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Abstract

Biological pathways have played an important role in understanding cell ac-
tivities and evolution. In order to find these pathways, it is neccessary to
orient protein-protein interactions, which are usually given in forms of undi-
rected networks or graphs. Previous findings indicate that orienting protein
interactions can improve the process of pathway discovery. However, as-
signing orientation for protein interactions is a combinatorial optimization
problem which has been proved to be NP-hard, making it critical to develop
efficient algorithms.

This paper proposes a method for orienting protein-protein interaction
networks (PPIs) and discovering pathways. For our proposal, the mathemat-
ical model of the problem is given and then a genetic algorithm is designed
to find the solution for the problem taking into account the problem’s char-
acteristics. 'We conducted multiple runs on the data of yeast PPI networks
to test the best option for the problem. The obtained results were compared
with a wellknown algorithm (ROLS), which was shown to the best in deal-
ing with this problem, in terms of the run time, fitness function values, and
especially the ratio of matching gold standard pathways. The results show
the good performance of our approach in addressing this problem.
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1. Introduction

Recently, there is a great interest in PPI databases, the source of inter-
action information for case studies in bioinformatics, being aggregated over
time from the experimental findings. Given the large amount of PPI data
collected, a challenging problem is to get biological insights, in particular
to discover biological pathways from the data. Note that edges representing
PPIs have been experimentally defined and tested. Certainly the reconstruc-
tion of the biological processes of cell (pathway or networks) has attracted a
lot of attentions: the reconstruction of regulatory networks [1, 2, 3, 4, 5], the
analysis of metabolic networks [6, 7, 8, 9], and the discovery of signaling net-
works and pathways [10, 11, 12, 13]. However, directionality of interactions
in networks has not been thoroughly investigated, while direction is essential
in finding how information is moved from one to another. The orientation of
the signaling network is more difficult than the regulatory and metabolic net-
works, due to the lack of orientation information. For example, orientation
of gene regulatory network is often determined by transcription factors reg-
ulating genes, studies of microRNAs often look for targets and motif studies
are implemented upstream of genes [14, 15, 16]. Similarily, metabolic net-
works are modeled by knowledge about the order of genes and enzymes [17].
Meanwhile, it is a fact that PPI data is almost always undirected; therefore
the problem of orienting interaction edges for signal transmission in signaling
networks is costly. Typical works in this area can be found in [12, 18, 19|
underlining the need for finding an efficient algorithm for edge-orientation in
PPI networks, which has been indentified as an NP-hard problem.

In [12], authors presented a random orientation (plus local search) algo-
rithm (ROLS) to perform edge orientation and evaluated calculated results
with the data from biological experiments in order to determine if the path
found was consistent with the experimental or not. The results were also
compared with several algorithms proposed in [20, 21, 22]. When evaluating
the algorithm results, the authors found out 37 standard pathways that had
been tested through biological experiments. But there were still paths that
did not appear in the standard set and such interactions could not occur in
biological experiments, even though the objective function values of these
pathways were high.



In the framework of this paper, we extended further our preliminary re-
sults on PPI edge orienting [23]. In particular, we designed a genetic al-
gorithm (GA) for it. GA is one of popular and successful computational
models in the field of intelligent computing [24], especially for dealing with
NP-hard problems. Along with other intelligent computing techniques such
as fuzzy computing, neural networks and multi-agent systems, GAs develop
more and more strongly and are widely applied in different fields [25, 26].
Our GA design takes into account conflicting elements in PPI networks in
order to reduce unnecessary edges, thus greatly improves computing speed.
We examined different aspects including running time and objective values.
Results showed that our algorithm found a good solution for the problem
and this finding was supported by comparison to other algorithms’ results.
Especially, we answered the question of what is the meaning of the obtained
pathways by extending biological validation.

The structure of our paper consists of 5 sections: Section 1 introduces the
problem, Section 2 gives general knowledge of the problem and the genetic
algorithm, Section 3 describes in detail the GA algorithm designed to solve
the problem posed, Section 4 presents actual experimental data on PPIs of
yeast and make an assessment of the results achieved by the algorithm. The
final part is the paper conclusion.

2. Background

2.1. Problem of orienting edges in protein interaction networks

Proteins are important components in the cell ’s structure. They are
involved in most of biological processes. During cell functioning, they inter-
act with each other or with macromolecules such as DNA and RNA. They
together form a complex network of interactions to perform biological func-
tions. An example is given in Figure 1 where the graph shows a part of the
network of protein interactions in yeast created by the Cytospase software.
From the graph, we can see that the protein interaction network of an organ-
ism can be represented by an undirected graph in which each vertex denoted
is a protein and each edge represents an interaction of PPIs network. This
interactive network contains signaling pathways that comes from a protein
source through transformation to transmit biological information to a spe-
cific target protein. In order to support experimental studies, the database
of information about protein interactions (PPI) is also formed and developed



over time. This database is constantly updated and added with new elements
of protein interactions announced by researchers around the world.

With signaling pathways verified by experiment, they are gathered into a
database to serve for the interpretation of biological problems. The discovery
of the signaling pathway in protein interaction networks is still performed by
scientists. The problem here is the need to have a certain method to recon-
struct the known signal pathways from the undirected protein interaction
networks and analysis for making predictions about new signaling pathways
for purposes of biological studies such as understanding disease signals [27],
creating new drugs to treat diseases caused by the deviation from the signal
pathway.

