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Abstract Coordinate interleaved orthogonal designs (CIOD) (Khan andRajan in IEEETrans
Inform Theory 52(5):2062–2091, 2006) can offer desirable properties, such as full rate, full
diversity and single-symbol maximum likelihood decoding for two, three and four trans-
mit antennas under quasi-static fading channels. When fading is time-selective, zero-forcing
decoder can applied to achieve good performance while still maintain low decoding com-
plexity. In this paper, theoretical analysis of symbol error rate performance for CIOD codes
over time-selective fading channels with a zero-forcing linear receiver is derived. Firstly, a
closed-form expression (i.e., not in integral form) is derived for the average symbol pair-wise
error probability (SPEP) in time-selective frequency-nonselective independent identically
distributed (i.i.d.) Rayleigh fading channels. Then, the SPEP is used to derive a tight upper
bound (UB) for the symbol-error rate (SER) of CIOD codes. Simulation results indicate
that our theoretical UB often coincides (within 0.05 dB) with the true SER obtained via
Monte-Carlo simulation. The UB can thus be used to accurately predict and optimize the
performance of CIOD codes over time-selective fading channels.

Keywords CIOD · ZF decoding · Performance analysis · Time-selective fading

1 Introduction

Space-Time Coding is an effective approach to achieve transmit diversity in multiple-input
multiple-output (MIMO) systems [1]. Orthogonal space-time block codes (OSTBCs) [2,
3] attain full diversity and optimum performance with single-symbol maximum likelihood
decoder (SSD), but they suffer a rate loss when there have more than two transmit antennas.
The rate of OSTBCs is 1 spcu (symbol per channel use) for two transmit antennas and
3/4 for three and four transmit antennas. Quasi-orthogonal SBTCs (QOSTBCs) [4–6] and
QOSTBCs with constellation rotation (CR-QOSTBCs) [7,8] have a rate of one for three
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and four transmit antennas, but they require a high complexity pair-wise symbol maximum
likelihood decoder (PSD). To eliminate the drawback of QOSTBCs and CR-QOSTBCs,
Khan et al. [9,10] proposed CIOD codes which achieve full rate and full diversity for three
and four transmit antennas with SSD decoder.

Decoding and performance analysis of CIOD codes were performed in many previous
researches [11,12]. However, these researches only focus on quasi-static fading channels,
assuming that the channel is static within codeword duration and varies independently from
one codeword to another; but this assumption is not always true in practice. In fact, the time-
selective fading channel model exists due to Doppler shifts and carrier frequency offsets. For
example, the 3G European cellular standard is required to operate on trains moving up to
500 km/h, which can induce Doppler shifts of up to 800 Hz for a carrier frequency of 2 GHz
[13]. In such a communications scenario, the channel may vary significantly from symbol to
symbol. In the time-selective channel model, the SSD decoding of CIOD codes previously
proposed in [10] and [11] no longer offers optimum performance, which can lead to error
floor at high SNR values. To avoid exhibiting error floors, Lee et al. [13] propose a simple
ZF linear decoder where inter-symbol interference (ISI) was completely removed. However,
what this research fails to accomplish is deriving the closed-form analytical expressions for
error performance.

This paper provides theoretical analysis of symbol-error rate (SER) performance of CIOD
codes when a ZF decoder is used. We firstly derive the closed-form analytical expression
(i.e., not in integral form) for the symbol pair-wise error probability (SPEP). We then use the
SPEP to derive a union bound (UB) on SER for CIOD codes. Extensive simulation results
show that the UB is within 0.05 dB from the simulated SER when SER < 10−2. Moreover,
our theoretical performance analysis is general and can be applied for an arbitrary input
signal constellation and an arbitrary number of receiver antennas. The UB can thus be used
to accurately predict and optimize the performance of CIOD codes over time-selective fading
channels, where quasi-static flat fading channel is considered as a special case.

The rest of this paper is organized as follows. The channel model and ZF decoding are
presented in Sect. 2. Performance analysis and union bound on SER are presented in Sect. 3.
Simulation results are given in Sect. 4. Section 5 concludes the paper.

We use the following notations throughout this letter. The superscripts (·)T denotes trans-
pose operations. Pr(·) denotes the probability. E[·] is reserved for expectation with respect
to all the random variables within the braces. x ∼ CN (m, σ 2) stands for circular symmetric
complex Gaussian variable x with mean m and variance σ 2. j = √−1.

