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Data clustering has been widely applied to numerous real-world problems such as natural resource
management, urban planning, and satellite image analysis. Especially, fuzzy clustering with its ability of
handling uncertainty has been developed for image segmentation or image analysis e.g. in health image
analysis, satellite image classification. Normally, image segmentation algorithms like fuzzy clustering use
spatial information along with the color information to improve the cluster quality. This paper introduces
an approach, which exploits local spatial information between the pixel and its neighbors to compute the
membership degree by using an interval type-2 fuzzy clustering algorithm, called IIT2-FCM. Besides, a
Semi-supervising Interval Type-2 Fuzzy C-Means algorithm using spatial information, called SIIT2-FCM,
is proposed to move the prototype of clusters to the expected centroids which are pre-defined on a basis
of available samples. The proposed algorithms are applied to the problems of satellite image analysis
consisting of land cover classification and change detection. Experimental results are reported for various
datasets of the LandSat7 imagery at multi-temporal points and compared with the results produced by
some existing algorithms and obtained from some survey data. The clustering results assessed with
regard to some validity indexes demonstrate that the proposed algorithms form clusters of better quality
and higher accuracy in problems of land cover classification and change detection.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In clustering-based image segmentation approaches, the most
important problem is to establish a method to determine whether
or not the considered pixel belongs to a certain cluster. The
“conventional” clustering algorithms like k-Means, Fuzzy C-Means
(FCM), and interval type-2 Fuzzy C-Means (IT2-FCM) exhibit the
same strategy based on the Euclidean distance to compute the
degree of similarity between objects to be assigned to clusters
with the corresponding membership degree. Not only color based
similarity of the pixels but also the spatial relationship between
pixels and their neighbors certainly impact the clustering results.

Satellite image analysis methods based on statistical para-
meters have been widely used because of their easy im-
plementation and accuracy. However, these methods are often
,
rta.ca (W. Pedrycz).
quite expensive, time consuming and only applicable to small
areas. Currently, there are several approaches to classify satellite
imagery in which fuzzy logic have been widely applied because of
its advantages in handling ambiguous data. Normally, satellite
imagery are affected by noise because of weather and errors as-
sociated with the photographic equipment and in this case fuzzy
clustering becomes of interest.

Type-2 fuzzy sets form an extension of original fuzzy sets of
type-1. They have been developed and applied to various problems
(Karnik et al., 1999; Karnik and Mendel, 2001; Liang and Mendel,
2000; Mendel and John, 2002; Mendel et al., 2006; Liu, 2008; Ngo
and Nguyen, 2012; Nguyen et al., 2015; Hwang and Rhee, 2007;
Fisher, 2010) including data clustering. Fuzzy C-Means (FCM)
clustering (Bezdek et al., 1984) and its variants have been widely
applied to many problems including satellite image analysis. The
drawback of the FCM algorithms is the limitation in handling
uncertainty. Hence, the use of interval type-2 fuzzy sets in data
clustering as the interval Type-2 Fuzzy C-Means clustering algo-
rithm (IT2FCM) was studied in Hwang and Rhee (2007). In this
method, the FOU (footprint of uncertainty) of the type-2 fuzzy set
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is built by using two values of the fuzzifier (fuzzification coeffi-
cient) being one of the essential parameters of the FCM algorithm.
Besides, in order to improve the quality of clustering in image
segmentation including satellite images, various ways of using
spatial information together with color information have been
developed. Remote sensing image analysis is studied using various
approaches exploiting fuzzy logic (Fisher, 2010; Stavrakoudis et al.,
2011; Shankar et al., 2011; Liu et al., 2013; Ghaffarian and Ghaf-
farian, 2014; Martinez and Martinez, 2014).

The paper deals with a novel type-2 fuzzy clustering approach
to the problems of land cover classification and change detection.
Three essential issues are addressed in this paper:
(1)
 the use of local spatial information between the pixel and its
neighbors to compute the membership degree in interval
type-2 fuzzy clustering algorithm, called IIT2-FCM;
(2)
 development of the semi-supervised interval type-2 Fuzzy
C-Means algorithm using spatial information, called SIIT2-
FCM, with intent to navigate the prototype of clusters to the
expected centroids which are pre-defined on the basis of ex-
isting samples;
(3)
 application of IIT2-FCM and SIIT2-FCM to the problems of land
cover classification and change detection of multi-temporal
points in multi-spectral remote sensing imagery.
Experimental results are reported on various datasets of
Landsat7 images at multi-temporal points. A comparative analysis
is provided involving results produced by some existing algo-
rithms available in the literature. Our interest is to quantify the
quality of clustering results in terms of well-known validity in-
dexes and look at the evaluation of the clusters in terms of accu-
racy in land cover classification and change detection.

The paper is organized as follows: Section 2 presents a litera-
ture review on interval type-2 fuzzy clustering, spatial information
and satellite analysis. Section 3 covers a background material by
looking at type-2 fuzzy sets and interval type-2 C-Means cluster-
ing; Section 4 introduces spatial information, IT2-FCM with spatial
information, semi-supervising IT2FCM with spatial information;
while Section 5 demonstrates how to apply IIT2FCM, SIIT2FCM to
land-cover classification and change detection. Section 6 covers
conclusions and identifies some future works.
2. Literature review

Let us note that the main issues studied in this paper are as
follows: (1) how to use interval type-2 fuzzy sets and exploit their
ability of handling uncertainty better in satellite image analysis;
(2) how to use spatial information together with color information
in clustering algorithms; and (3) how to apply the method to
satellite image analysis (land cover classification and change
detection).

In what follows, we briefly review some related studies.
Some linkages with the use of type-2 fuzzy sets to clustering

algorithms, applications have been identified. Ji et al. (2014) pro-
posed interval-valued possibilistic FCM clustering to incorporate
interval type-2 sets into the possibilistic FCM to better handle and
manage the uncertainty implied by data. Qiu et al. (2013) in-
troduced the modified interval type-2 FCM using spatial in-
formation to handle uncertainty in MR images. Torshizi and Zar-
andi (2014a, 2014b) proposed an algorithm of general type-2 fuzzy
clustering for analyzing gene expression data with newly devel-
oped general type-2 cluster validity index. Zarinbal et al. (2014)
proposed Interval Type-2 Relative Entropy FCM in which the un-
certainty associated with membership functions is the main con-
cern and an application to MR image segmentation was discussed.
The combination of IT2FCM and other techniques such as multiple
kernel technique was also proposed (Nguyen et al., 2015). These
methods handle uncertainties and deal with the input features
coming from multiple sources.

