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Abstract—Genetic Programming (GP) is an evolutionary algo-
rithm inspired by the evolutionary process in biology. Although,
GP has successfully applied to various problems, its major
weakness lies in the slowness of the evolutionary process. This
drawback may limit GP applications particularly in complex
problems where the computational time required by GP often
grows excessively as the problem complexity increases. In this
paper, we propose a novel method to speed up GP based on a new
implementation that can be implemented on the normal hard-
ware of personal computers. The experiments were conducted
on numerous regression problems drawn from UCI machine
learning data set. The results were compared with standard
GP (the traditional implementation) and an implementation
based on subtree caching showing that the proposed method
significantly reduces the computational time compared to the
previous approaches, reaching a speedup of up to nearly 200
times.

Keywords-Genetic Programming; Speed up; Fitness Evalua-
tion.

I. INTRODUCTION

Genetic programming (GP) [11], [16] is considered as a

meta-heuristic based machine learning method, which induces

a population of computer programs by evolutionary means.

GP has successfully been used in generating computer pro-

grams for solving a numbers of problems from various fields.

Specially, this method has been used to produce numerous

human-competitive results [12]. However, GP evolves slowly

with complex and high dimensional problems. This slowness

is due to the fact that the solutions produced by GP must be

evaluated on the training data using a fitness function.

In order to soften the slowness drawback of GP, many

studies have been conducted to improve the execution time of

this algorithm. In the early days of GP, most of the parallel ap-

proaches are based on the implementation over CPU machine

clusters [5]. More recently, works about parallelization have

been concentrated on using graphics processing units (GPUs)

which provide fast parallel hardware for accelerating the evo-

lutionary process of GP [8], [9]. Though these research have

achieved significant success, helping to reduce GP execution

time up to several hunderes times, their main shortcoming is

that they require special hardware to be executed. In other

words, these algorithms can only be implemented if CPU

machine clusters or GPUs are available. However, this is not

always true in reality.

Moreover, even when CPU machine clusters or GPUs are

available, executing GP algorithm on these hardware is not a

straightforward task. The reason is that GP often needs to be

adapted before being able to run on these hardware systems. In

some cases, the adaptation results in a much more complicated

algorithm [3]. This may be an obstacle for the applicability of

GP in practice. In this paper, we propose a new implementation

of GP that is simple but efficient. The novel implementation

is not based on the support from a special hardware. Thus, it

can be implemented on standard personal computers that are

by more far popular than CPU machine clusters or GPUs.

The remainder of the paper is organized as follows. In

the next section, we present a background on GP model and

analyzes the computational cost associated with its different

phases. Section III provides an overview of previous works

related to speeding up GP algorithm. Section IV presents

the novel implementation to accelerate GP. The experimental

settings are discribled after that. The results will be given and

discussed in Section VI. Section VII concludes the paper and

highlights some future work.

II. BACKGROUND

In this section, we first give a brief introduction to genetic

programming. The detail about GP evaluation stage is ana-

lyzed after that.

A. Genetic Programming

Genetic Programming (GP) was developed by Koza based

on observations of biological systems [11]. It uses an abstrac-

tion of Darwin’s natural selection mechanisms to evolve a

population of solutions to problems [16]. It can also be seen

as a machine learning method to optimize a population of

computer programs to perform a given computational task.

Following is the main steps in applying GP to solve problems:

1) Select a representation, a set of functions and terminals,

and a fitness function for the problem.

2) Initialise a population of individuals.978-1-4799-8044-4/15/$31.00 c© 2015 IEEE
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3) Evaluate the fitness (how good) of the individuals in the

population.

4) If the termination conditions have been reached, exit.

Otherwise, go to step 5.

5) Choose a number of individuals (candidate solutions)

using a certain selection method.

6) Apply a number of genetic operators on the selected

solutions to generate a new population.

7) Repeat from step 3 to step 6.

In the first step, GP practitioners need to select an ap-

propriate representation for individuals. Although, some other

representations such as linear [14] or graph-based [13], tree-

based representation is the most popular form and will be used

in this paper. After that, a set of functions F and terminals T

are identified. The function set F = { f1, f2, ..., fn} includes a

number of functions with arity (number of possible arguments)

greater than 0, whereas the terminal set T = {t1, t2, ..., tm}
contains 0-arity functions or constants.