2 Channel Model and ZF Decoding

2.1 Channel Model

Consider an uncorrelated MIMO system with NT transmit antennas (Tx) and NR received
antennas (Rx). A STBC encodes an input symbol vector of length K , s = [s1 s2. . .sK ]T into
an L × NR matrix S, where L is the number of time slots. Symbol rate of the STBC S is
K/L . If K = L , then S is called full-rate code. The received signal rm(t) on mth receive
antenna at t th time slot is given by

rm(t) =
NT∑

i=1

him(t)zti + nm(t) (1)
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where him(t) and nm(t) denote path gain from i th transmit antenna tomth receive antenna and
noise on mth receive antenna at t th time slot, respectively. zti denotes transmitted signal on
i th transmit antenna at t th time slot. In this paper, we make the following assumptions about
the channelmodel (1): nm(t) is a identically distributed zero-mean circularly symmetric com-

plex Gaussian random variable satisfying E[nm(t1)n∗
m(t2)] =

{
N0; if t1 = t2 and k = m
0; othewise

;

him(t), i = 1, . . ., NT , m = 1, . . ., NR is i.d.d random variables with zero-mean and unit-
variance satisfying E

[|him(t)|2] = 1; sufficient antenna spacing, so that E
[
him(·)h∗

kn(·)
] =

0 if i �= k and/orm �= n; relaxing this constraintwouldbepossible, but itwould complicate the
analysis and itwould detract fromourmain aimof studying the impact of time variations; tem-
porally symmetricRayleigh fading, so that the correlationρ(m) between him(t) and hin(t+n)

is the same for ∀i = 1, . . . , NT , ∀m = 1, . . . , NR namely E
[
him(t)h∗

im (t + n)
] =

ρ(n)∀i,m; perfect knowledge of him(t)(i = 1, .., NT , m = 1, . . ., NR , and t = 1, .., L) at
the receiver. According to Jakes’ model [14], we have ρ(n) = J0(2πn fdTs) where J0(·) is
the zero-order Bessel function of the first kind, fd is the maximumDoppler shift and Ts is the
period of each symbol. If fdTs = 0 we obtain quasi-static fading channel model; otherwise
we obtain time-selective fading channel model.

In [9,10], the codeword matrix of full rate CIODs S2,S3,S4 for NT = 2, 3, 4 given as
following:

S2 =
[
z1 0
0 z2

]
;S3 =

⎡

⎢⎢⎣

z1 z2 0
−z∗2 z∗1 0
0 0 z3
0 0 −z∗4

⎤

⎥⎥⎦ ;S4 =

⎡

⎢⎢⎣

z1 z2 0 0
−z∗2 z∗1 0 0
0 0 z3 z4
0 0 −z∗4 z∗3

⎤

⎥⎥⎦ (2)

where the transmitted complex symbols zi are generated by coordinate interleaving as zi =
si I + js(i+K/2)Q when i = 1, . . ., K/2, and zi = si I + js(i−K/2)Q when i = 1+K/2, . . ., K .

We consider CIOD code with NT = 4 given in (2). After some straightforward manipula-
tions of (1), the input-output relationship of the CIOD code can be expressed in vector/matrix
form as

r = Hz + n (3)

where r is the 4NR × 1 received signal vector, z = (z1, z2, z3, z4)T is the 4× 1 transmitted
signal vector, n is the 4NR × 1 AWGN noise vector, and H = [

H1 H2 · · · HNR

]T
is the

effective channel matrix whose submatrix Hm, m = 1, ..., NR for CIOD code with NT = 4
is given by

Hm(S4) =

⎡

⎢⎢⎣

h1m(1) h2m(1) 0 0
h∗
2m(2) −h∗

1m(2) 0 0
0 0 h3m(3) h4m(3)
0 0 h∗

4m(4) −h∗
3m(4)

⎤

⎥⎥⎦ (4)

where the index inside (·) is the discrete time index with respect to the symbol time duration
in each codeword period.