With regard to satellite image classification, various applica-
tions of type-2 fuzzy sets related to satellite image analysis were
introduced, consisting of land cover classification (Ngo and
Nguyen, 2012; Fisher, 2010). Fisher (2010) proposed remote sen-
sing of land cover classes given that type 2 fuzzy sets reveal un-
certainty, and allows the analysis to be specific about minimum,
maximum, and average degree of land cover types. Multi-spectral
satellite images contain uncertainty. For instance, each pixel is
captured from a square depending on the resolution of image
(maybe 30�30 m) which may exhibit several land covers (water,
soil or vegetable). The other uncertainty could come as a result of
error of equipment or software used of processing data. Hence,
clustering algorithms using type-2 fuzzy sets are suitable to deal
with satellite image classification.

In order to improve the quality of clustering in image seg-
mentation including satellite images, various ways of using spatial
information together with color information in FCM algorithm
were proposed (Despotovic et al., 2010; Wang et al., 2009, 2013;
Zhao et al., 2011, 2013; Liu and Pham, 2012; Liu et al., 2012; Zhao,
2013; Vargas et al., 2013; Benaichouche et al., 2013). Despotovic
et al. (2010) used a mask whose center is the considered pixel,
while relationships between pixels in the mask and the center are
used to determine the degree of similarity being used to estimate
the membership values. Wang et al. (2009) proposed adaptive
spatial information-theoretic clustering (ASIC) algorithm with the
modified objective function which exhibits a new dissimilarity
measure and the weighting factor for neighborhood effect be-
comes fully adaptive to the image content. The ASIC enhances the
smoothness towards piecewise-homogeneous segmentation and
reduces the edge blurring effect. Zhao et al. (2011) and Zhao (2013)
proposed two novel fuzzy clustering algorithms using the self-
tuning non-local spatial information. In the first algorithm, the
self-tuning non-local spatial information for each pixel is defined
and then introduced into the objective function of FCM. In the
second one, a novel gray level histogram is constructed by using
the self-tuning non-local spatial information for each pixel, and
then clustering is performed on a basis of this gray level histo-
gram. Zhao et al. (2013) also included spatial information in the
objective function of a certain generalized Fuzzy C-Means clus-
tering algorithm, and then the kernel induced distance is adopted
to substitute the Euclidean distance in the new objective function.
Liu and Pham (2012) presented a fuzzy clustering algorithm which
can handle spatial constraints, which is based on the notions of
hyperplanes, Fuzzy C-Means, and spatial constraints. By adding a
spatial regularizer into the fuzzy hyperplane based objective
function, the proposed method can take into account additional
important information of inherently spatial data. Liu et al. (2012)
have come up with a novel fuzzy spectral clustering algorithm
with robust spatial information for image segmentation (FSCRS).
The similarity matrix was obtained by using a robust gray-based
fuzzy similarity measure. The spectral graph partitioning method
can be applied to the similarity matrix to group the gray values of
the new generated image and then the corresponding pixels in the
image are reclassified to obtain the final segmentation result.
Vargas et al. (2013) introduced two enhanced Fuzzy C-Means
clustering algorithms with spatial constraints for noisy color image
segmentation. The Rank M-type L (RM-L) and L-estimators of
spatial information of the pixels are involved in the FCM algorithm
to provide robustness to the segmentation schemes. Wang et al.
(2013) proposed an adaptive spatial information-theoretic fuzzy
clustering algorithm to improve the robustness of the conven-
tional Fuzzy C-Means (FCM) clustering algorithms for image
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segmentation through the incorporation of information-theoretic
framework into the FCM algorithms. Benaichouche et al. (2013)
proposed an improved FCM by using three phases consisting of
PSO initialization, the integration of the spatial gray-level in-
formation of the image in the clustering segmentation process and
the use of Mahalanobis distance to reduce the influence of the
geometrical shape of data belong to different classes, and refining
the segmentation results by correcting the errors of clustering by
reallocating potentially misclassified pixels.

Remote sensing image analysis consisting of land cover classi-
fication and change detection is studied using various approaches
in which fuzzy logic has been applied (Fisher, 2010; Stavrakoudis
et al., 2011; Shankar et al., 2011; Liu et al., 2013; Ghaffarian and
Ghaffarian, 2014; Martinez and Martinez, 2014) because of ability
of handling ambiguous data appearing in image data due to
weather conditions or the sensors. Fisher (2010) presented mod-
elling land cover as a type-2 fuzzy set recognizing the existence of
higher order vagueness. The consideration of type-2 fuzzy sets
reveals the depth of the uncertainty, and allows the analyst to be
specific about minimum, maximum, and average extents of land
cover types and even to report fuzzy area itself as a fuzzy number
and to justify descriptive qualifications of the results. Stavrakoudis
et al. (2011) proposed a Boosted Genetic Fuzzy Classifier (BGFC) for
land cover classification from multispectral images in which fuzzy
rules are generated in an iterative fashion, incrementally covering
subspaces of the feature space, as directed by a boosting algorithm.
A genetic tuning stage is employed, aiming at improving the co-
operation among the fuzzy rules, thus increasing the classification
performance attained after the first stage. Shankar et al. (2011)
proposed a wavelet feature-based supervised scheme for fuzzy
classification of land covers in the framework of wavelet-fuzzy
hybridization. The wavelet features obtained from wavelet trans-
form on an image provide spatial and spectral characteristics of
pixels and hence can be utilized effectively for improving accuracy
in classification, instead of using original spectral features. Liu
et al. (2013) proposed a novel semi-supervised SVM model using
self-training approach for remote sensing land cover classification.
The self-adaptive mutation particle swarm optimization algorithm
was introduced to produce the optimal parameters, and the Gus-
tafsonKessel fuzzy clustering algorithm was used for the selection
of unlabeled points to reduce the impact of ineffective labels.
Ghaffarian and Ghaffarian (2014) proposed an Automatic Histo-
gram-based Fuzzy C-Means (AHFCM) algorithm consisting of two
steps: clustering each band of a multispectral image by calculating
the slope for each point of the histogram, in two directions, and
executing the FCM clustering algorithm based on specific rules,
then, automatic fusion of labeled images is used to initialize and
determine the number of clusters in the FCM algorithm. Martinez
and Martinez (2014) introduced the technique that uses un-
supervised learning and automatically determines land uses in
urban areas by using spectral clustering of geographical regions
with similar tweeting activity patterns.

