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Parallelizing a Matched Pair of Ray-Tracing Projector
and Backprojector for Iterative Cone-Beam CT
Reconstruction

Van-Giang Nguyen and Soo-Jin Lee, Member, IEEE

Abstract—TIterative reconstruction methods in X-ray CT can
provide better image quality than analytical methods but their
applications in practice are still limited due to computationally
expensive calculations of repeated projection and backprojection
operations. In the past decade, GPU-accelerated methods have
been successfully used to reduce the computation time for pro-
jection and backprojection. However, it has been of a difficult
problem to overcome a trade-off between the accuracy of recon-
structed images and the efficiency of parallel computations. For
example, when the size of the voxel in the reconstructed volume
is larger than that of the detector bin, the use of the conventional
unmatched projector-backprojector pair can lower the accuracy
of reconstructed images due to the error caused by the mismatch
between the projector and backprojector. In this paper, we pro-
pose a new GPU-accelerated scheme for the most widely used
ray-tracing method (RTM) to perform projection and backpro-
jection operations. Unlike the previous works that accelerate the
computation of backprojection by using approximations, our
method does not use any approximations for parallelizing the pro-
jection and backprojection operations. Since our method is exact,
the results are as accurate as those obtained from the nonaccel-
erated method. We apply our method to iterative reconstruction
for dental cone-beam CT systems and test its performance using
both the simulated data using a 3-D digital phantom and the real
data acquired from an offset flat-panel X-ray CT system. Our
experimental results show that, the proposed method achieves a
substantially high acceleration rate while retaining the accuracy
of the RTM for both projection and backprojection.

Index Terms—Backprojector, cone-beam CT, compute unified
device architecture (CUDA), GPU, iterative CT reconstruction,
projector, ray-tracing method (RTM).

I. INTRODUCTION

TERATIVE tomographic reconstruction methods have re-
cently found their popularity in X-ray CT due to their ability
of providing remarkably improved image quality over analyt-
ical methods. In particular, they are superior to their analytical
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counterpart under a low-dose condition that requires less radia-
tion doses to patients while retaining the image quality. Despite
their several advantages over the analytical methods, the iter-
ative methods are often limited in practice due to their expen-
sive computation required to achieve a good solution. In par-
ticular, they require time-consuming calculations for repeated
projection and backprojection operations, which is more severe
for low-dose scans where more iterations are usually needed to
compensate for the higher noise level.

Over the last three decades, efforts have been made to de-
velop efficient methods of projection and backprojection for
tomographic reconstruction [1]-[5]. The traditional ray-tracing
method (RTM) [1] measures the intersecting length of a ray
with each voxel. The recently proposed distance driven method
(DDM) [3] and separable footprint method (SFM) [4] take into
account the finite-width detector and approximately measure the
intersecting volume between the square-based pyramid formed
by the X-ray source and the detector cell with the voxel. If the
blob is used as an image-basis function, the method in [5] can
be used. In this paper we consider the popular voxel represen-
tation only.

Among the three representative methods to perform projec-
tion and backprojection operations, the RTM has been most
widely used in CT reconstruction due to its good performance
as well as the ease of use [6]—[8]. In fact the RTM is recognized
as one of the most accurate ways of representing physics of the
Beer’s law.

Aside from the popularity of the RTM, there are some prac-
tical cases that the RTM is exclusively used. For example, in
dental cone-beam CT systems, the suspension arm that holds
the X-ray source and the detector is often unbalanced due to
imperfect placement of the detector. For a cost-effective system
that uses a relatively small detector panel, the source-detector
axis is often positioned offset to the center of rotation so that
the field-of-view of a scanner can be enlarged. In this case the
detector plane is slightly tilted in vertical direction and/or posi-
tioned unparallel to the rotation axis. When the DDM or SFM
is used for modeling a projector—backprojector pair for such
practical cases, an additional interpolation procedure is needed,
which may result in a loss of accuracy in reconstructed images
[4, p. 1849]. In other cases, where the detector has ultra high
resolution (e.g., dental CT imaging) with a relatively small size
of the detector bin while the size of the voxel in reconstruction
is not necessarily up to that of the detector bin, the difference
between the RTM and the other advanced methods becomes
minor since the RTM already models many rays passing through
the voxels.
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In recent years, the computational speed of projection and
backprojection for iterative reconstruction has been dramat-
ically increased by using GPUs (graphics processing units).
GPU-accelerated iterative reconstruction algorithms vary from
conventional ones, such as simultaneous algebraic recon-
struction technique (SART), and expectation maximization
(EM) algorithms to specially designed algorithms for low-dose
reconstruction such as the conjugate gradient least square
and tight-frame-based reconstruction algorithms [7]. (For an
overview of the field, see [9].) Unfortunately, efforts to improve
the accuracy of modeling a projector-backprojector pair have
been hindered by the needs for approximations to maximize
the efficiency of the GPU [7], [10]-[12]. The unmatched
projector-backprojector pairs often used for GPU-accelerated
methods also cause additional errors in iterative reconstruction.
For CT reconstruction under low-dose conditions, the degrada-
tion due to these errors becomes more significant as the number
of iterations is increased.