This is a difficult problem because there exist many linking paths be-
tween two proteins in the interaction network. However, we can establish
assumptions to simplify the problem. Firstly, we can assume that biological
responses are controlled by reasonably short signaling cascades, so we can
have a limit length of the path, which is called length-bounded paths. So
far, pathways in signaling databases such as KEGG and the Science Signal-
ing Database of Cell Signaling on average contain only five edges between a
target and its closest source [12]. The goal of the problem is to extract the
signal pathways of length £ from a source to a target that are highy reliable.
Second, we can calculate the reliability of each interaction database PPIs,
then only use the interactions that have high reliability to have better path-
ways [12]. Finally, in case of existing many pathways linking sources and
targets, we will choose the the direction that creates a better overall network
[12].

We can formally express a PPI network by a weighted undirected graph
G = (V, E), where V is the set of vertices of the graph labeled by names of
proteins, F is the set of edges of the graph describing interactions between
proteins. With a pair of u,v € V, we have edge e = (u,v) € E if and
only if u,v can interact with each other. We define S C V as the set of
source vertices of paths and 7" C V' as the set of target vertices of paths.
All vertices and edges in the graph have weights which are denoted w(v)
and w(e) respectively. While all vertices (proteins) have the same weight in
our current implementation, allowing for varying protein weights is a useful
feature in cases where some proteins are known to be involved in the signal
transmission. Edge weight is a value in the range [0, 1], which is based on the
probability of each protein interaction. A path has a maximum length of at
most k between pairs of sources - targets in form of (s;, t;), where s; € S C'V

4



Figure 1: A part of the protein interaction network of yeast includes 23 proteins and 30
interactions. According to database BIOGRID network 2.0.51 of yeast, its PPIs have 5570
proteins and 140849 interactions [18].

and t; € T'C V. Each path has the form p = (v, v2), (v, v3),, (v, v51) and
I < k for some pairs (s;,t;). The value of the weight is typical for reliability
in the presence of an edge or the involvement of a protein in the path, and
the weight of the path is the probability of a protein interaction in path
calculated by the formula

w(p) = [Jwi) * [T wte) (1)
vED eEep
The goal is to orient the edge e = (u,v) € E from u to v or from v to
u. A path is said to be satisfied in the orientation graph if and only if every
edge (vj,v;41) has its orientation from v; to v,41 in the network. Thus, the
goal of the problem is to maximize the total weight of the satisfied paths; or
in other words, to optimize the objective function

> Is(p) x w(p) (2)

peEP

Where P is the set of paths between sources and targets with lengths of
at most k. w(p) is the path weight. Is(p) is a function of only two values 0

5



or 1. Is(p) = 0 if path p is not satisfied, Is(p) = 1 if path p is satisfied.

2.2. An Quverview of Genetic Algorithms

Genetic algorithm (GA) is one of main streams in evolutionary compu-
tation. It was researched, developed, and applied since the last century in
search, optimization and machine learning. The exploitation of the evolu-
tion principle as an heuristic has made the genetic algorithm as an effective
approach for the optimization problems (with acceptable solutions) without
the need of using conventional conditions (i.e continuity or differentiability)
as prerequisites [28].

One of the important characteristics of GA is the usage of a set (or pop-
ulation) of solutions. The search is done parallel on multiple points that can
interact with each other according to matural evolution principles. In the
context of using genetic algorithms, we can use the concept of ”individual”
in equivalence with the notion of ”solution”. The basic steps of a genetic
algorithm are described as follows:

e Step 1: t = 0; Initialize pop(t) = {x1,z2,...,xx}, N is the population
size.

e Step 2: Evaluate pop(t).

e Step 3: Create the mating pool MP = se{pop(t)} with se is the
selection operator (2.2.2).

e Step 4: Define pop/(t)=cr{M P}, with cr is the crossover operator
(2.2.3).

e Step 5: Define pop”(t)=mu{pop/(t)}, with mu is mutation operator
(2.2.4).

e Step 6: Evaluate pop”(t)
e Step 7: Define pop(t + 1)=pop”(t) and set t =t + 1
e Step 8: Go back Step 3, if the stopping criterion is not satisfied.

Where pop(t) is the original population at time t, pop(t) is the population
after using crossover operator, pop(t) is the population after using mutation
operator.



2.2.1. Indiwidual representation

This is one of the important tasks in designing genetic algorithms, de-
ciding the application of evolutionary operators. One of the traditional rep-
resentations of genetic algorithms is binary representation. With this, each
individual in the population is represented as a sequence of bits 0 and 1, also
known as chromosomes. Each chromosome’s element represents a parameter
of individual components.

2.2.2. Selection operator

The selection of individuals can be done when we need a number of in-
dividuals to produce the next generation. FEach individual has an adap-
tive value (fitness). This value is used to determine which individual to
choose. The selection method used in this paper is tournament selection.
This method bases on the fitness function value to choose individuals.

2.2.3. Crossover operator

Crossover operator is applied to generate new children individuals from
parent individuals with the best traits inherited from their parents. In the
search context, the crossover operator performs a search around the area of
the solution represented by individual parents.