On the basis of land cover classification, change detection is
widely one of the applications to monitor the change of land
covers at multi-temporal points according to various approaches
(Ghosh et al., 2011; Mishra et al., 2012; Roy et al., 2014; Ghosha
et al., 2014; Yuan et al., 2015). Based on fuzzy clustering, Ghosh
et al. (2011) used spatial correlation between neighboring pixels of
the difference image produced by comparing two images acquired
on the same geographical area at different times, called un-
supervised change detection. Mishra et al. (2012) proposed the
technique for incorporation of local information and used hy-
bridization algorithm of Fuzzy C-Means clustering and Gus-
tafsonKessel clustering. Further, an approach using ensemble of
semi-supervised classifiers was proposed for change detection in
remotely sensed images (Roy et al., 2014) by using a multiple
classifier system in semi-supervised (learning) framework instead
of a single weak classifier. In the manner of semi-supervised
change detection, Yuan et al. (2015) proposed a new distance
metric learning framework for areas change detection by abundant
spectral information of hyper-spectral image in noisy condition;
Liu et al. (2013) proposed a novel semi-supervised SVM model
using self-training approach to address the problem of remote
sensing land cover classification.
3. Background

3.1. Type-2 fuzzy sets

A type-2 fuzzy set in X is denoted by Ã, and its membership
grade of x X∈ is x u u J, , 0, 1A xμ ( ) ∈ ⊆ [ ]˜ , which is a type-1 fuzzy
set in [0, 1]. The set of J x Xx ( ∈ ) is called primary memberships of x

in Ã and memberships of primary memberships in x u,Aμ ( )˜ are

called secondary memberships of x in Ã.

Definition 3.1. A type-2fuzzy set, denoted Ã, is characterized by a
type-2 membership function x u,Aμ ( )˜ where x X∈ and u 0, 1∈ [ ]
i.e.

A x u x u x X u, , , , 0, 1 1Aμ˜ = {(( ) ( ))| ∈ ∈ [ ]} ( )˜

or

A x u x u, / ,
2x X u A0,1

∫ ∫ μ˜ = ( )) ( )
( )∈ ∈ [ ]

˜

in which x u0 , 1Aμ≤ ( ) ≤˜ .

At each value of x, say x x= ′, the 2-D plane whose axes are u

and x u,Aμ ( ′ )˜ is called a vertical slice of x u,Aμ ( )˜ . A secondary

membership function is a vertical slice of x u,Aμ ( )˜ . It is x x u,Aμ ( = ′ )˜

for x X∈ and u 0, 1∀ ∈ [ ] i.e.

x x u x f u u, /
3A A u x0,1

∫μ μ( = ′ ) ≡ ( ′) = ( )
( )′˜ ˜

∈ [ ]

in which f u0 1x≤ ( ) ≤′ .
Type-2 fuzzy sets are called an interval type-2 fuzzy sets if the

secondary membership function f u u1, 0, 1x ( ) = ∈ [ ]′ i.e. a type-2
fuzzy set are defined as follows:

Definition 3.2. An interval type-2 fuzzy set Ã is characterized by
an interval type-2 membership function x u, 1Aμ ( ) =˜ where x X∈
and u 0, 1∈ [ ] i.e.

A x u x X u, , 1 , 0, 1 4˜ = {(( ) )| ∈ ∈ [ ]} ( )

Uncertainty of Ã, denoted FOU, is union of primary functions
i.e. FOU A Jx X x( ˜ ) = ⋃ ∈ . Upper/lower bounds of membership function

(UMF/LMF), denoted xAμ ( )˜ and xAμ ( )˜ , of Ã are two type-1 mem-
bership function and bounds of FOU.

3.2. Interval type-2 Fuzzy C-Means algorithm

In general, fuzzy membership functions in interval type-2
Fuzzy C-Means algorithm (Hwang and Rhee, 2007) are construc-
tion by computing the relative distance among the patterns and
cluster centroids. Hence, to define the interval of primary mem-
bership for a pattern, we define the lower and upper interval
memberships using two different values of m. In (6) and (7), m1

and m2 are different values of the fuzzifiers. The interval of a
primary membership is defined for a pattern, as the highest and
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lowest primary membership for a pattern. These values are upper
and lower membership grades of a pattern, respectively.

IT2FCM form an extension of the FCM by using two fuzziness
parameters m1 and m2 to build FOU, corresponding to upper and
lower values of fuzzy clustering. The use of these fuzzifiers results
in different objective functions to be minimized:
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Because each pattern comes with a membership interval as the

bounds: the upper u and the lower u, each centroid of cluster is
represented by the interval between vL and vR. Cluster centroids
are computed in the same way as in the standard FCM that is
Fig. 1. The masks describing the relationship space between the center pixel a
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in which M is the number of features of patterns.
Next, the defuzzification for IT2-FCM is completed: if u uik jk>

for j C1, ,= … and i j≠ then xk is assigned to cluster i.
4. Semi-supervising Interval Type-2 Fuzzy C-Means clustering
with spatial information

4.1. Spatial information

In fact, image information is stored as a set of numeric values,
image partitions are usually based on the degree of similarity
among these values to decide whether an object belongs to any
region in the image. Therefore, the key to determine a pixel be-
longing to certain area is based on the similarity of these colors,
which is calculated through a distance function in the color space
d x vik k i= ∥ − ∥ e.g. Euclidean distance between the pattern xk and
the centroid vi.
nd neighboring pixels: (a) 4-directional mask and (b) 8-directional mask.



Fig. 2. Diagram of IIT2FCM using spatial information.
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We use a mask of size n�n to position on the image, the center
pixel of mask is the considered pixel. The number of neighboring
pixels is determined corresponding to the selected type of mask
i.e. 8 pixels for the 8-directional mask or 4 pixels for the 4-direc-
tional mask, which are shown in Fig. 1. Fig. 1(a) shows the case of
4-directional mask in which if n¼2, there are 4 neighboring pix-
els; if n¼3, there are 12 neighboring pixels involving 4 neighbor-
ing pixels of the center pixel and their neighboring pixels ac-
cording to 4-directional mask. In the same way, Fig. 1(b) shows the
case of 8-directional mask in which if n¼2, there are 8 neighbor-
ing pixels; if n¼3, there are 24 neighboring pixels.

To determine the degree of influence of the neighboring pixels
for the center pixels, a spatial information measure SIik is defined
on the basis of the degree uki and the attraction distance dki:

SI
u d

d 13
ik

j
N

ij kj

j
N

kj

1
1

1
1

=
∑

∑ ( )

=
−

=
−

in which uij is the membership degree of the neighboring element
xj to the cluster i. The distance attraction dkj is the squared Eu-
clidean distance between elements x y,k k( ) and x y,j j( ). According
to the above expression, spatial information of each pixel comes
with the higher value if its color is the similar as color of neigh-
boring pixels and vice versa. We use the inverse distance dkj

1− be-
cause the closer neighbors xj of the center xk are the more influ-
ence they exert on the result and vice versa. Fig. 1 illustrates the
neighborhood configuration used in this work.