2.2 Zero-Forcing (ZF) Decoding

Based on the decoding method presented in [15,16], which is originally for the Alamouti
STBC [2] with two transmit antennas over time-selective fading channels, Lee et al. [13]
propose an efficient ZF decoding method for channel model (3) is introduced as follows.
First, a simple matrix transformation for orthogonal combining is introduced as
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Ā =
[−a22 a12
a21 −a11

]
for A =

[
a11 a12
a21 a22

]
(5)

Then, by combining r in (3) by H̄ = [
H̄1, H̄2, . . . , H̄NR

]
with the submatrices

H̄m =

⎡

⎢⎢⎣

h∗
1m(2) h2m(1) 0 0

h∗
2m(2) −h1m(1) 0 0

0 0 h∗
3m(4) h4m(3)

0 0 h∗
4m(4) −h3m(3)

⎤

⎥⎥⎦ ;m = 1, 2, ..., NR (6)

obtain

H̄r︸︷︷︸
ȳ

= H̄H︸︷︷︸
Ḡ

s + H̄n︸︷︷︸
n̄

(7)

⇒

⎡

⎢⎢⎣

ȳ(1)
ȳ(2)
ȳ(3)
ȳ(4)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

g1 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 g2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

z1
z2
z3
z4

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

n̄(1)
n̄(2)
n̄(3)
n̄(4)

⎤

⎥⎥⎦ (8)

where

g1 =
∑NR

k=1

(
h∗
1k(2)h1k(1) + h∗

2k(2)h2k(1)
);

g2 =
∑NR

k=1

(
h∗
3k(4)h3k(3) + h∗

4k(4)h4k(3)
)

(9)

By multiplying both sides in Eq. (8) by Ḡ
H
we obtain

Ḡ
H
ȳ︸︷︷︸

¯̄y

= Ḡ
H
Ḡ︸ ︷︷ ︸

D

s + Ḡ
H
n̄︸︷︷︸

v̄

(10)

⇒

⎡

⎢⎢⎣

¯̄y(1)
¯̄y(2)
¯̄y(3)
¯̄y(4)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

|g1|2 0 0 0
0 |g1|2 0 0
0 0 |g2|2 0
0 0 0 |g2|2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

z1
z2
z3
z4

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

v̄(1)
v̄(2)
v̄(3)
v̄(4)

⎤

⎥⎥⎦ (11)

where

v̄1 ∼ CN (
0, |g1|2 λ1N0

) ; v̄2 ∼ CN (
0, |g1|2 λ2N0

) ; (12)

v̄3 ∼ CN (
0, |g2|2 λ3N0

) ; v̄4 ∼ CN (
0, |g2|2 λ4N0

) ; (13)

λ1 =
∑NR

k=1

(|h1k(2)|2 + |h2k(1)|2
); λ2 =

∑NR

k=1

(|h1k(1)|2 + |h2k(2)|2
); (14)

λ3 =
∑NR

k=1

(|h3k(4)|2 + |h4k(3)|2
); λ4 =

∑NR

k=1

(|h3k(3)|2 + |h4k(4)|2
)

(15)

From (11) we can see that orthogonality can be achieved without interference terms at the
cost of increasing the variance of noise terms in noise vector v̄. After pre-whitening noise
and de-interleaving, we obtain
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ŷ1 = ¯̄y1
|g1| √λ1

+ j
¯̄y3

|g2| √λ3
= |g1|√

λ1
s1I + j

|g2|√
λ3

s1Q + v1 (16a)

ŷ2 = ¯̄y2
|g1| √λ2

+ j
¯̄y4

|g2| √λ4
= |g1|√

λ2
s2I + j

|g2|√
λ4

s2Q + v2 (16b)

ŷ3 = ¯̄y3
|g2| √λ3

+ j
¯̄y1

|g1| √λ1
= |g2|√

λ3
s3I + j

|g1|√
λ1

s3Q + v3 (16c)

ŷ4 = ¯̄y4
|g2| √λ4

+ j
¯̄y2

|g1| √λ2
= |g2|√

λ4
s4I + j

|g1|√
λ2

s4Q + v4 (16d)

Finally, we obtain the following ZF decision metrics

ŝ1 = argmin
s∈Ae jθ

[∣∣∣∣ŷ1I − |g1|√
λ1

sI

∣∣∣∣
2

+
∣∣∣∣ŷ1Q − |g2|√

λ3
sQ

∣∣∣∣
2
]

(17a)

