
Malware Detection Using Genetic Programming

Thi Anh Le
Faculty of IT,

Le Quy Don University
Hanoi, Vietnam

Email:leanh41@gmail.com

Thi Huong Chu
Faculty of IT,

Le Quy Don University
Hanoi, Vietnam

Email:huongktqs@gmail.com

Quang Uy Nguyen
Faculty of IT,

Le Quy Don University
Hanoi, Vietnam

Email: quanguyhn@gmail.com

Xuan Hoai Nguyen
IT Centre,

Hanoi University
Hanoi, Vietnam

Email: nxhoai@gmail.com

Abstract—Malware is any software aiming to disrupt com-
puter operation. Malware is also used to gather sensitive infor-
mation or gain access to private computer systems. This is widely
seen as one of the major threats to computer systems nowadays.
Traditionally, anti-malware software is based on a signature
detection system which keeps updating from the Internet malware
database and thus keeping track of known malwares. While
this method may be very accurate to detect previously known
malwares, it is unable to detect unknown malicious codes.
Recently, several machine learning methods have been used
for malware detection, achieving remarkable success. In this
paper, we propose a method in this strand by using Genetic
Programming for detecting malwares. The experiments were
conducted with the malwares collected from an updated malware
database on the Internet and the results show that Genetic
Programming, compared to some other well-known machine
learning methods, can produce the best results on both balanced
and imbalanced datasets.

I. INTRODUCTION

Genetic Programming (GP) [11, 20] is an evolutionary
algorithm aimed to provide solutions to an user-defined task
in the form of computer programs. Since its introduction, GP
has been applied to many practical problems [20], producing
a number of human competitive results [12]. GP has been
used as a learning tool for solving some problems in network
security [2, 13, 19, 26]. Previous research on the application
of GP to network security mainly focused on the intrusion
detection problem, in which the intrusion data from KDD99
dataset was used as the benchmark [2, 13, 26]. Recently,
GP has also been used to help the detection of phishing
websites [19]. However, to the best of our knowledge, there
has not been any published work on the use of GP for learning
to detect malicious software.

In the field of network security, malware attacks is one
of the main threats over the past several decades. According
to a report released by an anti-viruses corporation, Kaspersky,
there was around 315,000 new malicious files detected every
day in 2013 1. Malware can obstruct the operation of computer
systems, steal sensitive information or even control behavior of
user’s computers. Malware attacks cause significant financial
loss every year. In 2006, malicious softwares lead to a loss of
$ 13.3 Billion globally 2. Therefore, fighting against malware
attacks is of great importance for both computer users and en-
terprises. Typically, anti-malware softwares are often based on
a signature definition system. In this, a bit-string of malicious

1http://www.kaspersky.com/about/news/virus/2013/number-of-the-year
2http://www.computereconomics.com/article.cfm?id=1225

code is stored and used to check if a suspect file is infected by a
matching metric. While this signature-based matching method
is very accurate to detect already known attacks, it is unable
to recognize novel malwares.

In order to compensate for signature-based detection, some
methods such as heuristics-based and behavior-based tech-
niques have been proposed to enhance the ability of anti-
malware softwares in detecting unknown malwares. Particu-
larly, machine learning methods have been successfully applied
to malware detection problems recently [7]. In this paper, we
continue in this strand by applying GP to malware detection.
We collected a number of malicious codes released recently
from VX Heaven website 3. We used some feature extraction
techniques to select important features from the malicious files.
Then GP was used to build up the model for distinguishing
between infected and normal files. The results show the capa-
bility of GP in producing good models for malware dection.

The rest of the paper is organised as follows. In the next
section, we briefly review some previous research on detecting
malwares using machine learning techniques. In Section III
we present our method using GP for solving the malcodes
detection problem. It is followed by a section detailing our
experimental settings. The experimental results are shown and
discussed in Section V. The last section concludes the paper
and highlights some potential future work.