For the proposed fuzzy clustering a new distance is defined as
follows:

R x v e1 14ik k i
SI2 ikα= ∥ − ∥ ( − ) ( )−

where Sij is the spatial relationship information between elements
xk and clusters i, 0, 1α ∈ ⌈ ⌉ is the parameter that controls the re-
lative impact of neighboring pixels. If α¼0, Rik is the squared
Euclidean distance and the algorithm reduces to the original
standard FCM.

The idea behind the use of this spatial relationship information
can be outlined as follows: consider the local n n× mask in which
intensity differences between the center xk and the closest
neighboring pixels xk are large and the one has similar intensity as
the cluster centroid vi. If the neighborhood attraction, SIij, takes a
large value then the expression e1 SIikα( − )− will assume a small
value for all 0α ≠ . After each iteration of the algorithm, the central
element xk will be attracted to the cluster i. If the neighborhood
attraction SIik continuously takes on a large value until the algo-
rithm terminates then the central element xk will be assigned to
the cluster i.

4.2. Interval Type-2 Fuzzy C-Means clustering with spatial in-
formation (IIT2-FCM)

The main idea behind the IIT2-FCM algorithm is extended from
IT2-FCM by adding the spatial information to calculate distance
between clusters and pixels. The diagram of the proposed algo-
rithm is described in Fig. 2. The ensuing steps are described as
follows:

Initialization of matrix centroid V.
Secondly, the primary memberships uik and uik for a pattern are

corresponding to two fuzzifiers m1 and m2 whose values were
chosen arbitrarily.

Then the value of spatial information of each pixels SIik is
computed as the following formulas. Because each pattern comes
from the membership interval between u and u, with the upper
bound u and the lower bound u, SIij is an interval with two bounds
which are computed corresponding to the upper and lower
membership values:
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Then the value of the spatial information is defuzzified as

SI SI SI /2 17ik ik ik= ( + ) ( )

We compute the distance in the form
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R x v e1 18ik k i
SI2 ikα= ∥ − ∥ ( − ) ( )−

We define a set I i i C R1 , 0k ik= { | ≤ ≤ = } in which k N1, ,= …
and x vk i∥ − ∥ is the Euclidean distance between data sample k and
cluster i in M-dimensional space. In case of Ik = ∅, uik and uik are
determined in the same way by using (6) and (7) and replacing the
distance dij by the new distance Rij:
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Otherwise, if Ik ≠ ∅, uik and uik are determined in the form
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in which i C1, ,= … , k N1, ,= … .
Because each pattern is described by the membership interval

u and u, therefore each centroid of the cluster is represented by
the interval localized in between vL and vR. To determine vL and vR,
we apply the KM algorithm (Karnik and Mendel, 2001) as follows:

Algorithm 1. Determine vL (or vR).
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p 1: Calculate u u,ij ij with the use (19) and (20).

p 2: Set a value of m, m 1≥ ;

mpute v v v, ,j j jM1= ( … )′ ′ ′ with the aid of (8) and uij
u u

2
ij ij=

( + )
.

t N patterns for each of M features in ascending order.

p 3: Find index k such that x v xkl jl k l1≤ ≤′ ( + ) with k N1 ≤ ≤
and l M1, ,= … .

p 4: Calculate v″ as follows:
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p 5: If v v′ = ″ go to Step 6
lse

et v v′ = ″
ack to Step 3.

p 6: Set v vL = ′ (or v vR = ′).
fter obtaining vR, vL, form the centroids of the clusters using
(9).
or membership grades uik follow (10)–(12).
ext, the defuzzification is realized in the form: if u uik jk>
for j C1, ,= … and i j!= then xk is assigned to cluster i.
Algorithm 2. IIT2-FCM algorithm.
p 1: Initialization
. Selection of the values of the parameters m1, m2

m m1 ,1 2( < ), termination criterion value ε.

. Initialization of centroids V v v R i C, , 1, ,i i
M= [ ] ∈ = … .

p 2: Compute the fuzzy partition matrix u , u and update
centroids V:
. Calculate the value of spatial information SIik by using (15)–
(17).
. Calculate the upper/lower membership degree matrix uik,
uik using (19)–(22).

. Update the centroids of clusters V v v v, , ,j j j
c
j

1 2= [ … ] by

finding vL and vR (Algorithm 1) and (8).
. Calculate the membership degree matrix uik using (10)–
(12).
p 3: Verify if the termination condition is satisfied:

u uax ik
j

ik
j 1 ε| − | <( ) ( − ) go to step 4, otherwise go to step 2.

p 4:
. Assign a pattern to a cluster.
. Report results of clustering.
4.2

It is known that the computational complexity of FCM, k-Means
algorithm is O(nCM), and IT2-FCM is O n C M2 2( ) where M is the
dimensionality of the data points.

Meanwhile, each iteration of the IIT-2FCM algorithm has to
compute spatial relationship information of each pixel, the com-
putational complexity is O n2( ). Moreover, these calculations are
not affected by the number of data dimensions and the number of
clusters, thus, the computational complexity of IIT2-FCM as well as
the complexity of the IT2-FCM algorithm is O n C M2 2( ).

4.3. Semi-supervising Interval Type-2 Fuzzy C-Means clustering with
spatial information

Normally, fuzzy clustering algorithms determine the prototype
of clusters depending on the structure of data samples i.e. in-
dividual sample could form a different set of prototypes of clusters.
In fact, a family of problems always leads to the same prototypes
with fixed centroids for all datasets. For example, prototype of
clusters in classification problem of remote sensing images is not
changed for all data samples. Hence, conventional fuzzy clustering
algorithms could produce incorrect results, especially when en-
countering dataset in which the large differences appear in sizes of
clusters. Fig. 3 visualizes the example of satellite images with the
large differences between clusters, in which almost area of the
region is water cluster, the areas of fields, sparse tree and planted
forests, low woods are medium, whereas the areas of rocks, bare
soil and jungles are very small. Because of the physical properties
of electromagnetic spectrum when reflecting the land cover types,
the centroid of clusters is fixed for all types of land covers.

Consider a classification problem of multi-spectral images with
k-bands with dataset involving a set of pixels P p p, , N1= { … }, N is
the number of pixels, p p p i N, , , 1, ,i i ik1= 〈 … 〉 = … are component
vectors corresponding to k-bands of images. Dataset P is parti-
tioned into C clusters based on the similarity of component vec-
tors. As mentioned above, the prototypes of clusters are fixed for
all datasets of satellite images, provided that V v v, , C1= 〈 … 〉⁎ ⁎ ⁎ are



Fig. 3. The example of satellite images with the large differences between clusters.