ŝ2 = argmin
s∈Ae jθ

[∣∣∣∣ŷ2I − |g1|√
λ2

sI

∣∣∣∣
2

+
∣∣∣∣ŷ2Q − |g2|√

λ4
sQ

∣∣∣∣
2
]

(17b)

ŝ3 = argmin
s∈Ae jθ

[∣∣∣∣ŷ3I − |g2|√
λ3

sI

∣∣∣∣
2

+
∣∣∣∣ŷ3Q − |g1|√

λ1
sQ

∣∣∣∣
2
]

(17c)

ŝ4 = argmin
s∈Ae jθ

[∣∣∣∣ŷ4I − |g2|√
λ4

sI

∣∣∣∣
2

+
∣∣∣∣ŷ4Q − |g1|√

λ2
sQ

∣∣∣∣
2
]

(17d)

Although v1, v2, v3, and v4 are correlated, the ZF detector ignores the correlation, and
arrives at suboptimal decisions by independently quantizing ŷ1, ŷ2, ŷ3 and ŷ4. Therefore,
the decoder is called a linear quasi-maximum likelihood decoder. When channel is static,
then v1, v2, v3, and v4 are independent and the ZF detector achieves optimum decoding per-
formance as does the SSD detector. We also notice that although the ZF decoder is presented
for the CIOD code with NT = 4 (i.e., S4), CIOD codes with NT = 2 and 3 (i.e., S2 and S3)
can be directly applied over time-selective fading channels.

3 Performance Analysis of CIOD Codes

We consider CIOD code with NT = 4, (i.e., S4) and channel model (3). We remark that,
from the symmetry of the channel model, we only need to derive the error probability for the
first symbol s1, knowing that the other symbols will have the same error probability. From
(15), the SPEP conditioned on the fading coefficients can be expressed as

Pr
(
s → ŝ |H

) = Pr

(∣∣∣∣ŷ − |g1|√
λ1

ŝI − |g2|√
λ3

ŝQ

∣∣∣∣
2

<

∣∣∣∣ŷ − |g1|√
λ1

uI − |g2|√
λ3

uQ

∣∣∣∣
2

= ∣∣vI + jvQ
∣∣2
)

= Q

⎛

⎝

√√√√ SN R

4

(
|g1|2
λ1

�2
I + |g2|2

λ3
�2

Q

)⎞

⎠ (18)
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where s → ŝ denotes a pair-wise error event, �2
I�

|sI−ŝI |2
Es/2

and �2
Q� |sQ−ŝQ |2

Es/2
represent

the normalized squared Euclidean distances along the in-phase and quadrature directions,
respectively. ŷ and v denote the received signal and noise signal, after noise pre-whitening and

de-interleaving, hence vI , vQ ∼ CN
(
0, N0

2

)
. Es is the total transmitted power on transmit

antennas per symbol duration and SN R = Es/N0 denote average signal-to-noise ratio at the
receiver. Since the symbol pair-wise error event for each si → ŝi has an identical distribution,
it suffices to consider the case of s1 → ŝ1 for the evaluation, so we drop the subscript without
loss of generality. Then, averaging the instantaneous SPEP given in (18) over the channel
realization yields the average SPEP as follows

Pr
(
s → ŝ

) =
∞∫

0

Q
(√

ω
)
pW (ω)dω =

∞∫

0

1

2
erfc

(√
ω

2

)
pW (ω)dω (19)

where Q(x) = 1√
2π

∞∫
x
exp

(
− u2

2

)
du, erfc(x) = 2√

π

∞∫
x
e−u2du, and

ω = |g1|2
λ1

SN R

4
�2

I + |g2|2
λ3

SN R

4
�2

Q (20)

To calculate average SPEP (24), we need to derive the probability density function (PDF)
pW (ω) of random variable ω (20). We give the following theorem.

Theorem 1 For a channel model (3) with assumptions in Sect. 2.1, a random variable ω

given in (20) has PDF as

pW (ω) =
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2
ρ2(k1+k2)

(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

×
k2∑

k3=0

(
k2
k3

)
(−1)k3

(k1 + k3)!
μk1+k3+1 ωk2−k3e

−ω
cQ

−
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2
ρ2(k1+k2)

(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

k2∑

k3=0

(
k2
k3

)
(−1)k3

×
k1+k3∑

k4=0

(k1 + k3)!
k4!μk1+k3−k4+1 ωk2−k3+k4e

−ω
cI (21)

where

(
n
a

)
� n!

a!(n−a)! , a1 =
(
2NR − 1
2NR − 1 − k1

)
, a2 =

(
2NR − 1
2NR − 1 − k2

)
, cI = SN R

4 �2
I ,

cQ = SN R
4 �2

Q, μ = 1
cI

− 1
cQ

.

