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We study optical analogs of two-dimensional (2D) Dirac solitons in square binary waveguide lattices with
two different topologies in the presence of Kerr nonlinearity. These 2D solitons turn out to be quite robust.
We demonstrate that with the found 2D solitons, the coupled mode equations governing light dynamics in
square binary waveguide lattices can be converted into the nonlinear relativistic 2D Dirac equation with the
four-component bispinor. This paves the way for using binary waveguide lattices as a classical simulator of
quantum nonlinear effects arising from the 2D Dirac equation, something that is thought to be impossible to
achieve in conventional (i.e., linear) quantum field theory.
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I. INTRODUCTION

Waveguide arrays have been used intensively to simulate
the evolution of a nonrelativistic quantum-mechanical particle
in a periodic potential. Many fundamental phenomena in
nonrelativistic classical and quantum mechanics such as Bloch
oscillations [1,2], Zener tunneling [3,4], optical dynamical lo-
calization [5], and Anderson localization in disordered lattices
[6] have been simulated both theoretically and experimentally
with waveguide arrays. In recent studies it was shown that,
rather surprisingly, most of nonlinear fiber optics features
(such as resonant radiation and soliton self-wave-number shift)
can also take place in specially excited arrays [7,8]. Recently,
binary waveguide arrays (BWAs) have also been used to mimic
relativistic phenomena typical of quantum field theory, such as
Klein tunneling [9,10], the Zitterbewegung (trembling motion
of a free Dirac electron) [11,12], and fermion pair production
[13], which are all based on the properties of the Dirac equation
[14]. Quite recently, the optical analog of relativistic one-
dimensional (1D) Dirac solitons have been analytically found
in BWAs [15], and proved to be extremely robust [16]. In [15]
we have provided analytical expressions for the nonmoving
gap solitons in BWAs. We have also shown their connection
to Dirac solitons in a nonlinear extension of the relativistic 1D
Dirac equation describing the dynamics of a freely moving
relativistic particle. Similar soliton solutions have been found
for the nonlinear 1D Dirac equation [17], but with a different
and more complicated kind of nonlinearity, in the context of
quantum field theory. The discrete gap solitons in BWAs in
the classical context have been investigated both numerically
[18–20] and experimentally [21]. Although there is currently
no evidence for fundamental quantum nonlinearities, nonlinear
versions of the Dirac equation have been studied for a
long time. One of the earlier extensions was investigated
by Heisenberg [22] in the context of field theory and was
motivated by the question of mass. In the quantum-mechanical
context, nonlinear Dirac equations have been used as effective
theories in atomic, nuclear, and gravitational physics [23–26]
and, more recently, in the study of ultracold atoms [27,28].
To this regard, BWAs can offer a unique platform to simulate
nonlinear extensions of the Dirac equation when probed at
high light intensities. One of these possibilities is to use

BWAs as a classical simulator of the Dirac equation to mimic
the two-body Dirac model, i.e., the Dirac equation for two
interacting relativistic particles, which has attracted a lot of
interest from researchers since the early days of quantum
mechanics [29,30].

Usual two-dimensional (2D) solitons in square binary
lattices and at interfaces between binary lattices and homo-
geneous lattices were experimentally observed in [31,32]. The
agreement between numerical simulations and experimental
data for 2D solitons shown in [31,32] is strikingly excellent.
Motivated by our recent achievements in the investigation of
the optical analog of the relativistic 1D Dirac solitons in BWAs,
and also by the success in experimental observations of usual
solitons in square binary lattices, in this work we study the
formation and dynamics of relativistic 2D Dirac solitons in
square binary waveguide lattices (BWLs) with two different
topologies. This paves the way for using BWLs to simulate
nonlinear extensions of the 2D Dirac equation, as well as
other solitonic and nonsolitonic effects of nonlinear 2D Dirac
equations.