II. RELATED WORK

Using machine learning methods for malware detection has
received increasing attention recently [1, 10]. Various machine
learning techniques have been proposed for this important
task. These techniques can be applied in either static or
dynamic approaches. While static approach attempts to analyse
and distinguish malwares from benign files without executing
them, dynamic approach analyses the behavior of a malicious
code (interaction with the system) when it is being executed in
a controlled environment (virtual machine, simulator, emulator,
sandbox etc.). For a recent and comprehensive review on the
application of machine learning methods to malware detection,
we suggest the readers to see [7]. A few of the related research
in the literature are discussed in this section.

Perhaps, Schultz et al. [15] were the first authors who
advocated the static approach of using machine learning for
malware detection. They extracted features using program
header and using Naive Bayes [8] to learn the detection system.
Their results showed that machine learning method was more

3http://vxheavens.com/

978–1–4799-5431-5/14/$31.00 c©2014 IEEE

accurate than the signature-based algorithm. Abou-Assaleh
et al. used a common n-gram method to select important
features from malicious files [1]. After that, they use K-
nearest neighbor algorithm [6] to classify between malicious
and benign programs. This work was then extended by using
multi-class classification techniques to classify malcodes into
different families [10]. Their results showed that some types
of malwares such as mass mailer, backdoor and virus can well
be recognized.

After that, Moskovitch et al. [17] studied the impact of
imbalanced data when applying machine learning to malcodes
detection. They tested different datasets of various rate between
malicious and benign files. Their experimental results showed
that machine learning techniques such as neural networks,
decision tree and support vector machines can produce good
results even when the datasets are imbalanced. Santos et
al. [25] pointed out that supervised learning often requires
a significant amount of labeled executables for both classes
(malicious as well as benign datasets) that are not always
available. They proposed a semi-supervised learning approach
for detecting unknown malwares. It is designed to build a
machine learning classifier using a small labeled and a large
unlabeled instances. Their method helped to reduce the number
of required labeled instances while maintaining high precision.

Recently, some researchers used dynamic techniques to
improve the accuracy and effectiveness of machine learning
algorithms. Zolkipli et al. [16] presented an approach for
malware behavior analysis. They collected malwares from the
Internet by using HoneyClients. Then, the features of these
malwares are identified by executing every sample on both
CWSandbox [29] and on a virtual machine platform. The
results generated by both of these analyzers are used to classify
malwares into families of Worms and Trojans.

Rieck et al. [23] proposed a framework for automatic
analysis of malware behavior using machine learning. A large
number of malware samples was collected and their behaviors
were monitored using a sandbox environment. By embedding
the observed behaviors in a vector space, they could apply
learning algorithms on this space. Clustering was used to
identify the novel classes of malware with similar behavior.
Assigning unknown malware to these discovered classes was
done by classification. The results showed that this approach
was capable of processing the behavior of thousands of mal-
ware binaries on daily basis.

Tian et al. [28] extracted API call sequences from ex-
ecutables while these are running in a virtual environment
through an automated tool. These API call sequences are used
as feature vector for machine learning methods available in the
WEKA library. They used a dataset of 1368 malwares and 456
benign files to demonstrate their work. Their results showed
that the algorithms in Weka can discriminate malware files
from clean files with an accuracy of about 95%.

Although dynamic approach has an advantage over static
approach in which the number of extracted features in dynamic
approach is often smaller. The downside is that the malwares
must be executed before they can be detected. In order to
achieve this, a sandbox or a virtual environment are often used
to execute malcodes. However, this may slow down the de-
tection process. Moreover, the accuracy of dynamic approach

is not always as high as statistic approach [3]. Subsequently,
researches have adapted a hybrid technique which incorporates
both static and dynamic features simultaneously for better
malware detection and classification [9, 24]. In this paper,
we only used static features in the experiments. Extracting
dynamic and hybrid features are left for future research.

III. METHODS

This section presents the methods used in this paper. First,
the way to extract the features from malicious files is presented.
After that, the GP system for malware detection is described.

A. Features Extraction

The first step for using GP to tackle the malware detection
problem is features extraction. This is a very important step as
it may strongly affect the effectiveness of the learning algo-
rithm (GP). The extracted features must contain information
that helps to distinguish malicious and legitimate files. In this
paper, several methods based on n-gram are used for features
extraction. They are detailed as follows.