When the size of the voxel in the reconstructed volume
is larger than that of the detector bin, the use of the con-
ventional unmatched projector-backprojector pair, where the
voxel-driven method (VDM) is used for backprojection while
the RTM is used for forward projection, can be considered as
a resampling of the RTM-based projection values in the fine
detector grid onto the coarse volume. In this case, the interpola-
tion process involved in the VDM is not guaranteed to operate
with the exact detector bins that were used for the RTM-based
forward projection, which can result in the degradation of the
reconstruction accuracy.

In this work, we propose a GPU-accelerated exact ray-tracing
method for both projection and backprojection. Unlike the pre-
vious works that used the RTM in forward projection and the
voxel-driven method in backprojection [7], [10]-[12], we de-
velop a new GPU-accelerated method for a ray-tracing pro-
jector-backprojector pair which does not use any approxima-
tions for its parallelization. Since our method is exact, the results
are as accurate as those obtained from a nonaccelerated method.

To date, there have been only a few attempts to accelerate the
projection/backprojection operations without an approximation
[13]-[16]. The method presented in this paper stems from our
prior work [13] on the exact calculations of projection/backpro-
jection using the strip-area based and distance-driven methods
where the same system matrix is used for both projection and
backprojection in each method. The key idea used in [13] is that
each projection to a given detector bin is calculated and updated
in each thread; the computation of each projection is indepen-
dently performed in parallel with other projection computations.
Backprojection is performed by independently updating each
pixel in each thread in parallel with other pixel updates. For a
given pixel, the bins which contribute to the pixel are first indi-
cated and then used for backprojection. Here we extend the idea
to three-dimensional (3-D) cone-beam CT with an RTM system
model.

While our method is applicable to general cone-beam CT,
we focus on a practical case of offset flat-panel X-ray CT sys-
tems where the source-detector axis is intentionally positioned
offset to the center of rotation to enlarge the field-of-view of the
scanner [17]. In this case, since the image volume as well as the
projection data is relatively large and the detector plane is often
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Fig. 1. Cone-beam geometry with a flat panel detector.

unparallel to the rotation axis, the use of the RTM can be a better
choice for parallelizing a matched pair of projection and back-
projection without any approximations.

The remainder of this paper is organized as follows.
Section II presents an exact, parallelizable method to efficiently
perform RTM-based projections and backprojections for CT
image reconstruction. A representative iterative reconstruction
algorithm used in our experiments is also presented in Section II.
Section III presents our simulation studies to compare the
computational performance of the proposed GPU-based
method with that of the conventional CPU-based method.
Section IV discusses other related works and concludes.

II. METHODS

A. Notations

In this work we consider the axial cone-beam geometry with
a flat panel detector as shown in Fig. 1. The source moves along
a circular trajectory centered at the rotation center on the plane
y = 0. The source position is parameterized by (zg, yo, z0) =
(Dsesin 8,0, D, cos 8) where D, is the distance between the
source and the center of rotation (CoR) and 8 is the rotation
angle.

The local coordinate of the detector is denoted by (s, t) where
s-axis is perpendicular to the y-axis and the ¢-axis is parallel to
the y-axis. The numbers of detector bins are N, and /N; along the
s- and t-axes, respectively, and the physical size of each detector
bin is B, x B;. The distance from the center of rotation to the
detector is D.4. When 8 = 0, the detector is parallel to the x — y
plane, and the physical position of the lower left corner of the
detector is {(Z40, Yao, Dea).

In practical X-ray imaging, the detector has finite resolution
with a finite size of each detector element. Here we denote the
projection onto the detector element indexed by (u, v) at angle
8 as g(u,v,8) where u and v are the indices for s- and ¢-axis,
respectively. The object p is voxelized in a 3-D lattice so that
each voxel of the object is denoted by p(i, 7, k).

In a discrete representation, the forward projection is now
given by

g(“‘v v, 0) = Z G‘(u7 U, 07 ivjv k)/j‘(lvjv k)
igk

where a(u, v, 8,1, j, k) denotes the element of the forward pro-
jection matrix which weights the contribution of the voxel in-



NGUYEN AND LEE: PARALLELIZING MATCHED PAIR OF RAY-TRACING PROJECTOR AND BACKPROJECTOR 173

TABLE I
OUTLINE OF RAY-TRACING PROJECTION

Calculate the source position (x,, y,,z,) and the center (x,,,,z,) of

the detector bin (#,v) at angle 6.

for each voxel (i, j,k) in the ray connecting (x,,,,z,) and (x,,y,,z,)
Measure a(u,v,6,i, j,k) using the improved Siddon’s method
g(u,v,0)=g(u,v,0)+a(u,v,0,i, j,k)x u(, j,k)

end

dexed by (i, j, k) to the detector bin indexed by (u, v) at angle
8. The backprojector is the adjoint of the projector and given by

v(i, g, k) = Z alu,v,8,1i,j,k)g(u,v,0)

u,v,0

where v(4, j, k) is the backprojection of g{u, v, 8).