Proof The proof is given in the APPENDIX.
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Plugging (21) into (19) yields the average SPEP as follows

Pr
(
s → ŝ

) =
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2 × ρ2k1+2k2
(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

×
k2∑

k3=0

(
k2
k3

)
(−1)k3

(k1 + k3)!
μk1+k3+1

∞∫

0

1

2
er f c

(√
ω

2

)
e

−ω
cQ ωk2−k3dω

−
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2 × ρ2k1+2k2
(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

×
k2∑

k3=0

(
k2
k3

)
(−1)k3

(k1 + k3)!
μk1+k3+1

×
k1+k3∑

k4=0

1

k4!μ−k4

∞∫

0

1

2
er f c

(√
ω

2

)
e

−ω
cI ωk2−k3+k4dω (22)

Using Eq. [20 equation (6.286.1)]

∞∫

0

1

2
er f c

(
β
√
x
)
eα2x x

v−2
2 dx = �

(
v+1
2

)
√

πvβv 2F1

(
v

2
,
v + 1

2
; v

2
+ 1; α2

β2

)
(23)

we obtain the average SPEP as

Pr
(
s → ŝ

) =
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2 × ρ2k1+2k2
(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

× 1√
π

k2∑

k3=0

(
k2
k3

)
(−1)k3

(k1 + k3)!
μk1+k3+1 × 2k2−k3

k2 − k3 + 1
�

(
k2 − k3 + 3

2

)

× 2F1

(
k2 − k3 + 1, k2 − k3 + 3

2
; k2 − k3 + 2;− 2

cQ

)

−
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2 × ρ2k1+2k2
(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

× 1√
π

k2∑

k3=0

(
k2
k3

)
(−1)k3

(k1 + k3)!
μk1+k3+1

k1+k3∑

k4=0

2k2−k3+k4

k4!μ−k4 (k2 − k3 + k4 + 1)

×�

(
k2 − k3 + k4 + 3

2

)

× 2F1

(
k2 − k3 + k4 + 1, k2 − k3 + k4 + 3

2
; k2 − k3 + k4 + 2;− 2

cI

)

(24)

where 2F1 (a, b; c; z) is Hypergeometric function and �(·) is Gamma function. We note
that the Hypergeometric functions are provided in common mathematical software, such as
MATHEMATICAL, MAPLE, etc.

123
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We also emphasize that the average SPEP derivation given in (24) is closed-form for the
arbitrary constellation A and an arbitrary number of receiver antenna NR . Moreover, from
generalized Eq. (24), we easily obtain average SPEP on two special cases: the quasi-static
fading channel (ρ = 1) and the fast fading channel (ρ = 0).

Special case 1: For ρ = 1, quasi-static fading channel

Pr
(
s → ŝ

) = 1

[(2NR − 1)!]2 (cI cQ
)2NR

1√
π

2NR−1∑

k3=0

(
k2
k3

)
(−1)k3

(2NR − 1 + k3)!
μ2NR+k3

×22NR−1−k3

2NR − k3
× �

(
2NR − k3 + 1

2

)

× 2F1

(
2NR − k3, 2NR − k3 + 1

2
; 2NR − k3 + 1;− 2

cQ

)

− 1

[(2NR − 1)!]2 (cI cQ
)2NR

× 1√
π

2NR−1∑

k3=0

(
2NR − 1
k3

)
(−1)k3

(2NR − 1 + k3)!
μ2NR+k3

×
2NR−1+k3∑

k4=0

22NR−1−k3+k4

k4!μ−k4 (2NR − k3 + k4)
�

(
2NR − k3 + k4 + 1

2

)

× 2F1

(
2NR − k3 + k4, 2NR − k3 + k4 + 1

2
; 2NR − k3 + k4 + 1;− 2

cI

)

(25)

Special case 2: For ρ = 0, fast fading channel

Pr
(
s → ŝ

) = 1√
πcI cQμ

�

(
3

2

)
×
[
2F1

(
1,

3

2
; 2;− 2

cQ

)
− 2F1

(
1,

3

2
; 2;− 2

cI

)]
(26)

From Eq. (26), we conclude that when the channel is fast fading (channel gains change
independently from symbol to symbol), therefore increasing the number of receiver antennas
does not come with any performance improvement for the ZF decoder. This conclusion is
confirmed by simulation results in Figs. 1 and 2.