II. COUPLED-MODE EQUATIONS IN SQUARE BINARY
WAVEGUIDE LATTICES

In this work we explore two different classes of square
BWLs as shown schematically in Fig. 1. In Fig. 1(a) we
illustrate the topology of class 1 BWLs where waveguides
with two different types labeled “A” and “B” are arranged
in a fashion such that each of the vertical and horizontal
arrays of the lattice represents one BWA consisting of an
alternating sequence of two waveguide types A and B. For
class 2 BWLs as shown in Fig. 1(b), only vertical arrays
are BWAs, whereas each horizontal array consists of only
one type of waveguide—either “A” or “B.” Note that two
types of waveguides can be different in any way, such as
their sizes, geometries, and materials. The most important
requirement is that their propagation constants must be
different.

Light propagation in class 1 BWLs with Kerr nonlin-
earity can be described, in the continuous-wave regime
(cw), by the following dimensionless coupled-mode equations
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FIG. 1. (Color online) (a) Illustrative sketch of a square binary
waveguide lattice of class 1 where each array (horizontal and
vertical) consists of two alternating waveguides of types A and B.
(b) Illustrative sketch of a square binary waveguide lattice of class
2 where each vertical array consists of two alternating waveguides
of types A and B, whereas each horizontal array consists of just one
type of waveguide (either A or B).

(CMEs):

i
dam,n(z)

dz
+ κ1[(am+1,n + am−1,n) + (am,n+1 + am,n−1)]

+ κ2[(am+1,n+1 + am−1,n−1) + (am+1,n−1 + am−1,n+1)]

− (−1)m+nσam,n + γ |am,n|2am,n = 0, (1)

where am,n is the electric field amplitude in the waveguide
located in the mth row and nth column, z is the longitudinal
spatial coordinate, 2σ is the propagation mismatch between
two different types of waveguides, κ1 and κ2 are the coupling
coefficients between neighboring waveguides of the lattice,
and γ is the nonlinear coefficient of waveguides which is
positive for self-focusing, but negative for self-defocusing
media. The indices n and m run in the interval [−N : N ]
and [−M : M], respectively. For simplicity, here we suppose
all waveguides have the same nonlinear coefficient, but even
if these nonlinear coefficients are different (provided they are
comparable), as shown in [15], then analytical soliton solutions
of 1D Dirac solitons will remain unchanged, because one of the
soliton components is much smaller than unity and the other
component, and thus one can eliminate the nonlinear term
associated with this weak soliton component. For the same
reason, the difference in waveguide nonlinearity for 2D BWLs
is also negligible in 2D Dirac soliton formation. In square
lattices consisting of just one type of waveguide, the above
CMEs without the term containing the propagation mismatch
parameter σ in the linear regime were already reported in [33]
[see Eq. (2.2) in [33]]. Now for square BWLs belonging to
class 1 we just need to introduce this new term containing σ

in Eq. (1) and a term taking into account the Kerr nonlinearity.
For square BWLs of class 2 shown in Fig. 1(b), light

propagation in the cw regime is governed by the following
CMEs:

i
dam,n(z)

dz
+ κ1[(am+1,n + am−1,n) + (am,n+1 + am,n−1)]

+ κ2[(am+1,n+1 + am−1,n−1) + (am+1,n−1 + am−1,n+1)]

− (−1)mσam,n + γ |am,n|2am,n = 0, (2)

where the only difference with Eq (1) is in the term containing
the propagation mismatch parameter σ [now we have the factor
(−1)m in Eq. (2) instead of (−1)m+n in Eq. (1)]. Generally
speaking, for square BWLs of class 2 there should be more
than two coupling coefficients; for instance, the coupling
coefficient κr

1 between two neighboring identical waveguides
in the same row [i.e., between the waveguide at the site (m,n)
with waveguides at sites (m,n + 1) and (m,n − 1)] can differ
from the coupling coefficient κc

1 between two neighboring
different waveguides in the same column [i.e., between the
waveguide at the site (m,n) with waveguides at sites (m + 1,n)
and (m − 1,n)]. However, for square lattices consisting of two
types of waveguides which are not too different, the variation
between κr

1 and κc
1 will be less than the one between them with

κ2, so in this work, for simplicity we will use just the coupling
coefficient κ1 and κ2 as in Eq. (2). Equations (1) and (2)
can be easily normalized such that the coupling coefficient
κ1 = 1 and the nonlinear coefficient γ = 1. These values will
be fixed further for these two coefficients. Due to the distances
between neighboring waveguides, it is obvious that between
two coupling coefficients exists the relationship κ1 > κ2.