Fig. 4. Diagram of Semi-supervising Interval Type-2 Fuzzy clustering.
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set of centroids of clusters. The set Vn could be manually de-
termined by taking samples coming from survey datasets in the
following way:

For each cluster, we take a set of pixels P k p p, , m1( ) = { … }
which exactly belong to the considered cluster. For example of
water cluster, we take a set of pixels in the image that belong to
water regions. The centroid of the considered cluster is the mean
of component vectors i.e.

v
p

m 25k
j
m

j1=
∑

( )
⁎ =

After producing Vn, the idea behind this approach is to use the
pre-defined collection of centroids Vn to adjust centroid of clusters
to move closer to Vn by extending the IIT2-FCM with spatial in-
formation, called Semi-supervising Interval Type-2 Fuzzy C-Means
with spatial information (SIIT2-FCM). In fact, Vn is used to adjust
the centroids vk so that the closer the computing centroid of
clusters is Vn, the best data cluster i.e. the distance from the cen-
troids and Vn appears in the objective function to minimize. Hence,
Vn is as one of parameters to influence to the process of mini-
mizing the objective function i.e. adjusting the centroids to the
expected positions.

The diagram is described in Fig. 4.
Let D v vv i ii = ∥ − ∥⁎ be a distance between the computed clus-

ters and the sampled cluster. We define a new objective function:

J U v u R D,
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ij1∑ == . In case of interval type-2 FCM, we have two
objective functions as follows:
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To minimize the objective function, the method of Lagrange
multipliers is used to find the following solution:
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Because the algorithm uses two fuzzifiers m1 and m2 to con-
struct an interval of membership grades, so we construct the
membership interval as follows:
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The primary membership interval uik[ , uik ] is for a pattern with
two fuzzifiers m1 and m2, update the centroid V v v v, , ,j j j

c
j

1 2= [ … ]
by using algorithm for finding vL and vR (Algorithm 1).

Algorithm 3. The SIIT2-FCM algorithm.
Ste
1.1

1.2

Ste
2.1

2.2

Table 1
The electromagnetic spectrum of bands of the Landsat7 imagery.

Band no. Waveband Wavelength (nm)

1 Blue 450–520
2 Green 520–600
3 Red 630–690
4 Very near-infrared 760–900
5 Near-infrared 1550–1750
7 Shortwave infrared 2080–2350
p 1: Take C individual samples
. One after the other cluster, take C individual samples from
multi-spectral satellite images are characterized for C
clusters.

. Calculating centroid V v v R i C, , 1, ,i i
M= [ ] ∈ = …⁎ ⁎ ⁎ of sam-

ples by averaging points present in each sample using (25).
p 2: Initialization
. Choose values of the fuzzifiers m1, m2 m m1 ,1 2( < ), termi-

nation criterion value ε.
. Initialization centroid V v v R,i i

n= [ ] ∈ .
p 3: Compute the membership matrix U , U and update
centroid V:
. Calculate the value of spatial information SIik by using (15)–
(17).
. Calculate the upper/lower membership degree matrix uik,
uik using (32) and (33).

. Update the centroids of clusters V v v v, , ,j j j
c
j

1 2= [ … ] by

finding vL and vR (Algorithm 1) and (8).
. Calculate the membership degree matrix uik by using (10)–
(12).
p 4: Verify if the termination condition is satisfied:

u uax ik
j

ik
j 1 ε| − | <( ) ( − ) go to step 4, otherwise go to step 2.

p 5:
. Assign a pattern to a cluster.
. Report results of clustering.
5.2

5. Land-cover classification and change detection

5.1. Land-cover classification

In the ensuing experiments, land cover classification is im-
plemented for Landsat7 multi-spectral satellite images with re-
solution of 30 m �30 m. Because, land covers such as forestry,
agriculture, bare land, and water surface usually do not clearly
define boundaries, an individual pixel can comprise information
about partial membership e.g. a rate of 0.30 of soil, rate of 0.25 of
forest and rate of 0.45 of water. In this case, the pixel is assigned as
water cover, but its rate of 0.55 is no water and applying a Boolean
(yes–no) classification is neither suitable nor practically convin-
cing. Therefore, fuzzy clustering, in which a pixel can be assigned
into many layers according to the membership grades, is more
suitable than Boolean clustering (Bezdek and Pal, 1998).

Multi-spectral images are one of the types which acquired from
remote sensing (RS) radiometers. By dividing the spectrum into
many bands, multi-spectral is the opposite of panchromatic, which
only records the total intensity of radiation falling on each pixel.
Usually, satellites have three or more radiometers. Each one ac-
quires one digital image (in remote sensing, called a ‘scene’) in a
small band of visible spectra, ranging from 400 nm to 700 nm,
called red–green–blue (RGB) section, and going to infrared wave-
lengths of 700 nm to 1500 nm or more, classified as near infrared
(NIR), middle infrared (MIR) and far infrared (FIR or thermal). In
the case of Landsat7 image, seven scenes combine into a seven-
bands multi-spectral imagery.

Type-2 fuzzy clustering algorithms exhibit the ability of
handling the uncertainty or ambitious data that appears from in-
put data of images. The IIT2-FCM or SIIT2-FCM are applied to
classify land covers from Landsat7 imagery consisting of 7 bands
numbered from 1 to 7, in which wavelength and waveband are
described in Table 1. In order to increase precision of classification,
we used 6 bands of Landsat7 images. The sixth band of Landsat7
images is not used because of being the thermal infrared band



Fig. 5. Study data of Hanoi: (a) Band 1, (b) band 2, (c) band 3, (d) band 4, (e) band 5, and (f) band 7.
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which is mainly used to calculate the surface temperature of the
surface. Let X x x, , N1= { … }, in which N is the number of pixels,

x x x x x xx , , , , ,i i i i i i i1 2 3 4 5 7= ( ) is the grey level vector of image bands
i.e. xi6 corresponding to the 6th band is not used. The clustering
algorithms are used to classify X into 6 sub-sets (classes) corre-
sponding to the 6 types of land covers as follows:
Class 1: Rivers,
ponds, lakes.
Class 2: Rocks, bare soil.
Class 3: Fields,
sparse tree.
Class 4: Planted forests,
low woods.
Class 5: Perennial
tree crops.
Class 6: Jungles.
The study dataset of the Landsat7 imagery concerns Hanoi re-

gion, Vietnam (21 5423. 11 N° ′ ″ , (105 03 06. 47 E° ′ ″ to 20 55 14. 25 N° ′ ″ ,

106 02 58 . 57 E° ′ ′ ″ ) with area of 3774.8736 km2. The size of each
image band is 2048�2048 pixels and the resolution is
30 m�30 m per pixel. Hence, the value of N is 4,194,304 pixels.
Fig. 5 shows 6 bands of Hanoi data from band 1 to band 7, ex-
cluding band 6.