B. Parallelizing RTM-Based Projection and Backprojection

In the RTM, a(w, v, 8,1, j, k) is modeled by the intersecting
chord length of the ray which is defined by the line connecting
the source located at (2, ¥n,20) = (Dscsiné,0, Dy, cosf)
and the center

1 [2a0 + (u+ 0.5)B,]cos @ — D,4sin 6
y1 | = ¥Yao+ (v+0.5)B,
2 —[2ao + (v + 0.5)B,]sind — D4 cos 6

of the detector bin indexed by (u,v) at angle # and passes
through the voxel indexed by (7, 7, k) (see Fig. 1). In this work,
we will adopt this model and aim to accelerate both projection
and backprojection operations.

To efficiently calculate the intersecting chord lengths of a ray
that passes through a 3-D object, we employ the method devel-
oped in [18], which is an improved version of the well-known
Siddon’s method [1]. This method is more efficient than the
original Siddon’s method in that, instead of calculating the para-
metric intersection values of the ray with all voxels and storing
them in a list which is later revisited to calculate voxel indices
and chord lengths, it recursively computes the indices and chord
lengths followed by the precomputed index of the first voxel
without additional multiplications.

While we focus here on the Siddon’s ray-tracing method, one
can also consider an alternative method based on the z-buffer
test [19]-[21]. In this method each X-ray detector element is
modeled as a screen pixel, and the front and back faces of the
volume voxel are rendered separately so that the spatial coordi-
nates of projected voxels can be stored in two buffers separately.
The chord length of a ray passing through the voxel is then ob-
tained by subtracting the two buffers.

Here we describe how we parallelize both projection and
backprojection operations using the GPU. In the GPU-acceler-
ated forward projection, each thread of the GPU independently
and simultaneously computes the ray-integral for one ray. The
object p is stored in the global memory or texture memory of
the GPU and is accessed by all GPU threads. The outline of the
algorithm is summarized in Table I.

One straight way to perform backprojection is to use the RTM
as in the forward projection. In that case each GPU thread will
perform backprojection for one ray by updating every voxel in-
tersected by the ray that passes through the image space. Un-
fortunately, this method is not optimal for parallelization since
1) many writing operations are performed within a thread (since
one ray intersects many voxels) and 2) more than one thread can
simultaneously update a voxel.

In this work, we propose a new method to perform backpro-
jection in the GPU. Our method is not only parallelizable and
optimized for the GPU but also free from unwanted approxima-
tions. Therefore, it results in an exactly matched projector-back-
projector pair. The overall strategy is to efficiently find a set of
possible projection rays that may pass through the voxel (%, j, k)
so that the backprojection can be performed by distributing the
projection values of the rays back into the voxel (i, 7, k) using
the weight factor a(u, v, 8,1, j, k). In this case the backprojec-
tion operation is performed just like the voxel-driven backpro-
jection which is widely used in conventional GPU-accelerated
backprojection methods that involve approximations. However,
our method involves no approximation.

More specifically, to perform backprojection into a voxel
(1,4, k), for each projection angle 8, a set of detector bins,
which are hit by the projection rays passing through the sphere
that encloses a voxel, are considered to contribute to the voxel
for backprojection. (In this work, to simplify calculations, we
model the voxel as a cube.) For each ray (connecting the source
and the center of a detector bin) in the set, the intersecting
chord length in the voxel is calculated by the RTM and used
as a weight for the backprojection along the ray. Note that the
ray-tracing method in this case is simplified so that only one
chord length is calculated.

In general, when 8 # 0, the detector plane is not parallel
to the z—y plane. Therefore, it is more complicated to find
the set of bins contributing to a voxel for backprojection. To
overcome this problem, the source and the center of the voxel
being considered are virtually rotated by —# so that the detector
plane remains parallel to the z—y plane. The rotated positions
of the source and the center of the voxel are now denoted as
(Zor, Yor, zor) and (Zyr, Ypr, 2or ), respectively. In this case the
set of detector bins contributing to the voxel corresponds to the
elliptical area formed by projecting the sphere that encloses the
voxel centered at (z,,, Ypr, Zpr) onto the detector plane (see
Fig. 2). In general, the three types of conic section formed by
the intersection of a cone with a plane are the ellipse, parabola,
and hyperbola. In our case, however, due to the small opening
angle of the cone and the geometry of the CT scanner, only
ellipse (and circle) is formed in the conic section.

Note that the elliptical area formed at the z = z* = D4 plane
is a cross section of the cone defined by its vertex positioned at
(xor, Yor, Zor ), a half of the opening angle «, and the cone axis
(Zyr — Zor, Yor — Yor, Zor — Zor) as indicated in Fig. 2. The el-
liptic equation can be derived from the following dot product of

a ray vector S—X2 , which is tangential to the sphere that encloses
the voxel, with the cone-axis vector S’T}

Cos &

i oo
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Fig. 2. Projection of a voxel-enclosing sphere onto the detector plane.

where S—Xk =

(x—2or, Y—Yor, 2—

ZOT)"W -

— (ISVI2 = r?)[a2, by + (" =20’