III. SOLITONS IN SQUARE BINARY WAVEGUIDE
LATTICES OF CLASS 1

In this section we investigate the formation and dynamics
of 2D solitons in square BWLs of class 1 with topology shown
in Fig. 1(a). As mentioned above, the analytical 1D Dirac
soliton solutions to the CMEs for 1D BWAs have been found
as follows [15]:[

ψ2n(z)
ψ2n−1(z)

]

=
[

i2n 2κ1
n0

√
σγ

sech
(

2n
n0

)
eiz[(2κ2

1 /n2
0σ )−σ ]

i2n 2κ2
1

n2
0σ

√
σγ

sech
(

2n−1
n0

)
tanh

(
2n−1

n0

)
eiz[(2κ2

1 /n2
0σ )−σ ]

]
. (3)

This analytical soliton solution in BWAs is a one-parameter
family where one parameter such as soliton peak amplitude
or width can be arbitrary, provided that the quasicontinuous
limit is used, i.e., the soliton width is large enough (the beam
width parameter n0 � 3.5; see [15] for more details). The
Dirac soliton solution in the form of Eq. (3) is valid in the
case when γ and σ are positive. However, with this solution
one can easily construct other Dirac soliton solutions for any
sign of each parameter γ and σ [15]. In what follows we use
the following initial condition at the square BWL input for
simulating Eq. (1):

am,n(0) = f ψm(0)ψn(0)/ψ0(0), (4)

where the peak amplitude parameter f will be varied to
investigate the 2D solitons generation in square BWLs. The
evolution of the beam is illustrated in Fig. 2(a) in the (m,n,z)
space for the parameter f = 1.16. Four frames in Fig. 2(a) at
specific propagation distance z = 0, 40, 60, and 80 are shown
in contour plots in Figs. 2(b), 2(c), 2(d), and 2(e), respectively,
in the (m,n) plane.

As shown in Fig. 2(a), at the initial stage the profile of the
beam is adjusted, then after reaching the propagation distance
z � 20 some radiation is emitted from the beam, and then after
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FIG. 2. (Color online) (a) Formation of a 2D soliton in the
(m,n,z) space in square BWLs of class 1 when κ1 = 1 and κ2 = 0.5.
(b)–(e) Contour plot of the beam at a specific frame with z = 0,
40, 60, and 80, respectively. Other parameters: f = 1.16, σ = −1.2,
γ = 1, n0 = 5, and N = M = 60.

reaching the propagation distance z � 50 the beam profile
becomes very stable, and the beam now propagates without
any significant distortion in profile and amplitude. As clearly
shown in the contour plot in Fig. 2(b), the initial profile of the
beam is reminiscent of a square, in particular in the periphery
where amplitudes are weak. Note that weak features in four
contour plots in Fig. 2 will be much more visible if one enlarges
these contour plots, and due to limited resolution some weak
features are invisible in the three-dimensional (3D) structure
in Fig. 2(a), although they can be seen in 2D contour plots
in Fig. 2. At the distance z = 40, as shown in Fig. 2(c), the
radiation is generated and located in regions close to four
corners of the contour plot in Fig. 2(c). However, the radiation
in Fig. 2(c) still strongly overlaps with the central part of
the beam. At the distance z = 60, as shown in Fig. 2(d), the
radiation moves away from the central part of the beam toward
four corners of the contour plot in Fig. 2(d), and the profile of
the central part of the beam looks like a circle now. Finally, at
the output frame when z = 80 the radiation now moves to tiny
regions of four corners in Fig. 2(e), and is completely detached
from the central part of the beam, thus with the formation
of the central part of the beam we get a clean 2D soliton
whose circlelike profile is well maintained during propagation.
It is noteworthy mentioning that although the initial profile
of the beam launched into the square BWL of class 1 is
not exactly the one of a 2D soliton, during propagation the
beam will nevertheless adjust its profile towards that of a 2D
soliton. This feature shows that 2D solitons in BWLs of class
1 form spontaneously and are quite robust. To estimate real
physical parameters of the calculated soliton we use typical
parameters in waveguide arrays made of AlGaAs [2], where
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FIG. 3. (Color online) (a)–(c) Beam propagation along the z axis
in the section containing the waveguide with index n = 0, 4, and 10,
respectively, and parallel to the m axis. (d) The blue (red) curves with
round (square) markers represent the input (output) signal in (a). The
beam profile at the distance z = 60 is represented by the green curve
in (d), but this curve is hardly visible because it is hidden by the red
curve. All parameters are the same as in Fig. 2.