2.2.4. Mutation operator

Similar to crossover operator, mutation operator is used to simulate bi-
ological mutations. The result of mutations often generates new individuals
which are different from their parents. The purpose of mutation operator is
to expand searching areas out of local ones.

3. Methodology

The main idea is to design a genetic algorithm to tailor the orientation
problem characteristics making the search process effective. It starts with a
randomly initialized population (population P) of individuals in which the
number of individuals of the population is a constant natural number n, each
individual is represented by the sequence of the chromosomes. Population
will be evolved over many generations. The best individual of each generation
is kept for the next population and we apply the local search as well. After the
evolution process completed, the best individual in the population represents
the orientation.



In the following, we will discuss the design of representation as well as
operators.

3.1. Representation

Individual representation is a very important task in the design of ge-
netic algorithms because it will affect all operations of the algorithm and
calculation of fitness values. With the edge orientation problem for weighted
undirected graphs, we assume the followings:

e Since only two directions can be assigned for an edge of the graph, so
binary representation is suitable to represent an individual’s chromo-
some (if we consider a valid direction is 1, then the opposite direction

will be 0).

e For graph GG, we will find out P’ which is the set of all possible paths for
pairs of source s € S and target t € T, here we only consider edges in P’
that have the conflicting. Among found pathways, there are edges with
a single orientation and edges with different orientations. The edges
with different orientations are called conflicting edges. After having set
P’ we will find E" which is the set of all edges in the path p € P’ that
have conflict. Assume that E’ have n conflicting edges, the question is
how to orient them?

Thus the initial population P is the set of orientation possibilities for
conflicting edges in E’, each individual of this population represents an ori-
entation possibility and each individual’s gene will correspond to a conflicted
edge, so each individual will have n genes and each gene receives one of two
values: 0 or 1. So there are 2" individuals forming a huge search space given
a large n.

Let suppose that PPIs have been performed by an undirected graph G
whose weight is shown in Figure 2. The input consists of a set of source pro-
teins S = ProA, ProF, ProG; a set of target proteins T' = ProB, ProF, ProG
the largest path length is £ = 5.

Apply to the graph GG in Figure 2 we see set P’ includes paths:
p1 = {(proA, proC), (proC, proB)}
p2 = {(proA, proC), (proC,proD), (proD, proE), (proE, proF)}

= {(proA, proC), (proC,proD), (proD, proE), (proE, proG)}
p4 = {(proF, proE), (proE,proD), (proD, proC), (proC, proB)}
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Figure 2: A weighted undirected graph representing a network of protein interactions.

Table 1: 16 individuals could be selected for the initial population P
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ps = {(proF,proE), (proE, proG)}

ps = {(proG, prokE), (proE, proD), (proD, proC), (proC, proB)}

pr = {(proG, proE), (proE, proF)}

There are the following conflicted edges in set P’
E' = {(proC,proD), (proD, proE), (proE, proF),

(proE, proG)}

So the 2% individuals are described in Table and each individual have 4

bits.

3.2. Fvaluation of individuals

The individual evaluation involves calculating the fitness value (2), An
individual with greater fitness function value is assessed to be better. For
example, in the initial population P of the graph G in Figure 2.

Case 1. Choose individual C'1, then the graph G is oriented as shown in
Figure 3a. The paths which are satisfied with this orientation is pi, ps, p3 ,
fitness function value in this case is
F(C1) = w(p1)+w(p2) +w(ps) = 0.5%0.740.5%0.5%0.5%0.5+0.5%0.5%0.6 =

0.485
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Figure 3: Orientation of conflicted edges in the graph G.

Case 2. Choose individual C5; then the graph G is oriented as shown
in Figure 3b. Only one path is satisfied with this orientation, which is py,
fitness function value in this case is
f(C5) =w(p1) =0.5%0.7=0.35

We say Case 1 has a better objective value than that of Case 2.

3.3. The operators

Selection operator: For GA, we need to create a mating pool by the
mean of selection. In order to get an individual for the pool, we use the
binary tournament selection: randomly choose two individuals in the current
population, compare their fitness values, and then pick the one with better
fitness. For example in population P there are 4 individuals (as being shown
in Figure 4a). In the first random selection, we get two individuals C'1 and
Cb, compare their fitness, we have f(C1) > f(C5), should we choose C'1
(Figure 4b). Similarly, with the second random selection we choose C'10. So
after two times, we get two good individuals for the pool (in other words,
becoming parents for the next life).

Crossover operator: In our algorithm, we use a two-point crossover oper-
ator. The crossover operation calls for two index points to be selected on the
parent bit-strings. Everything between the two points is swapped between
the parent organisms, rendering two child organisms. For example in popula-
tion P in Figure 4a, we have selected two individuals for life after parenthood
which are C'11, C'10. Crossover operator is modeled as shown in Figure 5.
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Figure 4: Operator selection in the populations P.
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Figure 5: Simulation crossover operator between C11, C10 individuals.

C10 \0|1|1\0\

inversion| 0| 0 | 1 | 0 |

Figure 6: Simulation of mutation operator with individual C10.

Mutation operator: This is a simulation of mutations in biology. In our
search problem, the mutation operator is seen as a way to bypass local ex-
treme points of the fitness function. Our method uses bit inversion: randomly
select a bit and change its state to the opposite state. The mutation operator
is modeled as shown in Figure 6.