The experimental results are shown in Fig. 6 involving 6 images
in which Fig. 6(a) is NDVI (Normalized Difference Vegetation In-
dex) image generated as follows:

NVDI
NIR Red
NIR Red 34

= −
+ ( )

where Red and NIR are 3 and 4 bands, respectively. Fig. 6(b), (c),
(d), (e) and (f) are land cover classification of SIIT2-FCM, IIT2-FCM,
IT2-FCM, FCM, and k-Means algorithms, respectively. Table 2
shows the comparison of classification results between SIIT2-FCM,
IIT2-FCM, IT2-FCM, FCM and k-Means and survey data of the
Vietnamese Center of Remote Sensing Technology (VCRST) which
is actual data of land covers collected by land survey of individual
class. In Table 2, the results of algorithms are summarized
according to area of individual class and difference between the
classified result and VCRST of individual class. The results show
that SIIT2-FCM and IIT2-FCM obtain the better clusters for land
covers with the mean and standard deviation being lower than
previous algorithms. SIIT2FCM obtained classification better than
IIT2FCM in which classification of classes 1, 2, 3, 4 and 6 are the
best results in comparison with data of VCRST, class 5 is similar to
IIT2FCM, especially, the mean and the standard deviation obtained
from SIIT2FCM are significantly smaller than IIT2FCM. The percen-
tage of difference of individual class is computed:

P
area area

area
.

35
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0
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where areai and areai0 are the area of the ith class according to the
classified results and data of VCRST, respectively.

Comparing the experimental results with the results of VCRST
in Table 3, the largest difference of k-Means is 105.09%, FCM is
85.62% and IT2-FCM algorithm is 35.26%. Meanwhile, the results of
SIIT2-FCM and IIT2-FCM algorithms do not exceed 3.05% and
14.38%, respectively. Fig. 6 also shows that SIIT2-FCM classifier
gives clusters better. Lower accuracy of classification for class
1 may be seen in Fig. 6(c) (FCM) and Fig. 6(d) (k-Means), especially
in the river region (localized at the center of the image).



Fig. 6. Result of land cover classification. (a) NDVI, (b) SIIT2-FCM, (c) IIT2-FCM, (d) IT2-FCM, (e) FCM, and (f) K-Means.

Table 2
Results of land cover classification (km2).

Class VCRST SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 315.96 307.58 8.42 282.67 33.29 204.60 111.40 405.84 89.88 561.29 245.29
Class 2 276.40 284.81 8.42 316.15 39.75 326.94 50.55 513.04 236.65 566.87 290.48
Class 3 685.56 679.52 6.04 695.37 9.82 743.39 57.80 860.67 175.12 800.88 115.32
Class 4 720.77 726.78 6.00 766.26 45.49 806.77 85.99 601.38 119.40 840.48 119.70
Class 5 944.32 965.39 21.06 923.90 20.42 985.39 41.07 839.46 104.87 690.01 254.31
Class 6 831.91 810.81 21.10 790.53 41.37 707.83 124.08 554.49 277.42 315.35 516.55
Mean 11.84 31.69 78.48 167.22 256.94
Std. Dev. 7.24 13.84 34.14 76.40 146.68

Table 3
Difference (in %) among classes.

Class SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

1 2.66 10.54 35.26 28.45 77.63
2 3.05 14.38 18.29 85.62 105.09
3 0.88 1.43 8.43 25.54 16.82
4 0.83 6.31 11.93 16.57 16.61
5 2.23 2.16 4.35 11.10 26.93
6 2.54 4.97 14.92 33.35 62.09
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To assess the performance of the algorithms on the experimental
images, we analyzed the results on the basis of several validity in-
dexes. We considered several validity indexes such as the Bezdeks
partition coefficient (PC-I) (Bezdek and Pal, 1998), Dunn's separation
index (DI), the Davies–Bouldins index (DB-I), the Separation index (S-
I), Xie and Benis index (XB-I), and Classification Entropy index (CE-I)
(Wang and Zhang, 2007). The validity indexes are reported in Table 4.

Note that the validity indexes are proposed to evaluate the
quality of clustering. Algorithms producing better results come
with smaller values of T-I, DB-I, XB-I, S-I, CE-I and the larger value
of PC-I. The results summarized in Table 4 show that IIT2-FCM or
SIIT2-FCM exhibit produce better quality clustering than those
obtained when running other commonly encountered algorithms
such as IT2FCM, FCM and k-Means, in particular. Visibly, the in-
dexes obtained from SIIT2-FCM are significantly better than those
for the IIT2-FCM.
5.2. Land-cover change detection

The idea for change detection using clustering algorithms is
visualized in Fig. 7. In this model, satellite image data at different



Table 4
Validity indexes for the Landsat7 images of Hanoi region.

Validity index k-Means FCM IT2-FCM IIT2-FCM SIIT2-FCM

DB-I 4.531 3.4983 2.3981 1.1246 1.0092
XB-I 1.761 1.1784 0.6823 0.1382 0.0986
S-I 0.9821 0.6287 0.3834 0.0917 0.0148
CE-I 1.323 0.9869 0.5872 0.1972 0.1317
PC-I 0.6543 0.6982 0.7282 0.8628 0.8893
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temporal points with 6 bands are input data for the fuzzy classi-
fication algorithm. The classification results are compared with
individual other to detect the change of land covers. This section
presents two experiments of land cover change detection using
SIIT2-FCM at four temporal points.

Study case: Data 1 from Landsat7 satellite images of Hanoi,

Vietnam (20 29 27. 81 N° ′ ″ , 106 32 21. 65 E° ′ ″ to 21 27 15. 41 N° ′ ″ ,

104 35 23. 54 E° ′ ″ ) with area of 3161.304 km2 at four temporal points
in 1995, 200, 2007, and 2009. The resolution of imagery is
30 m�30 m and the total number of pixels is 3,512,560.

The results of change detection are shown in Fig. 8, in which
(a), (b), (c) and (d) are land cover classification at temporal point in
1995, 2000, 2007 and 2009, respectively. Results of the proposed
methods are compared with the survey data of the Hanoi De-
partment of Natural Resources and Environment (HDNRE) which
are actual data collected by land survey. Fig. 9 shows the change
detection of individual class according to temporal points in which
Fig. 9(a) is plotted from DNREH data and Fig. 9(b) is obtained from
SIIT2-FCM. Tables 5, 6, 7 and 8 show classification results of land
covers from multi-spectral satellite imagery of Hanoi at temporal
points in 1995, 2000, 2007 and 2009, respectively. The difference
between the classified area (in km2) and DNREH data of individual
class, mean and standard deviation obtained from SIIT2-FCM and
IIT2-FCM are significantly better than IT2-FCM, FCM and k-Means
for all of datasets. For all classes classified from data temporal
points, SIIT2-FCM is normally better than IIT2-FCM e.g. in results
of 1995-dataset, SIIT2-FCM is better for the classes 1, 2, 3, and 6; in
results of 2000-dataset, it is better for the classes 1, 4, and 5; it is
Fig. 7. Model of monitorin
better for the classes 1, 2, 5 and 6 in results of 2007-dataset and
the classes 1, 4, and 6 in results of 2009-dataset. Especially, the
mean and the standard deviation of results obtained from SIIT2-
FCM are much better than the ones obtained from IIT2FCM e.g. the
standard deviation of 14.91 (1995-dataset), 8.96 (2000-dataset),
15.70 (2007-dataset) and 7.81 (2009-dataset) (SIIT2FCM) are in
comparison with 25.91 (1995-dataset), 18.64 (2000-dataset), 41.20
(2007-dataset) and 18.16 (2009-dataset) (IIT2FCM).

