not an easy task,
even impossible for high crack density. Actually, X-ray microto-
mography can be a good technique does experimentally observe
crack system. However, this technique is limited to
laboratory-scale specimen with a small crack density. For a larger
scale, the measured thermal conductivity is usually supposed to
be isotropic, i.e. a randomly crack distribution. Therefore, the
assumption of simple crack shape, as well as an isotropic cracks
distribution is habitually made to simulate the experiment mea-
surement and the real engineering processes. As a conclusion, the
self-consistent model (42) with the validation against to numerical
model [14] seems to be very useful in engineering fields. This
model could be applied to estimate rapidly the thermal conductiv-
ity of cracked media or to determine the crack parameters from the
measurement by inverse analysis.
5. Conclusions

Steady state heat transfer within media containing cracks,
which act as barrier to heat flow, is investigated in this paper.
The cracks are mathematically modeled by a two dimensional
smooth surface of zero thickness. Multi-region boundary element
method is used to obtain the potential solution that presents the
temperature solution in the whole domain as function of thermal
variables on the boundary, namely temperature and rate of heat
flow, and temperature discontinuity on the cracks. This boundary
integral equation allows reducing the dimension problem from
3D to 2D in numerical analysis. Fast multi-poles method [48] deal-
ing with this equation is on-going to model accurately the heat
transfer within this material.

Writing the boundary integral equation to an infinite medium
that contains a crack of elliptic shape allows deriving the
closed-form solution of temperature discontinuity across this crack
surface. Based on this solution, three homogenization schemes
(dilute, differential and self-consistent) are employed to estimate
the effective thermal conductivity. The excluded volume is had
recourse to extend the arbitrary form of crack. These three models
are compared to numerical solution proposed in the literature to
evaluating the validity of homogenization estimations. This com-
parison shows that the self-consistent model is the most appropri-
ate to estimate the thermal conductivity of material containing
insulating cracks.
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