From the average SPEP expression (24), we can find the union bound (UB) on SER of
CIOD codes over time-selective fading channel with the ZF decoder and rotated constellation
Aej θ as

PUB = 1

|A|
∑

s∈Aθe jθ

∑

s �=ŝ

Pr
(
s → ŝ

)
(27)

Although the above performance analysis process is presented for the CIOD code with
NR = 4 (i.e., S4), the performance analysis process can be directly applied for CIOD code
with NT = 3 (i.e.,S3) over time-selective fading channels. The calculation details are omitted
andwe only provide the final result for brevity. The average SPEP of CIOD codewith NT = 3
is given in Eq. (28).
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Pr
(
s → ŝ

) =
2NR−1∑

k1=0

NR−1∑

k2=0

a1ā2 × ρ2k1+2k2
(
1 − ρ2

)3NR−2−k1−k2

k1!k2!c̄k1+1
I c̄k2+1

Q

× 1√
π

k2∑

k3=0

(
k2

k3

)
(−1)k3

(k1 + k3)!
μ̄k1+k3+1 × 2k2−k3

k2 − k3 + 1
�

(
k2 − k3 + 3

2

)

× 2F1

(
k2 − k3 + 1, k2 − k3 + 3

2
; k2 − k3 + 2;− 2

c̄Q

)

−
2NR−1∑

k1=0

NR−1∑

k2=0

a1ā2 × ρ2k1+2k2
(
1 − ρ2

)3NR−2−k1−k2

k1!k2!c̄k1+1
I c̄k2+1

Q

× 1√
π

k2∑

k3=0

(
k2

k3

)
(−1)k3

(k1 + k3)!
μ̄k1+k3+1

k1+k3∑

k4=0

2k2−k3+k4

k4!μ̄−k4 (k2 − k3 + k4 + 1)

×�

(
k2 − k3 + k4 + 3

2

)

× 2F1

(
k2 − k3 + k4 + 1, k2 − k3 + k4 + 3

2
; k2 − k3 + k4 + 2;− 2

c̄I

)

(28)

where ā2 =
(
NR − 1
NR − 1 − k2

)
, �̄2

I = |uI−û I |2
Es/2

, c̄I = SN R
3 �̄2

I , �̄2
Q = |uQ−ûQ |2

Es
, c̄Q =

SN R
3 �̄2

Q , and μ̄ = 1
c̄I

− 1
c̄Q

.

4 Simulation Results

In order to check the accuracy of the theoretical error analysis, we have carried out Monte-
Carlo simulations for ZF detector (17) with channel model (3) and then compared them with
the theoretical analysis. Two typical Doppler spreads in this section are fdTs = 0.03 (ρ =
0.9911) and fdTs = 0.0687 (ρ = 0.954). Two typical Doppler spreads correspond to a 1.9
GHz personal communications services (PCS) system, in which the symbol rate is 6.4 kBd
and the speed of the mobile is 112 km/h and 250 km/h. Two extreme cases: the quasi-static
channel (ρ = 1) and the fast fading channel (ρ = 0) are also considered. The SER versus
SNR curves are presented in Fig. 1 for various antenna configurations (NT , NR) and 4QAM
constellation with rotation phase θ = 31.7175 degrees.