(':Uur_xOm Yor—

Yors Zor — Zo0r), and cos?a = 1 — 7'2/||,§/>H2 with r indicating — Jsg,r(;rw LOT) yOr (yor — yo,r)2
the radius of the sphere enclosing the voxel. — (2or — 207) (2" — 20r)?
Equation (1) can be rewritten as (2), shown at the bottom of _ 9 (Zor — 20,)Yor — Yor)
the page, and setting z = z*, the elliptic equation is given by ordoriLor 01 Yor — Yor
9 5 + 2yO'r (zv'r - ZOT‘)(Z - ZO'r)(yU'r - yOT)
) Arx 4+ Bay+Cy*+ De+Ey+F =0 3) +2$0r(zw_30r)(z* —ZOT)($UT—$OT)~
ere
v ‘1} ) ) In order to find the set of detector bins falling inside the el-
A= ([[sV|IF - (Tor — Tor) lipse, we may need the following procedure of finding the ellip-
= —2(xyr — :Lo,)(yw — Yor) tical area from the implicit elliptic equation in (3).
= an Yy ( ~ yon)? To determine the four tangent points due to the four tangent
T Yor — Yor lines (the dotted lines in Fig. 3) to the ellipse, we first measure
D = —2a2,.( HWHZ‘ )+ 200 (Zor — 20r)? the implicit differentiation of (3) as follows:
+ 2y0'r (J/'m' - a/O'r)(yv'r - yOT)
- 2(~U'r - ZO’I‘)( * - 707‘)(-771)7' - -7707') dy - 2Ax + By + D (4)
= _Qyt]r HWHQ + 2y0r(yvr y(]r)2 dx Br + zcy +E
+ 220, (Zor — Tor)(Yor — Yor) The two tangent points y; and y; (on the top and bottom of the
= 2(2pr — 200-)(2" = 20r) (Yor — Yor) ellipse, respectively) can be calculated by setting % = 0, which

-T'Or)(-T' - xO'r) + (yv'r

[(fw -

(\

- yOT)(y - yOT) + (Zvr

- r2> [(m —0r)? + (y — yor)* + (2 — zm«)ﬂ

- ZOT)(Z - ZOT)}Q

ll“ - J;OT)Q +(y — yOT)2 +(z - ZOT)Q}

2)
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Fig. 3. Selecting possible detector bins that may contribute to a voxel for back-
projection: (a) simple method considering bins in the shaded rectangle; (b) our
method considering bins hit by the rays passing through the sphere that encloses
a voxel.

By+D

results in x = . Substituting 2 into (3), we have the
following equation:

B2\ , BD D?
<Cm>y +<E 2A>y+<FH>—O
which leads to y; = max{y;,y2}, 1 =
Fig. 3(a)] with

min{yi,y2} [see

(o )/ )

where A, = (E — 52)? — 4(C' = £1)(F - 2).

Similarly, the other two tangent points x; and x,. (on the left
and right of the ellipse, respectively) can be found by setting
% = oo, which is equivalent to Bz + 2Cy + F = 0 ory
= M By substituting y into (3), we get the following

equatlon

B\ BE E?

which leads to z; = min{x1, 22} and , = max{z1, 22} [see
Fig. 3(a)] with

m__(p__)if/ (A——) (©)

where A, = (D — BBy (44— B yF - E)

Note that since the general elhptlc equation in (3) holds only
when B? — 4AC' < 0 [22], the denominator in (5), (6) is always
nonzero.

Having found the four tangent points on the ellipse, one can
refine the set of potential detector bins that may contribute to
the voxel for backprojection by selecting a rectangular region
whose four corners are defined by (i, v:), (v, ¥), (21, ys),
and (2, ) [see the shaded area in Fig. 3(a)]. However, the
rectangular region contains many irrelevant detector bins that
do not contribute to the voxel. These irrelevant bins increase
the computation time of backprojection by making unnecessary
visits to those bins. To remove the irrelevant detector bins, for
each row in the range (ys, y:), we calculate the effective range
of columns that actually contributes to the voxel [see Fig. 3(b)].

The outline of our ray-tracing backprojection is summarized
in Table II where || denotes the largest integer which is not

Y12 =

TABLE II
OUTLINE OF EXACT RAY-TRACING BACKPROJECTION

for each projection angle &
Calculate source position (x,, y,,z,)
Rotate the center of voxel (x,,y,,z,) and source (x,,,,z,) by —€
about the center of rotation and denote the rotated positions as
(x,.,¥..,2,) and (x,,,¥,,,Z,) > respectively.

Calculate y,,y, using (5)

for v= L(yb _ydU)/BrJ e L(y/ ~Yao)/! B/J
Compute 3" =(v+0.5)B, +y,,
Solve (3) with y =" and denote the solutions as x,,x, where
XS
for u=|(x,—x;)/B, | ,....[ (x,—%,,)/ B, |
Calculate position of center of bin (u,v,8) and denote as
(x, 31,2
Use RTM to calculate intersecting chord length
a(u,v,6,i, j, k) of ray directing from (x,, y,,z,) to
(x,,3,,z,) and passing through voxel centered at (x,,y,,z,) .
Backproject g(u,v,8) into voxel v(i, j,k) using
v(i, j,k) =v(i, j.k)+a(,v,0,i, j,k)x g(u,v,0)
end

end
end

greater than z. The procedure described in Table II is performed
independently and simultaneously by each thread of the GPU.

One can also consider a different approach to the calculation
of the elliptic equation, which uses a parametric form of the line
from the source to a certain point in the detector and makes that
line tangent to the ellipsoid enclosing the voxel.