First, all malicious files are converted to the hexa format.
Then 4-gram is used as terms in each file 4. Here, an n-
gram is a contiguous sequence of n items from a given
sequence of text. After that, three methods are used to extract
feature vectors for each malcode. The first method for feature
extraction is called term frequency (TF). Formula 1 shows the
definition of a normalized TF, in which the term frequency
is divided by frequency of the most frequent term in the
document to achieve a value in the range of [0-1].

TF =
term frequency

Max(term frequency in malcode)
(1)

The second method is an extension of term frequency. This
method is called term frequency inverse document frequency
(TFIDF), which combines the frequency of a term in the
document (TF) and its frequency in the documents collection,
denoted by Document Frequency (DF). Formally, TFIDF is
defined as in formula 2.

TFIDF = TF ∗ Log(N

DF
) (2)

where N is the number of documents in the entire file collection
and DF is the number of files in which the term appears.

The last method for feature extraction is a statical measure:
Fisher Score (FS). The Fisher score ranking technique calcu-
lates the difference, described in terms of mean and standard
deviation, between the positive and negative examples relative
to a certain feature. Formula 3 defines the Fisher score, in
which FSi is the rank of feature i. µi,p and µi,n are the mean
of term frequency of a feature in positive and negative samples.
Similarly, δi,p and δi,n are the standard deviation of this term.

FSi =
µi,p − µi,n

δi,p + δi,n
(3)

44-gram has been shown for good performance of machine learning algo-
rithms in detection malcodes [17]

The bigger the FSi, the bigger the difference between the
values of positive and negative examples relative to feature i.
Thus, this feature is more important for separating the positive
and negative examples. This technique is described in details
in [14]. Based on each feature selection measure we selected
the top 50, 100 and 200 features to build the dataset for
learning systems.

B. System Description

The evolutionary learning process of GP for solving the
problem of malware detection is divided into two stages:
training and testing. The objective of training stage is to evolve
the model (the classifier) that can determine a file as either
infected or legitimate based on its feature values. In the testing
stage, the learnt model is used to make predictions on the
unseen data. The accuracy of these prediction is used as an
indicator for the quality (effectiveness) of the model.

In the training stage, a set of training data (both malicious
and benign) with their labels (either as malcode or normal) are
provided. The feature extraction process is called to convert
every files to a feature vector. This vector is then used as the
input for an individual in GP and the output of the individual
is a real value. If this real value is greater than zero, this file
is tagged as a malcode, otherwise it is considered as benign.

The next step in the training process is to measure the
fitness of an individual in GP. In this paper, we use a simple
way to measure the fitness of individuals where the fitness is
the percentage of files in the training set that are correctly
classified. This is defined as in the following equation.

Fitness =
TP + TN

Total number of files
(4)

where TP (true positive) and TN (true negative) are the number
of malcodes and benign files that are correctly distinguished.
Although this fitness may not be a good indicator if the data
is very much imbalanced, it is intuitive to identify the overall
quality of a model.

IV. EXPERIMENTAL SETTINGS

This section outlines the settings used in our experiments.
First, we present the way that data was collected for training
and testing the systems. After that GP configurations for the
experiments are described.

A. Data Collection

We created two datasets of malicious and benign executa-
bles for the Windows operating system, as its popularity makes
it the most commonly attacked. We acquired the malicious files
from the VX Heaven website 5. This site contains a massive,
continuously updated collection of all types of malwares.
The dataset of 800 malicious files were collected from this
database. In order to guarantee that these are malcodes, we
used the Kaspersky anti-virus to test these files. Next, the
normal files were collected from our computer systems at the
network security Laboratory, Le Quy Don University. Totally,

5http://vxheavens.com/

TABLE I. RUN AND EVOLUTIONARY PARAMETER VALUES.

Parameter Value

Population size 500
Generations 50
Selection Tournament
Tournament size 7
Crossover probability 0.9
Mutation probability 0.1
Initial Max depth 6
Max depth 17
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected version),

sin, cos, exp, iff, log (protected version)
Terminals X1, X2,..., XN,
Raw fitness percentage of correct classification
Trials per treatment 100 independent runs for each value

1600 benign files were obtained and the Kaspersky anti-virus
program was also used to verify that these files do not contain
any malicious code.