Figures 1 and 2 present comparisons between simulation results and theoretical analysis
for NT = 4 and NR = 1, 2 receive antennas. The exact SER curves are obtained by Monte-
Carlo simulations over 108 independent channel realizations and the curves for the union
bound on the SER are performed by Eq. (27). These figures show our upper bound is very
tight for any value of ρ and arbitrary number of receiver antenna at high SNR values. This
demonstrates that theoretical UB on the SER is exact and coincides (within 0.05 dB) with the
simulated SER for various fading parameters and different antenna configurations. Similar
results can be found for cases NT = 2 and 3; details are omitted for brevity.
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Fig. 1 Comparison of the union bound of SER and simulated SER of CIOD code S4 for different correlated
factors with the ZF decoder and one receive antenna. In this figure, the correlation factor ρ is denoted as ro
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Fig. 2 Comparison of the union bound of SER and simulated SER of CIOD code S4 for different correlated
factors with the ZF decoder and two receive antenna. In this figure, the correlation factor ρ is denoted as ro
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5 Conclusions

A closed-form expression of SPEP for CIOD codes with ZF decoder over time-selective
fading channel is derived. Based on the exact expression of SPEP, a union bound on the SER
of CIOD codes is also established. The accuracy of the union bound has been confirmed
by comparison with the SER curves obtained from Monte-Carlo simulation. A decisive
agreement between theoretical analysis and simulation result demonstrated that our union
bound can be used to accurately predict the performance of CIOD codes over time-selective
fading channels. Moreover, our performance analysis is not restricted by modulation types,
so it can be applied to analyze and find optimum constellation for CIOD codes.

Appendix

To proof Theorem 1, we firstly introduce Lemma 1 as follow:

Lemma 1 Let X1 = |g1|2
λ1

SN R
4 �2

I = |g1|2
λ1

cI and X2 = |g2|2
λ3

SN R
4 �2

Q = |g2|2
λ3

cQ then X1 and
X2 are independent random variables whose probability density functions (PDFs) respec-
tively are

pX1(x) =
2NR−1∑

k=0

(
2NR − 1
2NR − 1 − k

)
ρ2k

(
1 − ρ2

)2N−1−k

k!ck+1
I

xk exp

(−x

cI

)
(29)

pX2(y) =
2NR−1∑

k=0

(
2NR − 1
2NR − 1 − k

)
ρ2k

(
1 − ρ2

)2N−1−k

k!ck+1
Q

yk exp

(−y

cQ

)
(30)

Proof The proof of Eqs. (29) and (30) is the same, so we consider the proof of Eq. (29). Let
us introduce the random variables ξ1k and ξ2k, k = 1, ..., NR

ξ1k = h1k(1) − ρh1k(2)√
1 − ρ2

; ξ2k = h2k(2) − ρh2k(1)√
1 − ρ2

(31)

where we assume ρ2 < 1. By construction, ξ1k and ξ2k are independent and identically
distributed with the same pdf as h1k(2) and h2k(1); furthermore, ξ1k is independent of h1k(2),
ξ1k and is independent of h2k(1). Plugging (31) into X1 leads to

X1 =
∣∣∣∣∣ρ
√

λ1 +
√
1 − ρ2

∑NR
k=1

(
h∗
1k(2)ξ1k + h2k(1)ξ∗

2k

)
√

λ1

∣∣∣∣∣

2

cI (32)

To simplify this expression further, observe that the fraction in (32) can be expressed as an
inner product

z1 + jz2 =
∑NR

k=1

(
h∗
1k(2)ξ1k + h2k(1)ξ∗

2k

)
√

λ1
=
〈

h
‖h‖ , e

〉
(33)

where z1, z2 are real variables, h =
[
h11(2), h∗

21(1), . . . , h1NR (2), h∗
2NR

(1)
]T

and e =
[
ξ∗
11, ξ21, . . . , ξ

∗
1NR

, ξ2NR

]T
. Since e is symmetric, the distribution of z1 + jz2 reduces to the

distribution of h1k(1), independent of h (and, thus, also independent of ‖h‖). Thus, (33)
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simplifies to

X1 =
∣∣∣ρ
√

λ1 +
√
1 − ρ2 (z1 + jz2)

∣∣∣
2
cI (34)

X1 = (A + Z1)
2 + Z2

2 (35)

where A = √
λ1ρ2cI and Zi =

√(
1 − ρ2

)
cI zi , i = 1, 2. Therefore, given A, X1 has a

noncentral chi-square distribution with two degrees of freedom, and PDF

pX1|A (x |a ) = 1(
1 − ρ2

)
cI

exp

(
− x + a2(

1 − ρ2
)
cI

)
J0

(
2ja(

1 − ρ2
)
cI

√
x

)
(36)

where J0(·) is the zeroth-order Bessel function of the first kind, and j = √−1.
However, A = √