Given (xq, Yo, z0) as the source position, (1,1, 1) is the
detector position which is given by

1 scosl — D,gsin 6
Y1 | = t 0
1 —ss8in6 — D.qgcos 8

where (s,t) are the coordinates in the s- and #-axis, respec-
tively, of the detector plane. The line connecting (zg, yo, 20)
and (21,91, #1) can be parameterized by the following system
of linear equations:

2= Dy sinf+ \(scosf — (D.q+ Ds.)sin8)

¥ =yo+ Mt —yo) ®)
z2=Dsco80 4+ \(—ss8inf — (D.g+ Ds.)cosf)

where 21,y1, 21, o, 20 have been replaced by its parametric
values.

The ellipsoid enclosing the considering voxel V (z,, yy, 2y)
having semiaxes of lengths a, &, and ¢ in z-, y-, and z- axis,
respectively, is given by the following equation:

2 2 2
T — Ty Y — Yy Z— Zy
( a2)+(yb2y)+( 02):1‘ ©)

The intersection between the line (8) and the ellipsoid (9) is
the solution to the quadratic equation of A. The projection of
all tangent points around the elliptic volume correspond to the
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cases where the quadratic equation of A has a unique solution,
which is achieved when

Ay=As  + Bst+Ct?+ Ds+ Et+ F =0 (10)
where
4 [cos 0(Dsesind — x,)  sinf (Decosf — z,)\°
o a? a 2
cos?0  sin?0
B ]\l( a? + 2 )
o fcos8(D.sind —x,)  sinf (Diccosh — z,)
B=2 > - 3
Yo — Yo
X ( 5 )
_ (Yo —y)? 1
o= (t5t) - v ()
cosO(Dgosind — z,) sinf(D,.cosd — z,)
D= 2N< = = 5
o (7 cos G(Dcda;r D,.)sin# n sin 8(D.q ;DSC) cos@)

E=2N (—yol;y”) —anm (52)

bZ
F = N?
((Dea + Dse) sin 0)2 yo>  ((Ded + Dse) cos 9)2
-M a? b2 c?
with
Dsc. 07”@2 *u2 Dsc 0*1)2
Z\I:( sm2 L)+(y0 y)+( cos z)i1
a b2 c?

and

N — (Dcd+Dsc) Sine(DscSine_'rU) yO(yO _yv)

A a2 a b2

(Deg + Dy.)cos8 (D, cos 6 — z,)
2 ’

By applying the method of finding four tangent points due to the
four tangent lines to the ellipse, we can determine the effective
bins contributing to a considering voxel. Unlike the previous
method, this method is not restricted to cubic voxels. Though
this method is originated from a different perspective, it results
in exactly the same elliptic equation and has similar computa-
tion load to the previous one.

Yet another method to find effective bins contributing to the
backprojection of a considering voxel is to project all eight ver-
tices of the cube onto the detector plane. There we find the rect-
angular area bounding all eight projected points. The detector
bins falling inside this rectangular area are used for backprojec-
tion. This method was previously proposed in [16] and [23]. Al-
though this method is slightly (about 2% according to our own
experiment) faster than our method for cubic voxels, it can be
even slower than our method for noncubic voxels.

C. lIterative Reconstruction Methods for Cone-beam CT

Recently, statistical reconstruction methods have been pop-
ular in the X-ray CT imaging community. This is mainly due to
their flexibility in nonconventional geometries of CT systems
as well as their ability to model the physical aspects of imaging
process and assumptions on the spatial character of the under-
lying image even under low-dose conditions. However, since
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the statistical methods are given in an iterative fashion, they
usually require many iterations to achieve a desirable solution
[24], [25].

Numerous attempts have been made to accelerate iterative
reconstruction methods which can produce acceptable images
with much fewer iterations than the standard algorithms by
using well-known ordered subsets algorithms [26]-[28]. In
ordered subsets algorithms, projection data are first subdivided
into an ordered sequence of disjoint subsets. An iteration of
the algorithm is then defined as a single pass through all the
subsets. For each subset, the algorithm is performed and the
reconstruction from this subset becomes the initial value in the
next subset.

Here we briefly describe the relaxed ordered-subset convex
(OSC) algorithm [29], which is known to significantly improve
the convergent rate of the well-known convex ML-EM algo-
rithm [30], and show how to further accelerate the algorithm
by using parallel computation. Since our method is applicable
to any algorithm that involves ray-tracing projections and back-
projections, it can also improve other iterative algorithms such
as the maximum likelihood transmission algorithm [31]and pe-
nalized weighted least squares algorithm [32].

In this subsection, to simplify the notations for the voxel
u(i, j, k), transmission data p{u,v,d), and system matrix
element a(u,v,0,i,5,k), we use lexicographic ordering and
change them to y;, p;, and a,;, respectively. From an imple-
mentational viewpoint, the OSC algorithm can be written as
follows:

initialize 1(%)
for each iterationn = 1, ..
M(n,O) _ M(nfl)

for each subset m = 1,..., M

gi =3 aiu{™™  Vie S(m) (11)
J

171' = b.i exXp (*g.i) V1 S S(m) (12)

n,m n,m n,m Zz S(m aij(ﬁi _pi) .

g = g ) S

ZﬂiES(m) ai;Pigi
(13)
end

”(71) — ”(n,ZW)

end

where p; is the expected number of transmission counts in de-
tector element ¢, n is the iteration number, M is the number of
subset, m is the subset number, A is the relaxation parameter,
p; 1s the measured number of transmission counts in detector
element i, b; denotes the blank scan counts in the ¢th bin, and
S(m) contains the projection in subset m.