the coupling coefficient and nonlinear parameter in physical
units K1 = 1240 m−1 and � = 6.5 m−1 W−1, respectively. In
this case, the power scale will be P0 = K1/� = 190.8 W, thus
the peak power of the soliton shown in Fig. 2 will be around
40.0 W and the length scale in the propagation direction will be
z0 = 1/K1 = 0.8 mm. Instead of using cw beams, a common
practice is to use short optical pulses with high peak power but
wide enough that the dispersion effects are not important.

We now analyze three longitudinal sections of Fig. 2(a)
along the z axis. The section containing the waveguide with
index n = 0, 4, and 10 and parallel to the m axis is shown
in the contour plots in Figs. 3(a), 3(b), and 3(c), respectively.
The common feature of beam evolution in the first two contour
plots in Figs. 3(a) and 3(b) is that at the beginning the beam
slightly adjusts its profile, and then from a propagation distance
z � 40 the established profile of the 2D soliton is very stable.
However, the beam profile in Fig. 3(c) undergoes significant
changes: at first the beam broadens, then at the distance z � 20
one can clearly see the radiation emitted away from the central
part of the beam, and then after reaching the distance z � 60
the central part of the beam profile almost does not change
during propagation, whereas the radiation gets completely
detached from the central part of the beam. The blue (red)
curve with round (square) markers in Fig. 3(d) represents the
input (output) in Fig. 3(a). The output red curve with square
markers has a higher peak and smaller width as compared
to the input blue curve with round markers. Actually, apart
from the blue and red curves showing the input and output
profiles in Fig. 3(d) we also plot the beam profile at the distance
z = 60 with a green curve, but because at this distance the 2D
soliton has been formed, its profile is well conserved and the
intermediate green curve is completely hidden by the output
red curve in Fig. 3(d).
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FIG. 4. (Color online) (a),(b) Evolution of beam in the (m,n,z)
space when the peak amplitude parameter f = 1.136 and 1.170,
respectively. All other parameters are the same as in Fig. 2.

In this section we illustrate the generation and formation
of 2D solitons in square BWLs of class 1 with specific
coupling coefficients κ1 = 1 (fixed) and κ2 = 0.5. However,
our numerous simulations reveal that 2D solitons in square
BWLs of class 1, which possess all main features of the 2D
soliton shown in Figs. 2 and 3, can be generated with many
different values of κ2 < κ1, including a special value κ2 = 0.
The latter case is important, because under this condition
Eq. (1) can be converted into a 2D nonlinear relativistic Dirac
equation as shown later in Sec. V.

In Figs. 2 and 3 we use the initial condition with the peak
amplitude parameter f = 1.16 and, as a result, a 2D soliton
is generated during propagation. If we now launch a beam
into BWLs with lower initial peak amplitudes, it is reasonable
to expect that in this case the diffraction-based broadening
prevails over the nonlinearity-based focusing and the beam
will spread out in space. Indeed, this is the case as shown
in Fig. 4(a) with f = 1.136. On the contrary, if initial peak
amplitudes are higher, then one can expect the focusing will
prevail over the broadening. This is demonstrated in Fig. 4(b)
with f = 1.170. After emitting the radiation at the distance
z � 40 the beam in Fig. 4(b) undergoes the compression, and
after reaching the maximum compression at the distance z �
60 the beam broadens quickly. Of course, the closer the initial
peak amplitude to the value f = 1.160, the better the beam
will conserve its shape during propagation as the 2D soliton
shown in Figs. 2 and 3.