3.4. Conservation of elite individuals

After each generation, we can always find out the best individual from
that generation. We try to look around such individual to find better ones
for preservation. Doing this enables the algorithm to quickly converge to the
global extreme point, thus improve the running time of the algorithm. In our
algorithm, we use local search methods in an individual localSearch(individual).
We reverse each edge in the individual, then calculate the disparity of the
fitness function . The reversed edge with maximum positive will give better
individual.
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3.5. The complexity of the algorithm

Note that the computational cost of individual’s evaluation is the same
as what it is carried with Random Orientation Algorithm plus Local Search
(ROLS). So, here we focus only on the computational time (or complexity of
the algorithm) for GA framework. We call n is chromosome’s length, m is
the number of generations and s is the population size. Initializing the initial
population requires the time of O(n * s). The creation of the population for
the next generation includes procedures to implement the following opera-
tors: time required for the selection operator O(s/2), time required for the
crossover operator O(s#n), time required for the mutation operator O(s*n),
using localsearch to conserve time required elite individuals O(s % n). Since
these procedures are implemented one by one, the time required to create one
next generation is equal to max(O(s/2),O(s*n),0(n)) and hence O(s * n).
Therefore the necessary time for creating next m generations is O(m * s n).
According to our design n it is equal to the total number of conflicted edges
in the set of conflicted edges and clearly it depends on the size of the actual
PPI database. The general complexity of GA is O(m * s * n).

4. Case studies

4.1. Prepare data

Yeast’s interaction network

For experiments, we used the database of yeast PPIs taken from database
BioGRID (http://thebiogrid.org). This is an online database of genetic
interactions of organisms on a large scale. As mentioned above, this database
is extensively updated over time basing on new researches and findings by
experiments from biologists. Therefore, for ease of comparison between our
results and those of existing algorithms, we use the same database version
2.0.51 BioGrid with the authors [29]. This database is a two-dimensional
data table having 140849 lines; each line contains interactive information
of a pair of proteins. We are interested in information about experiment
types which are used to detect interactions, because we will combine this
information with the table of confidence scores for each type of experiment
to determine weights for each interaction edge [29].

The edge weight depends on two factors: First, the reliability of the
experiment type; Second, the number of separate experiments that have
such interactions. In essence, the edge weight of an edge (Prol, Pro2) is the
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probability of interacting protein pairs Prol and Pro2 which is calculated
using the formula

P(interact(Prol, Pro2)) =1 — H (1 —c(7)) (3)
1€1pro1,Pro2

where ¢ is a member of the set Ip,o1 pro2, Which contains all separate
interactive experiments from the database of PPIs,.and ¢(i) the reliability of
experiment type i.

After determining weights for protein interactions in (3) we get a data
sheet of the protein interaction pairs and weights of the interactions. This is
the input data of the algorithm. To ensure the reliability of the interaction,
our GA only takes into consideration interactions with weights of 0.6 or
larger, or of high reliability.

Gold standard pathways

To confirm that the orientations produced by our algorithm not only
achieve good objective function values but also produce biologically mean-
ingful results, we compared the PPI network of yeast that it oriented by
our algorithm with all yeast signaling pathways from the Science Signaling
Database of Cell Signaling. The database focuses all the signal path has been
verified by experiment called the gold standard pathway. Collection of all
the gold standard pathway is called the gold standard network. To evaluate
our algorithm, we compared the overlap of the individual pathways in the set
of pathways found by the algorithm with the gold standard network. We see
that, the gold standard network is much smaller compared with the complete
interaction network, containing 76 proteins and 122 interactions.

The source - target protein pairs

The algorithm inputs will use a set S C V' that includes experimentally-
proven source proteins in a path and a set T C V that contains proteins
where signaling pathway ends. List of source - target pairs is determined
basing on the standard pathway taken from [29].

4.2. Testing scenario

First, we use the Depth First Search algorithm for finding a set of paths
from source to target, then generating a set of conflicted edges. The yeast
PPIs database gives us 993 conflicting edges. After that, GA is used to
find the best orientation setting for conflicted edges. We conducted the test
run many times to compare results obtained by (GA) designed by us with
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the results of the Random Orientation Algorithm plus Local Search, called
ROLS, (Note that in [12], ROLS’s performance was shown better than that
of the algorithms MIN-SAT, MAX-CSP and MTO).

We also compared our results to a multistart random search (MRS)
method making sure the effectiveness of GA. For MRS, a population of so-
lutions are allowed to do random search without interaction (using genetic
operators).

For both algorithms GA and MRS, we set the initial population of 100
individuals, each individual has n chromosomes (which equals to the total
number of conflicted edges in the set of conflicted edges: 993 in this paper).
Input parameters for GA include: total generation number of 50, crossover
probability of 0.9 and mutation probability of 0.001, and each run populations
and individuals are initialized randomly. There was no particular reason for
choosing these values, we just followed the common settings in the field of
evolutionry computation. To ensure the same experimental conditions for
comparison, the algorithm ROLS’s performance is based upon 20 random
restarts and take the average value of the objective values.

4.3. Results and analysis

We analyze performance of GA from different aspects including runtime,
objective values, and biological validation.