Each subiteration of the OSC algorithm contains one pro-
jection operation in (11), two backprojection operations in (13)
(one in the numerator and the other in the denominator). In this
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representation, the OSC algorithm, though it can be parallelized
by updating all voxels simultaneously and independently, still
contains time-consuming projection/backprojection operations.
With the GPU, all operations of the OSC algorithm can be ac-
celerated by using our proposed method. The overall procedure
for the GPU-accelerated OSC algorithm is as follows.

1) Perform projection in (11), ¥i € S(m).

2) Update p; in (12), Vi € S(m).

3) Perform backprojection in both numerator and denomi-
nator terms of (13), V5.

4) Update p{™" V), vj.

For OS algorithms including the OSC algorithm, the number
of subsets has great impact on the convergence rate; the more the
number of subsets, the faster the convergence rate. The details
on the impact of the number of subsets on the reconstructed
images in the OSC algorithm can be found in [28].

In offset flat-panel CBCT, the projection coverage is position
dependent with the central region having about 360° angular
coverage while the other having slightly larger than 180°. If the
conventional iterative reconstruction method is directly applied,
the nonuniform sensitivity results in artifact in the reconstructed
image [17]. Here we follow the method introduced in [17], [33]
so that the iterative reconstruction methods are modified by in-
troducing normalized redundancy weighting.

In particular, for the backprojection terms in (13), an addi-
tional weight factor is introduced as follows:

n,m+1 n,m n,m ZiES m a"ijw‘i(ﬁi 7pi)
R R o el (L)
Yies(m) ®ijwibDigi
where the weight w; for bin i{u, v, #) depends on its horizontal
detector coordinate s,, as follows:

w; = w(su)

0, for su—so<—%
=< 2 (1+sin(=220n)), for — % <s,—s <% (15)
1

, for s, — 50 > W
where W is a parameter for the width and s is the forward-
projected position of the rotation axis on the detector. A slightly
different weighting scheme as in [33] can also be used.

Note that, for the application of the OSC algorithm in offset
flat-panel CBCT, the subsets are chosen in such a way that they
consist of groups of opposite projections (pairs of projections
acquired at opposite gantry positions) [17].

III. EXPERIMENTAL STUDIES

A. Experiments with Simulated Data

To evaluate the performance of our proposed method, we first
simulated an offset flat-panel X-ray CT system whose geometry
stems from a real system for our additional experiments with
real data described in the next subsection B. The system has the
detector resolution of Ny x N; = 784 x 964 (see Fig. 4). The
size of each detector bin is 0.15 mm x 0.15 mm. The number of
projection angles is 420 over 360°. The distance from the source
to the center of rotation is 405.3 mm. The distance from the
detector to the center of rotation is 250 mm. Since the detector is
offset tangentially to the acquisition trajectory, a central overlap

y

Rotation axis

]

detector  z

—

source

— detector

- z

source

(b)

Fig. 4. Illustration of the offset flat-panel CBCT system used in the experi-
ments. (a) Sagittal view. (b) Axial view.

region of 10.56 mm diameter is covered by all projections. The
reconstructed volume is of 512 x 512 x 512 with the cubic voxel
of (0.272 mm)3.

We performed simulation studies using a 3-D digital
phantom shown in Fig. 5(a) with the size of 512 x 512 x 512.
The noiseless transmission data were generated by using
Di = biexp(— Y ai;u;) where b; = 4095 Vi; p is the attenu-

ation coefﬁcientjmap in the phantom and a;; is the element of
the system matrix modeled by the RTM.

We implemented our GPU-accelerated matched RTM-based
projector/backprojector using a compute unified device archi-
tecture (CUDA) program model. We also implemented an un-
matched projector/backprojector pair where the projector was
modeled by the RTM and the backprojector was modeled by
the VDM which uses bilinear interpolation. The relaxed OSC
algorithm was used to reconstruct images. The number of sub-
sets was set to 210 and the number of iterations was set to 6.
The relaxation parameter was set to 0.5.

Our simulations were performed on a PC with an Intel Core
17-3820 3.60 GHz processor (only one core was used). The
graphic card used in our simulations was an NVIDIA GeForce
GTX680 GPU with 2 GB of RAM and 1536 processor cores
operating at 1 GHz. The technical details of the CUDA pro-
gramming model and the GeForce GTX680 GPU can be found
in [34] and [35], respectively. Since all the variables used in
the OSC algorithm were stored in the GPU memory, there was
no data transfer between the host (CPU) and the device (GPU)
throughout the iterations.