λ1ρ2cI is Rayleigh distributed with 2NR degrees of freedom with PDF

pA(a) = 2

ρ4NR c2NR
I � (2NR)

a4NR−1 exp

(
− a2

ρ2cI

)
(37)

Integrating the product of (36) and (37) over the variable from 0 to ∞ leads to the following
PDF for x as

pX1(x) =
∞∫

0

pX1|A (x |a )pA(a)da (38)

pX1(x) = 2
(
1 − ρ2

)
ρ4NR c2NR+1

I � (2NR)
exp

(
− x(

1 − ρ2
)
cI

)

×
∫ ∞

0
a4NR−1 exp

(
− a2(

1 − ρ2
)
ρ2cI

)
J0

(
2j

√
x(

1 − ρ2
)
cI

a

)
da (39)

From (40), by using [17, equation(6.631.1)] we obtain

pX1(x) =
(
1 − ρ2

)2NR−1

cI
exp

(
− x(

1 − ρ2
)
cI

)

1F1

(
2NR, 1; ρ2

(
1 − ρ2

)
cI

x

)
(40)

where 1F1 (α, β; z) is Kummer confluent hypergeometric function [17]. By applying equa-
tions given in [18,19] we have

1F1

(
2NR, 1; ρ2

(
1 − ρ2

)
cI

x

)
= exp

(
ρ2x(

1 − ρ2
)
cI

)

×
2NR−1∑

k=0

(
2NR − 1
2NR − 1 − k

)
ρ2k

k!
(
1 − ρ2

)k
ckI

xk (41)

Plugging (41) into (40) we obtain

pX1(x) =
2NR−1∑

k=0

(
2NR − 1
2NR − 1 − k

)
ρ2k

(
1 − ρ2

)2N−1−k

k!ck+1
I

xk exp

(−x

cI

)
(42)

The proof of Eq. (30) is similar. The Lemma 1 is demonstrated completely.
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Remark 1 It is very interesting that although the calculation process from (31) to (42) is
performed under the assumption ρ2 < 1, the final result (42) is general and can apply to any
value of ρ (which includes ρ2 = 1). The proof of this observation is not difficult, so it is
omitted here for brevity.

Next, we use Lemma 1 to demonstrate Theorem 1. Since X1, X2 are independent random
variables, thus the PDF of ω, which ω = X1 + X2, is expressed by

pW (ω) =
ω∫

0

pX1(x)pX2 (ω − x) dx (43)

Plugging Eqs. (29) and (30) into Eq. (43), we obtain

pW (ω) =
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2
ρ2k1+2k2

(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

e
−ω
cQ

ω∫

0

e−μx xk1 (ω − x)k2 dx

(44)

where

(
n
a

)
� n!

a!(n−a)! , a1 =
(
2NR − 1
2NR − 1 − k1

)
, a2 =

(
2NR − 1
2NR − 1 − k2

)
, and μ = 1

cI

− 1
cQ

.
By applying Newton’s binomial

xk1 (ω − x)k2 =
k2∑

k3=0

(
k2
k3

)
(−1)k3ωk2−k3xk1+k3 (45)

we obtain

pW (ω) =
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2
ρ2k1+2k2

(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

e
−ω
cQ

k2∑

k3=0

(
k2
k3

)
(−1)k3ωk2−k3

×
ω∫

0

e−μx xk1+k3dx (46)

Then, using Eq. [17, equation (3.351.1)],

α∫

0

xne−μxdx = n!
μn+1 − e−μα

n∑

k=0

n!
k!

αk

μn−k+1 (47)

we obtain

pW (ω) =
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2
ρ2(k1+k2)

(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

×
k2∑

k3=0

(
k2
k3

)
(−1)k3

(k1 + k3)!
μk1+k3+1 ωk2−k3e

−ω
cQ
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−
2NR−1∑

k1=0

2NR−1∑

k2=0

a1a2
ρ2(k1+k2)

(
1 − ρ2

)4NR−2−k1−k2

k1!k2!ck1+1
I ck2+1

Q

k2∑

k3=0

(
k2
k3

)
(−1)k3

×
k1+k3∑

k4=0

(k1 + k3)!
k4!μk1+k3−k4+1 ωk2−k3+k4e

−ω
cI (48)

The Theorem 1 is demonstrated completely.
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