In the same way as in the above section, validity indexes con-
sisting of T-I, DB-I, XB-I, S-I, CE-I and PC-I are estimated to evaluate
the quality of clustering. Fig. 10 is plotted to compare between
different indexes at individual temporal point, in which indexes
obtained from SIIT2FCM and IIT2FCM are better than IT2FCM, FCM
and k-Means i.e. SIIT2FCM and IIT2FCM led to the better quality of
clusters.

Case study: Data 2 from Landsat7 satellite images of Bao Loc city,
Lam Dong province, Vietnam (11 18 29. 13 N° ′ ″ , 108 18 10. 57 E° ′ ″ to

11 58 29. 63 N° ′ ″ , 107 01 44. 93 E° ′ ″ ) with the area of 1707.31 km2 at
four temporal points in 1990, 2000, 2010 and 2014. The resolution
of imagery is 30 m�30 m and total of pixels is 1,897,008.

The results of land cover classification for change detection are
shown in Fig. 11 in which 11(a), (b), (c) and (d) are land cover
classification at temporal points in 1990, 2000, 2010 and 2014, re-
spectively. The captured time of imagery deals with the dry season
in South Vietnam, so satellite imagery is not affected by clouds and
fog. The results of the proposed algorithms are compared with the
survey data of the Lam Dong Department of Natural Resources and
Environment (LDNRE) which are actual data of land covers collected
by land survey. Fig. 12 shows change detection of individual class
according to temporal points in which Fig. 12(a) is from LDNRE data
and Fig. 12(b) is from SIIT2-FCM. Tables 9, 10, 11 and 12 show
classification results of Bao Loc region at temporal points in 1990,
2000, 2010 and 2014, respectively. The difference of individual class,
mean and standard deviation of SIIT2-FCM and IIT2-FCM algorithms
is much better than IT2-FCM, FCM and k-Means for all of datasets.
Also, SIIT2-FCM is normally better than IIT2-FCM e.g. in results of
1990-dataset, SIIT2-FCM is better for the classes of 1, 5, and 6; in
results of 2000-dataset, it is better for the classes 1, 2, 3, 4 and 6; it
g land cover changes.



Fig. 8. Change detection of Hanoi region: (a) 1995, (b) 2000, (c) 2007, and (d) 2009.

Fig. 9. Change detection of Hanoi region with individual classes. Left: survey data of HDNRE and right: classification by SIIT2FCM.
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is better for the classes 1, 4, 5 and 6 in results of 2010-dataset and all
classes in results of 2014-dataset. Especially, the mean and the
standard deviation obtained from SIIT2-FCM are much better than
IIT2FCM e.g. the standard deviation of 9.56 (1990-dataset), 10.90
(2000-dataset), 9.58 (2010-dataset) and 5.13 (2014-dataset)
(SIIT2FCM) are in comparison with 13.64 (1990-dataset), 25.35
(2000-dataset), 14.52 (2010-dataset) and 11.10 (2014-dataset)
(IIT2FCM). Fig. 13 plots various validity indexes at different temporal
points.

In summary, the experiments from two study data pointed out
that the boundary of water and soil covers is usually clarified,
while the vegetation covers (classes 3, 4, 5, 6) are often confused
between them. With satellite image resolution of 30 m�30 m, the
differences of classification results can be acceptable in assessment



Table 5
Land cover classification of the Hanoi region (1995) (km2).

Class HDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 159.84 163.74 3.89 164.46 4.62 183.36 23.51 226.47 66.63 289.47 129.62
Class 2 527.04 501.04 26.00 491.13 35.91 439.93 87.11 366.21 160.83 321.21 205.83
Class 3 745.27 728.33 16.94 762.45 17.18 818.25 72.97 890.23 144.95 935.25 189.97
Class 4 801.58 750.49 51.09 750.75 50.82 784.68 16.89 913.40 111.83 994.38 192.81
Class 5 608.60 658.02 49.41 603.85 4.76 532.02 76.58 496.02 112.58 406.02 202.58
Class 6 318.96 359.69 40.73 388.66 69.69 403.07 84.10 268.97 50.00 214.97 104.00
Mean 36.84 35.67 67.53 116.04 179.04
Std. Dev. 14.91 25.91 28.87 42.52 42.46

Table 6
Land cover classification of the Hanoi region (2000) (km2).

Class HDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 189.86 189.89 0.03 188.74 1.12 226.47 36.61 289.48 99.62 335.81 145.95
Class 2 598.02 617.16 19.14 616.35 18.32 573.21 24.81 528.21 69.81 443.57 154.45
Class 3 731.18 692.70 38.47 708.45 22.73 728.23 2.95 746.25 15.07 756.16 24.99
Class 4 692.48 717.73 25.25 739.68 47.21 814.40 121.93 895.39 202.91 1031.70 339.22
Class 5 596.84 556.74 40.10 541.02 55.82 523.02 73.82 469.02 127.82 381.45 215.39
Class 6 352.93 387.08 34.15 367.07 14.14 295.97 56.96 232.95 119.97 212.60 140.32
Mean 31.42 31.64 56.09 107.12 174.87
Std. Dev. 8.96 18.64 45.97 70.06 114.81

Table 7
Land cover classification of the Hanoi region (2007) (km2).

Class HDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 161.87 160.05 1.82 163.78 1.90 185.97 24.10 230.25 68.38 245.82 83.94
Class 2 485.03 483.88 1.16 471.64 13.39 420.88 64.16 368.48 116.55 272.57 212.46
Class 3 761.18 727.38 33.80 747.44 13.73 872.28 111.10 918.02 156.84 1017.17 255.99
Class 4 748.48 711.92 36.56 724.98 23.50 766.10 17.62 933.86 185.38 995.71 247.23
Class 5 632.84 666.93 34.09 572.40 60.44 513.93 118.91 409.48 223.36 381.46 251.39
Class 6 371.93 411.17 39.25 481.09 109.16 402.17 30.25 301.23 70.69 248.60 123.32
Mean 28.97 44.05 68.41 150.57 218.08
Std. Dev. 15.70 41.20 45.90 59.35 55.69

Table 8
Land cover classification of the Hanoi region (2009) (km2).