The computation time per iteration of the OSC algorithm
was 315 min for the CPU-based method using a matched pro-
jector-backprojector pair, 8.9 min for our GPU-based method
using a matched projector-backprojector pair, and 2.3 min for
the conventional GPU-based method using an unmatched pro-
jector-backprojector pair. With a matched projector/backpro-
jector pair, our GPU-based method was about 35 times faster
than CPU-based method. The conventional GPU-based method
using an unmatched projector-backprojector pair was about 135
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Fig. 5. OSC reconstructions with 210 subsets and 6 iterations for simulated
data. (a) Phantom slices. (b) GPU-accelerated reconstructions using RTM/VDM
(PE = 7.94%). (c) GPU-accelerated reconstructions using RTM/RTM (PE =
7.88%). Dashed and dot-dashed lines denote the locations of axial slices 1 and
2, respectively.

times faster than the CPU-based method. (Note that the com-
putation time for GPU-based methods can be decreased as the
number of subsets is decreased [36].)

It is important to point out that the CPU-based method
used here was implemented in an efficient way for the CPU
so that the projection and backprojection operations could be
performed concurrently. This was done by performing backpro-
jection along the ray that was traced for the forward projection.
In this case, the chord lengths calculated for forward projections
can be directly used for backprojections without additional cal-
culations. Nevertheless, our GPU-based method significantly
outperforms the efficiently implemented CPU-based method.

If all of the CPU cores are to be used (via openMP, for
example) for reconstruction, the algorithm needs to be re-
designed to algorithmically parallelizable. Given the ideal
implementation, the reconstruction time of the CPU-based
method can be reduced with the factor equal to the number of
CPU cores. However, since the number of cores in the GPU is
growing much faster than that in the CPU, the performance of
the GPU-based method is incomparably higher than that of the
CPU-based method.

Fig. 5 shows the reconstructed images using the two different
projector-backprojector pairs; RTM/VDM [shown in Fig. 5(b)]
and RTM/RTM [shown in Fig. 5(c)]. Note that the conventional
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(b)

Fig. 6. Circular regions used to measure regional percentage errors. (a) Sagittal
view highlighting the selected slices. (b) Axial view with region numbers.

RTM/VDM reveals the streak artifacts caused by the mismatch
between the RTM-based projector and the VDM-based back-
projector [see the enlarged images of the boxed regions of the
axial slices in Fig. 5(b)]. Meanwhile, though it is not shown
here, the proposed method resulted in exactly the same recon-
struction as the CPU-based method. (Since the result from the
GPU-based RTM/RTM is identical to the CPU-based method,
only GPU-based result is shown in Fig. 5).

For offset CBCT as well as conventional CBCT, as shown
in Fig. 4, acquiring projections on a circular source trajectory
does not collect enough information needed to reconstruct the
region illuminated by X-ray during the acquisition. Therefore,
some regions may lack information for full reconstruction. In
this work, since we did not use any correction for the “axial trun-
cation” artifact, such as extending projection in axial direction
by extrapolation [17], the artifact remained in the reconstructed
images. In our experiment, since the upper part of the phantom
(Fig. 5, sagittal slices) belongs to the area having insufficient
data to reconstruct, it has high-intensity artifact near the top of
the reconstructed image.

To verify the quantitative performance of the proposed
method, we calculated the percentage error (PE) of recon-
structed images, which is given by

[l — &l

PE =10
2]

x 100%

where p and fi are the phantom and reconstructed image, re-
spectively, and ||.|| denotes the Lz norm. When measuring PEs,
to exclude the reconstruction slices with the strong artifact, we
selected the axial slices below the dashed line in Fig. 5 (sagittal
slices). We also measured regional PEs (evaluated within each
region) of the six circular regions indicated in Fig. 6.

Our numerical results (overall PEs and regional PEs) eval-
uated on the reconstructed images (and shown in Table III)
confirm that the matched GPU-based RTM/RTM pair provides
more accurate reconstructions than the unmatched RTM/VDM
pair and there is no difference in PEs between the CPU-based
RTM/RTM and the proposed GPU-based RTM/RTM recon-
structions.

To test the effectiveness of our method in a different condi-
tion where the size of the voxel in the reconstructed volume is
smaller than that of the detector bin, we performed additional
experiments by reducing the detector resolution to Ny x Ny =
392 x 482, while retaining the voxel resolution. In this case the
size of the detector bin is 0.30 mm x 0.30 mm and that of the
voxel is 0.272 mm X 0.272 mm X 0.272 mm. Our own visual
inspection of the reconstructed images verified almost no differ-
ence between the two methods.
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TABLE III
REGIONAL PERCENTAGE ERRORS (%) OF CPU-BASED AND GPU-BASED
RECONSTRUCTIONS
ROI 1 2 3 4 5 6 Overall
GPU
(RTM/VDM) 285 284 263 266 269 3.15 7.94
CPU&GPU
(RTM/RTM) 274 273 251 252 228 277 7.88

We evaluated the log-likelihood over the several iterations for
both the RTM/RTM-based and RTM/VDM-based reconstruc-
tions using the following log-likelihood function

L{jz) = Zi {pi log(b;e ZJ‘ aijﬂj) — be Zj ijfts }

where [z is the reconstructed image. As shown in Fig. 7 which
plots the log-likelihood versus iteration curves for the two dif-
ferent sizes of the detector bin, the RTM/RTM pair clearly out-
performs the RTM/VDM pair when the size of the voxel is larger
than that of the detector bin. As the size of the voxel becomes
smaller than that of the detector bin, the performance difference
between the two pairs is almost negligible.