IV. SOLITONS IN SQUARE BINARY WAVEGUIDE
LATTICES OF CLASS 2

In this section we investigate the formation and dynamics
of 2D solitons in square BWLs of class 2 with topology shown
in Fig. 1(b). In what follows we use the following initial
condition at the square BWL input for simulating Eq. (2):
am,n(0) = f ψm(0)bn/b0, where bn = (1/n0)sech(n/n0), f is
again the peak amplitude parameter. The evolution of the beam
is illustrated in Fig. 5(a) in the (m,n,z) space for the parameter
f = 1.301. Four frames in Fig. 5(a) at specific propagation
distance z = 0, 60, 100, and 120 are shown in contour plots
in Figs. 5(b), 5(c), 5(d), and 5(e), respectively, in the (m,n)
plane.
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FIG. 5. (Color online) (a) Formation of a 2D soliton in the
(m,n,z) space in square BWLs of class 2 when κ1 = 1 and κ2 = 0.2.
(b)–(e) Contour plot of the beam at a specific frame with z = 0, 60,
100, and 120, respectively. Other parameters: f = 1.301, σ = −1.2,
γ = 1, n0 = 5, and N = M = 150.

As shown in Fig. 5(a), at the initial stage the profile of the
beam is adjusted, then after reaching the propagation distance
z � 20 some radiation is emitted away from the beam, and then
after reaching the propagation distance z � 80 the central part
of the beam profile becomes very stable propagating without
any significant distortion in profile and amplitude. As clearly
shown in the contour plot in Fig. 5(b), the initial profile of
the beam is also reminiscent of a square consisting of stripes
parallel to the n axis. Like in Fig. 2, weak features in four
contour plots in Fig. 5 will be much more visible if one
enlarges these contour plots, and due to limited resolution some
weak features are invisible in the 3D structure in Fig. 5(a),
although they can be seen in 2D contour plots in Fig. 5. At the
distance z = 60, as shown in Fig. 5(c), the radiation is located
close to four sides of the contour plot in Fig. 5(c). However,
the radiation signal which is close to two sides parallel to the
m axis is weaker than the one close to two sides parallel to
the n axis. That is why one can only see the radiation signal
close to two sides parallel to the n axis in the 3D structure
in Fig. 5(a). The radiation in Fig. 5(c) still strongly overlaps
with the central part of the beam. At the distance z = 100,
as shown in Fig. 5(d), the radiation signal close to two sides
parallel to the n axis is completely detached away from the
central part of the beam whose profile looks like an oval now.
Finally, at the output frame when z = 120 all the radiation
now is completely detached from the central part of the beam
and moves out completely from the frames used in Figs. 5(a)
and 5(e). Note that the profile of the central part of the beam
is well conserved in Figs. 5(d) and 5(e) [see also Fig. 5(a)],
thus with the formation of the central part of the beam we
get a clean 2D soliton whose oval-like profile with stripes
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FIG. 6. (Color online) (a),(b) Beam propagation along the z axis
in the section containing the waveguide with index n = 0 and m = 0,
respectively. (c) The blue (red) curve with round (square) markers
represents the input (output) signal in (a). (d) The dashed blue (solid
red) curve represents the input (output) signal in (b). The beam profiles
at the distance z = 100 are represented by green curves in (c) and (d),
but these curves are hardly visible because they are hidden by the red
curves.

parallel to the n axis is well maintained during propagation. It
is noteworthy mentioning that although the initial profile of the
beam launched into the square BWL of class 2 is not exactly the
one of a 2D soliton for this kind of BWL, during propagation
the beam will nevertheless adjust its profile towards that of a
2D soliton. This feature shows that 2D solitons in BWLs of
class 2, like in BWLs of class 1, form spontaneously and are
quite robust.