After that, two experiments were conducted. The first ex-
periment was set up with the balanced data. In this experiment,
750 (out of 800) malicious files and 800 (out of 1600) benign
files were used. The second experiment aims to investigate the
performance of GP when the dataset is imbalanced. In this
experiment, 800 infected files and 1600 legitimate files were
used. Each dataset was then divided into two parts (one for
training and one for testing) of the equal size.

B. GP Parameters Settings

To tackle a problem with GP, several elements need to
be clarified beforehand. These elements often depend on the
problem and the experience of practitioners. The first and
important element is the fitness function. As aforementioned,
in this paper we use the percentage of correct classifications as
the fitness measurement for each individual in the population.

Other factors that strongly affect the performance of GP
are the set of non-terminals and terminals. The terminal set
includes N variables (X1, X2,..., XN) representing N features
extracted from the files. The non-terminal set includes 5
functions (+, -, *, /, iff). Here, we used the protected versions
of division (/), meaning that if the denominator is zero,
the returned value is 1. Other evolutionary parameters are
presented in Table I. These are typical values that are often
used by GP researchers and GP practitioners [11].

V. RESULTS AND DISCUSSION

To determine quality of the models produced by GP, at the
end of each run, we selected the best-of-the-run individual (the
individual with the best fitness on the training set in the entire
run). This model is then tested on the testing set and the output
on the testing set is considered as the prediction error of the
model.

We compare the results of GP with the results produced by
a number of other machine learning techniques such as Sup-
port Vector Machines, Bayesian Networks, Artificial Neural
Networks and Decision Trees. They are detailed as follows.

Support Vector Machines: Support Vector Machines (SVM)
are a relatively new learning method used for binary clas-
sification [4]. The basic idea is to find a hyperplane which

separates the d-dimensional data perfectly into its two classes.
However, since example data is often not linearly separable,
SVM introduces the notion of a kernel induced feature space
which casts the data into a higher dimensional space where
the data is separable. Overall, SVM is intuitive, theoretically
well-founded, and have shown to be practically successful in
solving a large number of problems. In this paper, we will
use SVM with the kernel function as the Gaussian function to
tackle phishing detection problem.

Artificial Neural Network: An Artificial Neural Networks
(ANN) is an information processing paradigm inspired by
the way that the biological nervous systems processes infor-
mation [5]. The important element of this paradigm is the
structure of the information processing system. It is composed
of a large number of highly interconnected processing elements
(neurons) working together in order to approximate a specific
function. Similar to human beings, ANNs learn by example.
ANNs have been successfully applied to many real-world
applications such as data classification or pattern recognition.
There are several different kinds of neural network of these
RBFNetwork (Radial Basis Function Network) and Multilayer
Perceptron [30] are perhaps the most popular, therefore they
were used in the experiments in this paper.

Bayesian networks: Bayesian networks (BNs) consist of nodes
and arcs that present for random variables and connections
between them, respectively [8]. BNs can often be seen as prob-
abilistic graphical models used to reason under uncertainty.
When constructing the network, two main components namely
estimator and searching algorithm need to be identified. Es-
timator is a function used for evaluating a given network,
and searching algorithm is once that searching through the
space of possible networks. In our experiments, we used Sim-
pleEstimator algorithm for estimator, and K2 for the searching
algorithm [30].

Decision trees: Decision tree learners are a well-established
family of learning algorithms for classification [21]. In contrast
to other black-box learning methods, decision trees represent
rules. This allows the solutions obtained by decision trees
can easily be understood and analysed. There have been a
number of algorithms developed for constructing decision
trees for a problem. Among them, C4.5 is the most popular
algorithm [22]. In this paper, we use an extension of C4.5
called J48 for constructing the decision tree for the problem.
J48 has been implemented in Weka [30].

In order to apply these machine learning techniques to
solve the malware detection identification, we used their im-
plementations in Weka [30]. All parameters were tuned using
the method described in [30]. We compare the best results
produced by these methods with the best results obtained by
GP in two experimental sets (balance and imbalance) and they
are detailed below.