4.8.1. Algorithm’s runtimes

For analytical methods used high-throughput data sets, the scalability
is extremely important because current database is incomplete and interac-
tive network of other organisms may be larger than the yeast. So we used
interactive network of yeast to examine the runtimes of our orientation al-
gorithm and ROLS for various combinations of maximum path length and
source-target pairs. Table 2 presents the runtimes of the algorithms for var-
ious combinations of sources, targets and maximum path length (k) using a
core i5, 2.4GHz machine with 4 GB of RAM. Times for ROLS and GA are
averaged over these 20 runs.

For smaller instances, all algorithms were very fast, terminating in less
than a second. In case k = 4, for all cases pairs of sources - targets, ROLS
was slower than our designed GA. However, from the case of k = 5 and
above, when the number of pairs of sources - targets increases, our GA was
much faster runtime than ROLS. Typically, in the case 16 pairs of sources -
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Table 2: Algorithm runtimes in seconds.

Sources | Targets | k ROLS GA

4 4 4 0.052 0.776

8 8 4 0.515 2.738

16 16 4 3.488 6.284

4 4 5 4.850 6.930

8 8 5 29.430 22.506
16 16 5 340.899 88.933

4 4 6 618.809 189.182
8 8 6 2773.108 | 554.495
16 16 6 23663.883 | 3137.720

targets, our GA ran 7 times faster than ROLS did (Table 2). This indicates
that our algorithm worked more efficiently when the problem size increases.

4.3.2. Performance assessment using the objective function

In terms of the objective value, GA designed by us has given out greater
performance than that of ROLS (see Table 3). The average objective values
obtained by GA are much better than ROLS’s (7961.3 4 52.09 comparing to
7836.6+£52.37). In most of runs, our GA’s objective function value was higher
than that of ROLS. Also GA found the best value of 8062, which was not
found by any run of ROLS. This shows that our GA can solve this problem
more effectively than ROLS. The use of the simulated evolution makes GA
much better than its random counterpart ROLS.

We also validated GA performance against MRS. Similar finding is also
obtained in this case. GA still showed better performance than that of MRS.
Genetic operators helped GA wokring effectively in this case studies.

4.8.3. FEvaluation of the algorithm using gold standard pathways

Regarding the biological validation, we employed the number of standard
pathways as a criterion to assess the ability of the algorithm in finding path-
ways. To forllow this criterion, we ranked all paths found by GA and ROLS
according to different metrics and calculate how many of top 100 paths hav-
ing exactly 5 edges (or 6 proteins) that are at least partially matched in the
standard pathways. According to the criteria given in [12], partially means
the path has at least four of the six proteins consecutively found in both
standard path and the satisfactory path returned by the algorithm. The
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Table 3: The results of the best objective values obtained by MRS, GA and ROLS among
20 runs.

Seed MRS GA ROLS
1 7715 8015 7739
2 7824 7951 7781
3 7855 7929 7818
4 7832 7946 7820
5 7821 7977 7886
6 7887 7979 7876
7 7873 7976 7942
8 7799 7916 7813
9 7889 7976 7817
10 7795 7877 T788
11 7859 7883 7781
12 7761 7894 7900
13 7869 8002 7806
14 7833 8005 7823
15 7895 7898 7935
16 7827 8062 7805
17 7801 8020 7896
18 7806 7951 7855
19 7827 7926 7835
20 7822 8043 7816
MEAN 7829.5 7961.3 7836.6
STD 43.35 52.09 52.37

results were listed in Tables 4, 5 and 6 for MRS, GA and ROLS and with
different metrics: the path weight, the edge weight (max, min and average),
edge use (max, min and average), the sum of the in and out degrees or the
vertex degree (the maximum degree value only since the min and average
values were zero in all cases).

In terms of the path weight, this is the most natural method for accessing
the paths found by the algorithms. It is clear that GA found better paths and
more stable than MRS and ROLS did with the mean of 36.3 in comparison
to that of 28.1 and 27.2 respectively. This finding is backup by other metrics
such as the edge weight, edge use or vertex degree, which show better results
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Table 4: Results for MRS: Number of the top 100 ranked paths that partially matched
gold standard pathways

Seed Path | Max. | Avg. | Min. | Max. | Avg. | Min. | Max.
weight | edge | edge | edge | edge |edge | edge | de-
weight | weight | weight | use use use gree
1 29 7 29 25 4 20 41 7
2 28 11 28 19 8 40 33 14
3 49 12 51 42 12 45 39 20
4 28 11 28 19 8 37 33 14
) 5 0 6 3 2 16 28 4
6 23 3 23 17 8 19 33 13
7 18 8 18 23 3 14 24 5
8 37 11 36 32 9 40 30 14
9 29 11 29 19 8 40 33 14
10 36 10 36 33 7 40 30 10
11 38 11 37 34 8 40 30 14
12 11 5 12 8 4 18 39 7
13 9 9 9 6 5 20 16 8
14 51 12 51 39 12 40 39 20
15 39 14 39 30 11 44 16 17
16 17 11 19 9 8 35 36 15
17 33 9 33 25 6 37 30 10
18 17 3 17 14 3 16 33 5
19 29 11 29 19 8 40 33 14
20 35 11 34 28 8 37 30 14
MEAN| 28.1 |9 28.2 | 222 |71 31.9 | 31.3 |14

in GA than in MRS and ROLS. Note that for the edge use, reflecting the
number of uses for a single edge is the number of times that edge is a member
of satisfied paths, although this does not directly incorporate the edge or path
weights, the top-ranked paths are still influenced when sorted by edge use
because edge use is dependent on the network orientation, which is dependent
on the path weights.