We now analyze two special sections of Fig. 5(a) along
the z axis. The section containing the waveguide with index
n = 0 and parallel to the m axis is shown in Fig. 6(a), whereas
the section containing the waveguide with index m = 0 and
parallel to the n axis is shown in Fig. 6(b). The common
feature of beam evolution in Figs. 6(a) and 6(b) is that at the
beginning the beam is slightly adjusted [broadened in Fig. 6(a)
and compressed in Fig. 6(b)], and then from a propagation
distance z � 50 the established profiles of the 2D soliton
in analyzed sections are very stable. The blue (red) curve
with round (square) markers in Fig. 6(c) represents the input
(output) signal in Fig. 6(a). Meanwhile, the dashed blue (solid
red) curve in Fig. 6(d) represents the input (output) signal in
Fig. 6(b). Actually, in Figs. 6(c) and 6(d) we also plot the
corresponding beam profiles at the distance z = 100 by green
curves; however, one almost cannot see this intermediate curve
in Fig. 6(c), and can hardly see this green curve at the tails of
signals shown in Fig. 6(d). This is because at this distance
the 2D soliton has been established, thus these intermediates
curves are almost hidden by the output curves. Note that
the peak amplitudes of the input and output signals shown
in Figs. 6(c) and 6(d) are almost constant, but their widths
significantly change. Indeed, in Fig. 6(c) the input profile
(which is the profile of a 1D Dirac soliton in BWAs) has a
narrower width as compared to the output profile (which is

the profile of an established 2D soliton in BWLs of class 2),
whereas in Fig. 6(d) the input profile (which is the profile
of the sech function representing the fundamental soliton of
the nonlinear Schrödinger equation [34]) has a larger width
as compared to the output profile (which is the profile of the
established 2D soliton in BWLs of class 2). This feature is
peculiar, because one can expect that for solitons, normally,
the peak amplitude will increase (decrease) if the width gets
narrower (broader) [see Fig. 3(d)].

V. TWO-DIMENSIONAL DIRAC SOLITONS

As mentioned in the Introduction, BWAs have been used
to mimic phenomena in both nonrelativistic and relativistic
quantum mechanics. In [15] we have shown that one can
transform the nonlinear CMEs governing the light propagation
in BWAs into the one-dimensional nonlinear relativistic
Dirac equation (NRDE). In this section we show that one
can also successfully convert Eq. (1) governing the light
propagation in BWLs of class 1 into the two-dimensional
NRDE. After setting a2m,2n = (−1)m+n�1(m,n), a2m−1,2n =
−i(−1)m+n�2(m,n), a2m,2n−1 = −i(−1)m+n�3(m,n), and
a2m−1,2n−1 = −(−1)m+n�4(m,n), and following the standard
approach developed in [11,12], one can introduce the two
continuous transverse coordinates x ↔ m, y ↔ n, time coor-
dinate t ↔ z, and the four-component bispinor �(x,y,t) =
(�1,�2,�3,�4)T which satisfies the following nonlinear
equation:

i∂t� = −iκ1(α∂x� + ρ∂y�) + κ2δ∂
2
xy� + σβ� − γG, (5)

where the nonlinear terms G ≡
(|�1|2�1,|�2|2�2,|�3|2�3,|�4|2�4)T ; α is a 4 × 4 matrix
with all elements equal to zero, except α1,2 = α2,1 = α3,4 =
α4,3 = 1; ρ is a 4 × 4 matrix with all elements equal to zero,
except ρ1,3 = ρ2,4 = ρ3,1 = ρ4,2 = 1; δ is a 4 × 4 matrix with
off-diagonal elements equal to unity, and all other elements
equal to zero; and β = diag(1,−1,−1,1). If the coupling
coefficient κ2 = 0, then Eq. (5) has the same structure as the 2D
NRDE describing the dynamics of a freely moving relativistic
particle reported in [35] in the linear regime. As mentioned
above, in the case of 1D BWAs, Eq. (5) is reduced to the 1D
NRDE reported in [15]. Note that the nonlinearity that we have
in Eq. (5) violates Lorentz invariance [36], and is similar to
that of the Dirac equations in Bose-Einstein condensates [27].
Because the 2D soliton solutions of Eq. (1) exist and are stable
as shown in Figs. 2 and 3, the 2D Dirac soliton solutions
of Eq. (5) also exist and are stable. It is crucially important
to emphasize that with the properties of the 2D solitons
investigated in Sec. III, and with the above transformation
rules connecting am,n(z) to the four-component bispinor
�(x,y,t), in the quasicontinuous limit, four components of
the bispinor �(x,y,t) are smooth functions, and thus all
derivatives in Eq. (5) make sense. In other conditions, it
is not always possible to convert Eq. (1) into Eq. (5). This
feature is also true for the case of 1D NRDE as already
pointed out in [15]. To clarify this important point better, as
an example, let us analyze the component �1 at the beginning
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FIG. 7. (Color online) (a) Evolution of the spatial spectral of
the 2D soliton in the (kx,ky,z) space in square BWLs of class 1.
(b),(c) Contour plot of the spatial spectrum of the 2D soliton at a
specific frame with z = 60 and 80, respectively. Parameters are the
same as in Fig. 2.