Class HDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 128.24 130.92 2.69 141.58 13.34 163.77 35.54 212.25 84.01 246.71 118.48
Class 2 494.60 508.11 13.52 499.62 5.03 462.63 31.96 449.48 45.12 396.77 97.83
Class 3 743.79 708.68 35.11 723.16 20.63 837.44 93.65 891.01 147.23 945.16 201.38
Class 4 878.33 899.03 20.71 833.46 44.87 787.98 90.35 843.85 34.47 1013.70 135.37
Class 5 573.86 595.47 21.61 581.40 7.53 482.40 91.47 373.48 200.38 273.45 300.41
Class 6 342.50 319.09 23.41 382.09 39.59 427.09 84.59 391.23 48.73 285.50 56.99
Mean 22.87 23.53 78.40 95.19 158.40
Std. Dev. 7.81 18.16 26.18 74.37 95.52

L.T. Ngo et al. / Computers & Geosciences 83 (2015) 1–16 13
of land cover on a large area quickly and reduce costs compared to
other ways of change detection. This result not only makes pre-
dictions about the land cover fluctuations but could also help
support planning urban, natural resources management, etc.

6. Conclusions

In this study, we have presented two fuzzy clustering algo-
rithms based on interval type-2 Fuzzy C-Means. The first one is
based on a combination of IT2-FCM when using some spatial re-
lationships between the pixels and their neighbors. The second
one uses the set of pre-determined centroids. The advantages of
the proposed algorithms are pointed out in the context of two
applications to land cover classification and the change detection.
Experiments are completed for two datasets of Hanoi and Bao Loc
(Vietnam) produced via Landsat7 multi-spectral imagery. We
showed the efficiency of the approach in monitoring the changes
of land cover and the change of environment. The developed



Fig. 10. Validity indexes of Hanoi's land cover classification at temporal points: top-left: 1995, top-right: 2000, bottom-left: 2007 and bottom-right: 2009.

Fig. 11. Change detection of Bao Loc with individual class.

Fig. 12. Change detection of Bao Loc with individual classes. Top: survey data of LDNRE and bottom: classification by SIIT2FCM.

Table 9
Land cover classification of Bao Loc (1990) (km2).

Class LDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 118.64 116.97 1.66 114.72 3.91 110.22 8.41 101.22 17.41 90.42 28.21
Class 2 187.49 196.31 8.82 193.79 6.30 187.49 0.00 178.49 9.00 133.49 54.00
Class 3 271.32 244.05 27.27 253.32 18.00 289.32 18.00 316.32 45.00 343.32 72.00
Class 4 335.14 359.16 24.02 324.06 11.08 333.06 2.08 338.46 3.32 360.06 24.92
Class 5 426.20 410.12 16.08 467.90 41.70 482.30 56.10 536.30 110.10 599.30 173.10
Class 6 368.51 380.69 12.18 353.51 15.00 304.91 63.60 236.51 132.00 180.71 187.80
Mean 15.00 16.00 24.70 52.81 90.01
Std. Dev. 9.56 13.64 28.04 55.20 72.31
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Table 10
Land cover classification of Bao Loc (2000) (km2).

Class LDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 86.889 85.95 0.94 87.93 1.04 88.72 1.83 89.52 2.63 115.62 28.73
Class 2 157.129 184.93 27.81 226.15 69.03 290.16 133.03 349.49 192.36 385.49 228.36
Class 3 286.213 283.74 2.48 270.23 15.98 261.23 24.98 226.32 59.89 181.32 104.89
Class 4 350.47 326.79 23.68 316.89 33.58 298.89 51.58 270.07 80.40 252.07 98.40
Class 5 443.181 454.40 11.22 440.90 2.28 468.80 25.62 500.30 57.12 518.30 75.12
Class 6 383.437 371.51 11.93 365.21 18.23 299.51 83.93 271.61 111.83 254.51 128.93
Mean 13.01 23.35 53.50 84.04 110.74
Std. Dev. 10.90 25.35 47.99 63.96 66.85

Table 11
Land cover classification of Bao Loc (2010) (km2).

Class LDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 66.59 68.68 2.09 72.85 6.26 79.81 13.22 89.88 23.29 116.52 49.93
Class 2 257.34 265.42 8.08 252.59 4.75 227.07 30.27 196.49 60.85 177.59 79.75
Class 3 248.73 272.86 24.13 261.94 13.21 234.23 14.50 225.96 22.77 199.32 49.41
Class 4 279.36 279.17 0.19 280.75 1.39 262.89 16.48 225.06 54.30 180.06 99.30
Class 5 479.25 460.05 19.20 439.55 39.70 459.80 19.45 509.30 30.05 536.30 57.05
Class 6 376.03 361.12 14.91 399.62 23.59 443.51 67.48 460.61 84.58 497.51 121.48
Mean 11.43 14.82 26.90 45.97 76.15
Std. Dev. 9.58 14.52 20.80 24.85 29.57

Table 12
Land cover classification of Bao Loc (2014) (km2).

Class LDNRE SIIT2-FCM IIT2-FCM IT2-FCM FCM k-Means

Area Area Diff. Area Diff. Area Diff. Area Diff. Area Diff.

Class 1 35.71 36.57 0.86 36.75 1.04 43.05 7.34 46.51 10.80 67.69 31.99
Class 2 166.46 182.80 16.34 189.81 23.35 214.11 47.65 183.75 17.29 140.32 26.14
Class 3 322.61 315.60 7.01 344.40 21.79 317.40 5.21 268.70 53.91 209.95 112.65
Class 4 461.61 466.71 5.11 430.71 30.89 421.71 39.89 493.88 32.27 567.17 105.57
Class 5 396.32 390.02 6.30 405.32 9.00 426.02 29.70 488.86 92.54 541.04 144.72
Class 6 324.61 315.61 8.99 300.32 24.29 285.02 39.59 225.62 98.99 181.12 143.48
Mean 7.44 18.40 28.23 50.97 94.09
Std. Dev. 5.13 11.10 17.95 37.79 52.83

Fig. 13. The validity indexes of algorithms on Bao Loc data. Top-left: 1990, top-right: 2000, bottom-left: 2010, and bottom-right: 2014.
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clustering methods may be applied to other applications including
planning urban and forestry management, among others.

There are several further research directions including the use
and refinement of the proposed clustering to processing hyper-
spectral satellite images with application to environmental clas-
sification and assessment of land surface temperature changes.
The issues of speed-ups of the proposed methods based on GPU
platforms form another important research direction.
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