A. Results on Balance Data

The percentage of correct prediction of GP and other
machine learning methods on the balance dataset is presented
in Table II. In this table (and also in the following table),
”GP” is the results produced by genetic programming. ”Bayes”
presents for the results obtained by Bayesian network. ”RBF”
and ”Percentron” are shorthanded for two types of neural

TABLE II. COMPARISON GP WITH OTHER METHODS ON BALANCE
DATA

Features Methods TF TFIDF Fisher
Score

Bayes 0.663 0.925 0.621

RBF 0.631 0.921 0.556

50 Perc 0.657 0.628 0.608

SVM 0.626 0.868 0.589

J48 0.48 0.851 0.561

GP 0.707 0.921 0.875

Bayes 0.649 0.853 0.621

RBF 0.668 0.905 0.42

100 Perc 0.701 0.559 0.541

SVM 0.623 0.880 0.540

J48 0.487 0.849 0.561

GP 0.741 0.935 0.839

Bayes 0.625 0.892 0.633

RBF 0.614 0.933 0.413

200 Perc 0.58 0.525 0.559

SVM 0.576 0.892 0.581

J48 0.463 0.849 0.461

GP 0.731 0.937 0.844

networks: Multilayer Perceptron network and Radial Basis
Function Network. Finally, ”J48” and ”SVM” are the results
achieved by decision tree trained by J48 algorithm and support
vector machine. The column ”Features” presents the number
of features (50, 100 and 200 respectively) used in the experi-
ments. The first row presents for different features extraction
methods. It should be noted that in all tables, the greater values
are the better and the best result in each set of experiments is
printed bold faced.

It can be seen from this table that the best model produced
by GP is often the best among all models obtained by all tested
machine learning systems. Overall, the prediction accuracy
of GP learnt model is from 70% to 94%. The lowest value
was produced on data set of 50 features with term frequency
(TF) is used as the features extraction technique and the
highest value was obtained when TFIDF was extracted and the
number of features was 200. These values of other methods
often much smaller than those of GP except when ITIDF
features extraction was used. In this case, all other learning
systems but Percetron neural network (perc) achieved rather
good results. Particularly, Bayes Network was better than GP
in one configuration when 50 features of TFIDT was used.

Comparing between different features extraction methods,
it can be observed from this table that the best method is
TFIDF while the worst is TF. This is understandable since
TFIDF contains richer information for distinguishing between
two sets of data [27]. Regarding to fisher score, the results
show that this features selection is well suitable for GP but
for other learning algorithms, it is not as good as TFIDF. In
terms of number of used features, the table shows that the
differences are negligible. The results confirm that all machine
learning techniques performed mostly equally on three set of

TABLE III. COMPARISON GP WITH OTHER METHODS ON IMBALANCE
DATA

Features Methods TF TFIDF Fisher
Score

Bayes 0.794 0.851 0.799

RBF 0.775 0.667 0.667

50 Perc 0.719 0.611 0.665

SVM 0.713 0.667 0.675

J48 0.479 0.728 0.619

GP 0.811 0.667 0.931

Bayes 0.745 0.835 0.806

RBF 0.535 0.747 0.667

100 Perc 0.575 0.634 0.641

SVM 0.725 0.667 0.658

J48 0.513 0.627 0.635

GP 0.803 0.717 0.928

Bayes 0.666 0.797 0.806

RBF 0.402 0.81 0.643

200 Perc 0.409 0.699 0.568

SVM 0.552 0.661 0.558

J48 0.406 0.679 0.635

GP 0.792 0.854 0.938

features (50, 100 and 200 features). In general, the results
in this subsection evidence for the efficiency of GP when
applying to malware detection problem.

B. Results on Imbalance Data

The percentage of correct prediction of GP and other ma-
chine learning methods on the imbalance data set is presented
in Table III. It can be seen that the results in this table are
consistent with the results in II in which GP often produced
the best model amongst all tested learning systems. In most
experiments, GP is the best algorithm in terms of producing
the highest percent of correct prediction. This happens in 7
out of 9 experimental settings. Only in two settings of 50 and
100 features with TFIDF features selection, Bayes network
outperforms GP and is the best method. Overall, The best
solution obtained by GP in imbalanced data is as good as
in the balance case. The correct prediction rate of the best
model produced by GP in all experimental settings is about
94% (equal to the balanced case).