(where z = 0):

�1(m,n) = a2m,2n(0)

(−1)m+n
= 1

(−1)m+n

f ψ2m(0)ψ2n(0)

ψ0(0)

= i2(m+n)

(−1)m+n
f

2κ1

n0
√

σγ
sech

(
2m

n0

)
sech

(
2n

n0

)

= f
2κ1

n0
√

σγ
sech

(
2m

n0

)
sech

(
2n

n0

)
. (6)

Thus, in the quasicontinuous limit,

�1(m,n) ↔ �1(x,y) = f
2κ1

n0
√

σγ
sech

(
2x

n0

)
sech

(
2y

n0

)
,

(7)

and in this case, it is clear that all the derivatives ∂x�1,∂y�2 and
∂2
xy�1 in Eq. (5) exist. Analogously, one can easily confirm that

all other derivatives of �2,�3, and �4 with respect to x and y

also exist. Our numerical analysis also shows that for the soli-
ton shown in Fig. 2 four components of �(x,y) are also smooth
functions during propagation, which means that the derivatives
in Eq. (5) exist not only for the beginning (where z = t = 0),
but also for other values of z and t . Indeed, in Fig. 7(a)

we show the spatial spectrum evolution of the 2D Dirac soliton
illustrated in Fig. 2. The contour plot of this spatial spectrum at
two specific frames with z = 60 and 80 is shown in Figs. 7(b)
and 7(c), respectively. In Fig. 7, kx and ky are two components
of the wave number in the x axis and y axis, respectively. As
clearly shown in Fig. 7, kx and ky can only have values around
±π/2 during propagation (see also Fig. 2 in [15]).

Note that due to the factor i2n in Eq. (3), am,n itself is
not a smooth function. Indeed, as an example, where z = 0
the sign of am,n changes from negative to positive and vice
versa when m or n jumps to its closest value [whereas the
sign of each component of �(m,n) stays the same except for
the moments when functions tanh(2n − 1) and tanh(2m − 1)
cross the abscissa]. Thus, unlike �(x,y) one cannot talk about
the derivatives with respect to x and y for a(x,y) in the
quasicontinuous limit.

VI. CONCLUSIONS

In conclusion, we have demonstrated with accurate nu-
merical simulations the generation and dynamics of 2D
solitons in BWLs of classes 1 and 2. These 2D solitons
are quite robust as they can be formed from the initial
beams which are not the exact 2D solitons in BWLs. We
have also shown their connection to 2D Dirac solitons in
a nonlinear extension of the 2D relativistic Dirac equation
describing the dynamics of a freely moving relativistic particle.
Our results suggest that BWLs can be used as a classical
simulator to investigate relativistic 2D Dirac solitons, enabling
one to realize an experimentally accessible model system of
quantum nonlinearities that have been so far a subject of
speculation in the foundation of quantum field theories. The
analysis of analog of quantum field theory effects as those
described in this work is applicable to virtually any nonlinear
discrete periodic system supporting solitons, either classical
or quantum, therefore making our results very general and of
relevance to different systems beyond optics, such as ultracold
atoms in optical lattices and trapped ions where analogs of
linear relativistic effects, such as Zitterbewegung, have been
studied and observed [37–39].
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