4.4. Discussion

We have observed the above sections that GA found many good pathways.
However, we wonder if the new pathways, which are ranked high according
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Table 5: Results for GA: Number of the top 100 ranked paths that partially matched gold
standard pathways

Seed Path | Max. | Avg. | Min. | Max. | Avg. | Min. | Max.
weight | edge | edge | edge | edge |edge | edge | de-
weight | weight | weight | use use use gree
1 38 11 37 34 8 40 30 14
2 29 11 29 19 8 37 33 14
3 38 11 38 32 8 40 39 14
4 35 11 35 27 8 37 39 14
5 34 12 34 27 8 37 30 14
6 38 13 37 31 8 40 30 14
7 38 10 37 34 8 40 30 14
8 35 11 34 27 8 37 30 14
9 35 11 35 28 8 37 30 14
10 39 11 38 34 8 40 39 14
11 35 11 34 27 8 37 30 14
12 28 7 27 18 5 28 16 8
13 35 11 34 27 8 37 30 14
14 50 12 49 36 12 40 42 20
15 33 5 33 32 8 20 33 13
16 35 11 35 27 8 37 30 14
17 39 13 38 33 8 40 30 14
18 38 11 37 33 8 40 30 14
19 35 12 36 33 8 40 30 14
20 38 11 38 34 8 40 30 14
MEAN | 36.3 | 10.8 | 35.8 | 29.7 |8.1 37.2 | 31.6 |14

to the criteria, may biologically be correct and represent information that is
missing from current PPI databases? Using the same analysis with [12], we
divided the pathways predicted by our GA into three groups and analyzed
the top 20 pathways in each group using the metric of path-weight for rank-
ing. The first group (Figure 7A) contains pathways having five or six proteins
whose its edges match with the gold standard pathways. The second group
(Figure 7B) contains pathways having six proteins that have some edges co-
inciding with the gold standard pathways. With these pathways, we need to
find out whether the new orientation interaction given by GA might mean-
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Table 6: Results for ROLS: Number of the top 100 ranked paths that partially matched
gold standard pathways

Run Path | Max. | Avg. | Min. | Max. | Avg. | Min. | Max.
weight | edge | edge | edge | edge |edge | edge | de-
weight | weight | weight | use use use gree

1 39 13 39 34 8 40 39 14

2 17 3 17 14 3 16 33 5

3 34 13 35 33 8 40 30 14

4 19 15 20 11 8 35 36 15

5 34 11 34 24 8 37 30 14

6 38 10 37 33 8 40 30 14

7 51 11 51 37 12 40 30 20
8 8 5 8 14 1 4 16 2

9 38 11 38 31 8 39 30 14
10 17 3 17 14 3 16 33 5

11 9 8 9 7 4 20 16 6

12 29 11 29 19 8 40 33 14
13 17 3 17 14 3 16 33 5

14 38 11 37 33 8 40 30 14
15 39 10 38 33 9 40 30 14
16 17 11 18 9 8 35 36 15
17 37 11 37 32 8 40 30 14
18 12 4 12 20 1 4 16 2

19 29 11 29 18 8 37 33 14
20 21 11 21 25 5 20 16 8
MEAN| 27.2 | 9.3 27.2 | 228 |6.5 30 29 11.2

ingfully show extensions to the pathways that were not previously known or
were not recorded in the databases. The third group (Figure 7C) are path-
ways discovered by our GA that do not consist with any known pathways
in the gold standard network. With these pathways, we wondered whether
they represent significant pathways in biology which have not been detected
experimentally. We can also merge paths of three groups discovered by our
GA into a larger network signals because each edge is oriented uniquely in
all paths. This is necessary to form a signaling network in the cell.

In Figure TA (representing pathways matched the gold standard ones),
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Figure 7: The top-ranked pathways discovered by the GA algorithm. Solid edges were
present in the gold standard network and dashed edges were not exist or oriented reversing
direction. (A) Pathways that its edges entirely coincide with the gold standard network.
(B) Pathways that some of its edges coincide with the gold standard network and contain

new edges as well. (C) Pathways that do not consist with any known pathways in the gold
standard network.
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the path Slnl — Ypdl — Sskl — Ssk22 — Pbs2 is inside of the high-
osmolarity glycerol (HOG) pathway; it was also found in [12]. We also found
that the pheromone pathway is filled with the cascade of Rgal — Cdc42 —
Ste20 — Stell — Ste7 — Fus3. The other paths that begin at Steb0 or Shol
and extend to Digl, Dig2, Ste7 and Stel2 are members of the filamentous
growth pathway.