However, different from the balanced data where TFIDF
is the best feature selection method, in the imbalanced data,
Fisher Score is often better than both TF and TFIDF. In
imbalance data, while TFIDF is less effective, Fisher Score is
much better than TFIDF. This is reflected by the smaller values
of the best solutions found by all learning methods with TFIDF
and the greater values with Fisher Score. Comparing between
different number of extracted features, it can be observed that
they are mostly equal. This means that 50 features seem to
be enough for all learning methods in solving the malware
detection problem. Generally, the results in this section present
the good performance of GP compared to other tested learning
techniques in solving malware detection problem. These results

also showed that TFIDF is good feature selection in balanced
data whereas Fisher Score is more suitable for imbalanced
case. Moreover, these results seem universal for all number of
extracted features (50, 100 and 200).

VI. CONCLUSION

In this paper, we conducted a first comprehensive investi-
gation on the use of Genetic Programming (GP) for solving
the problem of detecting malwares. We collected a number of
malwares from the malware database on the Internet. We used
three different methods to extract the important features from
these malicious files. Two data set of balanced and imbalanced
were set up. For each dataset, nine experimental settings were
implemented and executed. The results produced by GP were
compared with the results obtained by four other machine
learning techniques (Support Vector Machine, Artificial Neu-
ral Networks, Bayesian Networks and Decision Trees). The
results showed that GP is capable of producing the prediction
models (classifiers) that are more accurate than other machine
learning techniques on most of experimental settings. This
result inspires us to get GP integrated with signature-based
anti-malwares to improve their ability in detecting unknown
malwares.

In future, we are planning to extend the work in this paper
in a number of ways. First, we would like to enrich data set
with more malcodes and benign files to see if the performance
of GP and other learning methods are maintained. Second, we
want to give GP more computational time (by increasing the
population size and number of generations) to see if it can help
GP to find better models. Third, we want to use some recent
advanced techniques, especially some technique for improving
the generalization ability of GP [18] to see if they can further
enhance the results. Last but not least, we want to make a
more thorough analysis on the obtained models to get better
understanding of the factors that affect the prediction accuracy.

ACKNOWLEDGMENT

The work in this paper was funded by The Vietnam
National Foundation for Science and Technology Develop-
ment (NAFOSTED), under grant number 102.01-2014.09. The
Network Security Lab of Le Quy Don University provided
research facilities for this study. The first author would like to
thank Mr. Tuan Anh Pham for his help in this research.

REFERENCES

[1] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan.
N-gram-based detection of new malicious code. In
COMPSAC, pages 41–42. IEEE Computer Society, 2004.

[2] J. Blasco, A. Orfila, and A. Ribagorda. Improving
network intrusion detection by means of domain-aware
genetic programming. In International Conference on
Availability, Reliability, and Security, ARES ’10, pages
327–332, Feb. 2010.

[3] F. I. L. C., E. A., and N. A.S. Analysis of machine
learning techniques used in behavior-based malware de-
tection. In 2010 Second International Conference on
Advances in Computing, Control and Telecommunication
Technologies (ACT), pages 201–203. IEEE, 2010.

[4] N. Cristianini and J. Shawe-Taylor. An introduction to
Support Vector Machines. Cambridge University Press,
Mar. 2000.

[5] S. Das. Elements of artificial neural networks. IEEE
Transactions on Neural Networks, 9(1):234–235, Jan.
1998.

[6] B. V. Dasarathy, editor. Nearest Neighbor Pattern Classi-
fication Techniques. IEEE Computer Society Press, 1991.

[7] E. Gandotra, D. Bansal, and S. Sofat. Malware analysis
and classification: A survey. Journal of Information
Security, 3(5):56–64, 2014.

[8] D. Heckerman. Tutorial on learning in bayesian networks.
Technical Report MSR-TR-95-06, Microsoft, 1995.

[9] R. Islam, R. Tian, L. M. Batten, and S. Versteeg. Clas-
sification of malware based on integrated static and dy-
namic features. J. Network and Computer Applications,
36(2):646–656, 2013.