B. Experiments with Real Data

To validate the qualitative performance of our proposed
method with real data, we acquired the projection data from a
laboratory head phantom using an offset flat-panel X-ray CT
system (VOLUX21, Genoray Company Ltd., South Korea).
The parameters for acquisition and reconstruction are about the
same as those described in Section III-A except that the recon-
structed volume is of 512 x 512 x 512 with the cubic voxel of
(0.32 mm)®. For real data acquisition, the detector is slightly
rotated in vertical direction with tilt angle 8 = 0.20°, therefore
the vertical axis of the detector plane is no longer parallel to the
rotation axis. This was reflected in modeling our RTM/RTM-
and RTM/VDM-based projector/backprojector pairs. Note
that, for the recently proposed SFM and DDM, an additional
interpolation process is needed to resample the projection data
into the new coordinates that are unparallel to the rotation
axis. In this case the accuracy of the projection/backprojection
operations is lowered by the interpolation process.

In visualizing the reconstructed images, some areas were
truncated so that the only voxels having distance from rotation
axis less than 69.48 mm could be shown. (This number was
derived from the field of view of the scanner).

The reconstruction procedure was similar to that in
Section III-A except that the number of iteration was set to 4
and relaxation parameter was set to 0.4. The blank scan counts
b; were simply set to an average value of the projection data in
air scan.

Figs. 8 and 9 show the reconstructed images where the pro-
posed method substantially reduces the artifacts that appear in
the image reconstructed by the conventional RTM/VDM. Sim-
ilarly to the results from our simulation studies, since the upper
part of the phantom (Fig. 9) belongs to the area having insuffi-
cient data to reconstruct, it has the high-intensity artifact near
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Fig. 7. Log-likelihood L(f1) versus iteration curves for RTM/RTM and
RTM/VDM pairs: (a) voxel size of (0.272 mm)® and detector bin size
of (0.15 mm)?; (b) voxel size of (0.272 mm)® and detector bin size of
(0.30 mm)?.

the top of the reconstructed image. According to our experi-
ments, as the number of iterations increases, the strength of the
artifact due to the RTM/VDM pair is also increased. In con-
trast, there was no such unwanted effect due to the artifact in
the RTM/RTM-based reconstructions throughout all iterations.

Fig. 8(c) and (f) and Fig. 9(c) show difference images
between the reconstructions obtained by the GPU-based
methods and the CPU-based method. Since there is no differ-
ence between the CPU-based RTM/RTM and the GPU-based
RTM/RTM reconstructions, their difference images are not
shown here. The difference images are bipolar, with a value of
zero displayed as an intermediate gray, and with darker/lighter
voxels corresponding to negative/positive error. (The difference
images were linearly scaled for the display.) The differ-
ence images clearly show the artifacts due to the unmatched
RTM/VDM pair in conventional methods.

Note that the unwanted artifacts appeared in the center of
axial views shown in Fig. 8 are mainly due to the rotationally
asymmetric distribution of scatter [37], and they are not related
to our system model for the projector/backprojector pair.

IV. DISCUSSION AND CONCLUSION

We have developed a new GPU-accelerated method for an
RTM-based projector-backprojector pair which does not use
any approximations for parallelizing the projection and back-
projection operations. The proposed method has been tested
by applying to a practical case of dental offset flat-panel X-ray
CT systems (with the fine detector grid and relatively coarse
reconstructed volume) in which the computation time for
reconstruction is infeasible without the use of GPU-accelerated
methods.
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Fig. 8. OSC reconstructions (210 subsets, 4 iterations) of axial slices from real data. (a)—(c) Results for axial slice 1. (d)—(f) Results for axial slice 2. (a) and
(d) GPU-accelerated reconstructions using RTM/VDM. (b) and (e) GPU-accelerated reconstructions using RTM/RTM. (c) Difference images between (a) and (b).
(f) Difference image between (d) and (e) . Top row is for zoomed-in images of the boxed regions.

Fig. 9. OSC reconstructions (210 subsets, 4 iterations) of sagittal slices from
real data. (a) GPU-accelerated reconstructions using RTM/VDM. (b) GPU-ac-
celerated reconstructions using RTM/RTM. (c¢) Difference image between
(a) and (b). Dashed and dot—dashed lines denote the locations of axial slices
1 and 2, respectively, in Fig. 9.

In conclusion, since there was no approximation involved in
our parallelization of both projection and backprojection, our
method resulted in a matched projector-backprojector pair. Ac-
cording to our simulation results using the relaxed OSC algo-
rithm with 210 subsets, the GPU-based method was roughly
35 times faster in computation time per iteration than the CPU-
based method. The reconstructed images using our GPU-based
RTM/RTM were identical to those using the conventional CPU-
based method.

Though our exact method is slower than the conventional
GPU implementation with approximations, its advantage is ex-
pected to be greater as the number of GPU cores increases. (This
number has been greatly increased periodically with the current
GPUs having up to more than 5000 cores.) The parallelized al-
gorithm proposed here is ready for any deployment to parallel
computing systems.

Since the proposed method enables the use of GPU in iter-
ative reconstruction methods without any loss of accuracy, it
helps to deliver the lower-dose imaging technique into practice
by providing advanced iterative methods with rapid yet more
accurate reconstructions.
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