Figure 7B illustrates the partially-matched pathways found by our GA;
they also contain the new orientation edges found in [12]. Some of these
paths in the pheromone signaling pathway comprise the edge Stell — Steb.
This edge was considered a error because in the gold standard it was oriented
reversely. Protein Steb performs function of scaffolding proteins, it interacts
with Fus3, Ste7, Stell to form the active complex [30, 31, 12]. However,
recently it has been discovered that protein Stell consists of a C-terminal
kinase domain and three N-terminal regulatory domains, one of which inter-
acts with Steb [32]. Thus, our predicted Stell — Steb edge is also valid.
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Another predicted interaction that disagrees with the direction in the gold
standard database is Fus3 — GPA1. The resulting Ste4-Stel8 dimer me-
diates signal transduction through binding to both the scaffolding protein
Steb and the PAK kinase Ste20, causing activation of a MAP kinase cascade
(Stell, Ste7, and Fus3) [33]. However, according to recent research, it has
been found that there is a feedback loop from Fus3 to GPA1 to Ste4, which
is phosphorylated by Fus3 and negatively regulates the pathway [34]. Thus,
our predicted Fus3 — GPAT1 edge is also valid.

For pathways in Figure 7C, which do not overlap with any of the pathways
in the databases of the gold standard network that we used, we found many
edges that may be biological hypotheses. For example, edge orientation Cln2
— Cdc28. CLN2 encodes a G1 cyclin involved in regulation of the cell cycle
[35]. This process required a periodic activation of cyclin-dependent kinases
(CDKs), protein Cdc28 is one of them [36]. Thus, our predicted Cln2 —
Cdc28 edge is also valid. Another example, edge orientation Bem1 — Ste20.
Protein Bem1 binds protein Steb and Ste20, which are central components
of the mating pathway, Bem1’s role may be to connect the mating signal to
the proteins that induce the appropriate changes to the actin cytoskeleton
137].

5. Conclusion

In this paper, we proposed the genetic algorithm design for problem of
orienting protein interaction network. This is a challenging problem for com-
putational biology. We presented a method to perform populations individ-
uals that fit the problem, especially our designs take into account conflicting
elements for solution representation, thus greatly improve computing speed.
Results show that our algorithm properly settles this problem. As evidence of
the correctness of our algorithm, we find that our algorithm has reconstructed
many known signaling pathways, which is significant in biological research.
In the future, we will consider introducing more biological characteristics of
the problems in the design process.

[1] E. Segal, M. Shapira, A. Regev, D. Peer, D. Botstein, D. Koller,
N. Friedman, Module networks: identifying regulatory modules and
their condition-specific regulators from gene expression data, Nat.
Genet. 34 (2003) 166-176.

21



2]

[10]

A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky,
R. D. Favera, A. Califano, Aracne: an algorithm for the reconstruc-
tion of gene regulatory networks in a mammalian cellular context, BMC
Bioinformatics 7 (2006) S7.

M. Grzegorczyk, D. Husmeier, Improvements in the reconstruction of
time-varying gene regulatory networks: dynamic programming and
regularization by information sharing among genes, Bioinformatics 27
(2011) 693-699.

D. A. Ravcheev, A. A. Best, N. V. Sernova, M. D. Kazanov, P. S.
Novichkov, D. A. Rodionov, Genomic reconstruction of transcriptional
regulatory networks in lactic acid bacteria, BMC Genomics 14 (2013)
14-94.

G. xia Liu, W. Feng, H. Wang, L. Liu, C. guang Zhou, Reconstruction of
gene regulatory networks based on two-stage bayesian network structure
learning algorithm., Journal of Bionic Engineering 6 (2009) 86-92.

J. Kitagawa, H. Iba, Identifying metabolic pathways and gene regula-
tion networks with evolutionary algorithms, Evolution Computation in
Bioinformatic (2003) 255-275.

E. Fischer, U.Sauer, Large-scale in vivo flux analysis shows rigidity and
suboptimal performance of bacillus subtilis metabolism, Nat. Genet. 37
(2005) 636-—640.

E. Ruppin, J. A. Papin, L. F. de Figueiredo, S. Schuster, Metabolic
reconstruction, constraint-based analysis and game theory to probe
genome-scale metabolic networks, Current Opinion in Biotechnology 21
(2010) 502-510.

D. McCloskey, B. . Palsson, A. M. Feist, Basic and applied uses
of genome-scale metabolic network reconstructions of escherichia coli,
Molecular Systems Biology 9.

J. Scott, T. Ideker, R. Karp, R. Sharan, Efficient algorithms for detecting
signaling pathways in protein interaction networks, J. Comput. Biol. 13
(2006) 133-144.

22



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G. Bebek, J. Yang, Pathfinder: mining signal transduction pathway seg-
ments from protein-protein interaction networks, BMC Bioinformatics
8 (2007) 335.

A. Gitter, J. Klein-Seetharaman, A. Gupta, Z. Bar-Joseph, Discovering
pathways by orienting edges in protein interaction networks, Nucleic
Acids Research 39 (2011) e22.

T. Umezawa, N. Sugivama, F. Takahashi, J. C. Anderson, Y. Ishihama,
S. C. Peck, K. Shinozaki, Genetics and phosphoproteomics reveal a pro-
tein phosphorylation network in the abscisic acid signaling pathway in
arabidopsis thaliana, Sci. Signal. 6.

T. Mikkelsen, M. Ku, D. Jaffe, B. Issac, E. Lieberman, G. Giannoukos,
P. Alvarez, W. Brockman, T. Kim, R. Koche, Genome-wide maps of
chromatin state in pluripotent and lineage-committed cells, Nature. 448
(2007) 553-560.