[10] J. Z. Kolter and M. A. Maloof. Learning to detect and
classify malicious executables in the wild. Journal of
Machine Learning Research, 6:2721–2744, 2006.

[11] J. Koza. Genetic Programming: On the Programming of
Computers by Natural Selection. MIT Press, MA, 1992.

[12] J. Koza. Human-competitive results produced by genetic
programming. Genetic Programming and Evolvable
Machines, 11(3-4):251–284–, 2010.

[13] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hira-
sawa. An intrusion-detection model based on fuzzy class-
association-rule mining using genetic network program-
ming. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, 41(1):130–139,
Jan. 2011.

[14] W. Malina. On an extended fisher criterion for fea-
ture selection. IEEE Trans. Pattern Anal. Mach. Intell,
3(5):611–614, 1981.

[15] E. Z. S. J. S. Matthew G. Schultz, Eleazar Eskin. Data
mining methods for detection of new malicious executa-
bles. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 178–184. ACM, 2001.

[16] Z. M.F. and J. A. An approach for malware behavior
identification and classification. In 2011 3rd International
Conference on Computer Research and Development,
pages 191–194. IEEE, 2011.

[17] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, N. Jap-
kowicz, and Y. Elovici. Unknown malcode detection and
the imbalance problem. Journal in Computer Virology,
5(4):295–308, 2009.

[18] Q. U. Nguyen, T. H. Nguyen, X. H. Nguyen, and
M. O’Neill. Improving the generalisation ability of
genetic programming with semantic similarity based
crossover. In A. I. Esparcia-Alcazar, A. Ekart, S. Silva,
S. Dignum, and S. Uyar, editors, Proceedings of the 13th
European Conference on Genetic Programming, EuroGP
2010, volume 6021 of LNCS, pages 184–195, Istanbul,
7-9 Apr. 2010. Springer.

[19] T. A. Pham, Q. U. Nguyen, and X. H. Nguyen. Phishing
attacks detection using genetic programming. In V.-N.
Huynh, T. Denoeux, D. H. Tran, A.-C. Le, and S. B.
Pham, editors, Proceedings of the Fifth International
Conference on Knowledge and Systems Engineering, KSE
2013, Volume 2, volume 245 of Advances in Intelligent
Systems and Computing, pages 185–195, Hanoi, Vietnam,
17-19 Oct. 2013. Springer.

[20] R. Poli, W. Langdonand, and N. McPhee. A Field Guide
to Genetic Programming. http://lulu.com, 2008.

[21] Quinlan. Learning decision tree classifiers. CSURV:
Computing Surveys, 28, 1996.

[22] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[23] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic
analysis of malware behavior using machine learning.
Journal of Computer Security, 19(4):639–668, 2011.

[24] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G.
Bringas. OPEM: A static-dynamic approach for machine-
learning-based malware detection. In SOCO Special
Sessions, volume 189, pages 271–280. Springer, 2012.

[25] I. Santos, J. Nieves, and P. G. Bringas. Semi-supervised
learning for unknown malware detection. In International
Symposium on Distributed Computing and Artificial Intel-
ligence, DCAI 2011, Salamanca, Spain, 6-8 April 2011,
volume 91 of Advances in Soft Computing, pages 415–
422. Springer, 2011.

[26] S. Sen and J. A. Clark. A grammatical evolution approach
to intrusion detection on mobile ad hoc networks. In
WiSec ’09: Proceedings of the second ACM conference
on Wireless network security, pages 95–102, Zurich,
Switzerland, Mar. 16-19 2009. ACM.

[27] P. Soucy and G. Mineau. Beyond TFIDF weighting
for text categorization in the vector space model. In
Proceedings of the 19th International Joint Conference
on Artificial Intelligence, pages 1130–1135, Edinburgh,
Scotand, Aug. 2005.

[28] R. Tian, R. Islam, L. M. Batten, and S. Versteeg. Dif-
ferentiating malware from cleanware using behavioural
analysis. pages 23–30. IEEE, 2010.

[29] C. Willems, T. Holz, and F. C. Freiling. Toward au-
tomated dynamic malware analysis using CWSandbox.
IEEE Security & Privacy, 5(2):32–39, 2007.

[30] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kauf-
mann, 2005.