B. Lewis, C. Burge, D. Bartel, Conserved seed pairing, often flanked
by adenosines, indicates that thousands of human genes are microrna
targets, Cell. 120 (2005) 15-20.

X. Xie, J. Lu, E. Kulbokas, T. Golub, V. Mootha, K. Lindblad-Toh,
E. Lander, M. Kellis, Systematic discovery of regulatory motifs in human
promoters and 3 utrs by comparison of several mammals, Nature. 434
(2005) 338-345.

S. Cox, S. Levanon, G.N.Bennett, K. Y. San, Genetically constrained
metabolic flux analysis, Metab. Eng. 7 (2005) 445-456.

J. Gu, J. Xuan, C. Wang, L. Chen, T. L. Wang, L. M. Shih, Detect-
ing aberrant signal transduction pathways from high-throughput data

using gist algorithm, Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB) (2012) 267-274.

D. Blokh, D. Segev, R. Sharan, Approximation algorithms and hard-
ness results for shortest path based graph orientations, Lecture Notes in
Computer Science 7354 (2012) 70-82.

R. Kohli, R. Krishnamurti, P. Mirchandani, The minimum satisfiability
problem, STAM J. Discret. Math 7 (1994) 275-283.

23



[21]

[22]

23]

[24]

[25]

[26]

[27]

M. Charikar, K. Makarychev, Y. Makarychev, Near-optimal algorithms
for maximum constraint satisfaction problems, ACM Trans. Alg 5 (2009)
1-14.

A. Medvedovsky, V. Bafna, U. Zwick, R. Sharan, An algorithm for ori-
enting graphs based on cause-effect pairs and its applications to orienting
protein networks, in: InProceedings of the 8th international workshop
on Algorithms in Bioinformatics, Karlsruhe, Germany, 2008.

N. H. Anh, V. C. Long, T. M. Phuong, B. T. Lam, A genetic-based ap-
proach for discovering pathways in protein-protein interaction networks,
in: InProceedings of SoCPaR2013, [Accepted], 2013.

T. Back, Evolutionary Algorithms in Theory and Practice, Oxford Uni-
versity Press, 1996.

L. Araujo, H. Zaragoza, J. R. Prez-Agera, J. Prez-Iglesias, Structure of
morphologically expanded queries: A genetic algorithm approach., Data
& Knowledge Engineering 69 (2010) 279-289.

H. Liu, C. Blouin, V. Keelj, Sentence identification of biological interac-
tions using patricia tree generated patterns and genetic algorithm opti-
mized parameters., Data & Knowledge Engineering 69 (2010) 137-152.

W. Fu, B. Sanders-Beer, K. Katz, D. Maglott, K. Pruitt, R. Ptak, Hu-
man immunodeficiency virus type 1, human protein interaction database
at ncbi, Nucleic Acids Res 37 (2009) 417-422.

R. Bueno, A. J. Traina, C. T. Jr, Genetic algorithms for approximate
similarity queries., Data & Knowledge Engineering 62 (2007) 459-482.

A. Gitter, J. Klein-Seetharaman, A. Gupta, Z. Bar-Joseph, Supporting
information, discovering pathways by orienting edges in protein interac-
tion networks, http://sb.cs.cmu.edu/OrientEdges/ (2012).

E. A. Elion, The ste5p scaffold, J Cell Sci 114 (2001) 3967-3978.

C. Inouye, N. Dhillon, T. Durfee, P. Zambryski, J. Thorner, Mutational
analysis of steb in the yeast saccharomyces cerevisiae: application of a

differential interaction trap assay for examining protein-protein interac-
tions., Genetics 147 (1997) 479-492.

24



32]

[33]

[34]

[35]

L. Bardwell, A walk-through of the yeast mating pheromone response
pathway, Peptides 25 (2004) 1465-1476.

S. J. Dowell, A. L. Bishop, S. L. Dyos, A. J. Brown, M. S. Whiteway,
Mapping of a yeast g protein betagamma signaling interaction, Genetics
150 (1998) 1407-1417.

M. Metodiev, D. Matheos, M. Rose, D. Stone, Regulation of mapk func-
tion by direct interaction with the mating-specific galpha in yeast, Sci-
ence 296 (2002) 1483-1486.

D. Huang, S. Kaluarachchi, D. van Dyk, H. Friesen, R. Sopko, W. Ye,
N. Bastajian, J. Moffat, H. Sassi, M. Costanzo, B. Andrews, Dual regu-
lation by pairs of cyclin-dependent protein kinases and histone deacety-
lases controls gl transcription in budding yeast., PLoS Biol 7 (2009)
e1000188.

M. Miller, F. Cross, A. Groeger, K. Jameson, Identification of novel and
conserved functional and structural elements of the gl cyclin cln3 im-

portant for interactions with the cdk cde28 in saccharomyces cerevisiae.,
Yeast 22 (2005) 1021-1036.

T. Leeuw, A. Fourest-Lieuvin, C. Wu, J. Chenevert, K. Clark, M. White-
way, D. Thomas, E. Leberer, Pheromone response in yeast: association

of bemlp with proteins of the map kinase cascade and actin, Science
270 (1995) 1210-1213.

25