The first step in running a GP system is to generate, usually

at random, an initial population of candidate solutions. This

population is served as the starting point of the GP algorithm.

The fitness evaluation function is then called to calculate the

fitness value for each individual in the population. This fitness

value presents the ability of the individual in solving the

problem. The GP process is finished when the termination

condition in step 4 is satisfied (e.g when a perfect solution

is found or the maximum number of fitness evaluation is

exceeded).

In step 5, the fitter solutions (the better solutions to the

problem), based on fitness values, are selected using a selec-

tion method. Next, a new population is generated by applying

a number of genetic operators to the chosen individuals. The

main genetic operators are crossover, mutation and repro-

duction. The reproduction operation simply copies a selected

individual to the next generation. The mutation operator adds

new genetic material to the population by modifying the

individual while the crossover operation generates two new

individuals by combining two old individuals. More detail

discussion about Genetic Programming can be found in [16],

[11].

B. Fitness Evaluation

Although, there are several steps in running a GP system,

the previous experiences have proven that on average more

than 90% of the time is taken by the evaluation stage [1]. For

a standard version of GP, if the population size and the number

of samples in the training data set (also called the number of

fitness cases) have been determined, then the evaluation stage

is often implemented as the pseudo-code in Algorithm 1.

It can be seen from Algorithm 1 that this implementation

requires two loops to complete the evaluation stage. In this

algorithm, the produce Compute(st,x) is a function that ex-

ecutes individual st with an input sample (a fitness case), x.

This function will return an output value, t. In a real-valued

symbolic regression problem, t is usually a real number. This

value will be compared to the target value of the input sample

Algorithm 1: Evaluation stage of GP

Input: population size, number fitness cases

for each individual st within the population do

for each instance x from the dataset do
Compute(st,x)

in the training data set to know the quality of individual st. In

most GP system, the Compute() fuction has the sketch as in

Algorithm 2.

Algorithm 2: Evaluation of an individual with an instance

from the training data set

type Compute(st,x)

{
If st is a leaf node then

{
return x;

}
Else

{
p=Operator(st)

q=Compute(st.children,x)

return p(q)

}
}

Where type is the data type that is returned by this function.

For real-valued regression problems and in the popular lan-

guages like C and Java, this will often be the type for real

numbers (double or float). Function Operator(st) returns the

operator at the current processing node and function q(q) will

apply this operator to the result obtained by the children of

st. It should be noted that this is a recursive function. This

recursive function for evaluating an invididual in GP has been

implemented in many GP packages including a widely used

one like ECJ [19].

III. RELATED WORK

As already mentioned, one of the main shortcomings of GP

is that it often requires significant amount of time to evolve

on the training data. In order to extend the applicability of GP,

diverse techniques have been proposed to reduce GP execution

time. These techniques can roughly be categorized into three

classes [16]:

1) Reducing number of fitness evaluations

2) Using caching methods

3) Paralleling GP

The first of these approaches is motivated by the fact that

if a program has already shown it is inferior to the rest of

the population on a fraction of the available training data, it

not likely to be selected as a parent in the selection stage.

Therefore, in most application, it is not necessary to evaluate
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a the program on all fitness cases. In other words, only

a carefully selected subset of fitness cases can be used to

measure the quality of each program without any major impact

to the result of the whole system. This method has been

used by some researchers and achieved significant success in

reducing GP evolution time [17], [7].

The second approach has been to lower evaluation costs

by reducing the number of node evaluations that need to be

performed. In many GP systems, subtrees have no side-effects.

Thus, if the inputs and output of a subtree are remembered

when it was run before, they can be used to avoid re-executing

code whenever the subtree is required to run again. Moreover,

in GP, due to consistent copying of subtrees by the crossover

operator, it is likely that many subtrees will occur multiple

times in the population. Hence, if a scheme can be used to

cache these subtrees to avoid re-evaluate them, it is often

possible that GP speed will be increased. Some researchers

have used different methods such as hash function [20] or

Directed Acyclic Graph [10] for caching subtrees leading to a

significant decrease in GP running time.

Perhaps, the most popular method to accelerate GP is based

on paralleling techniques. These methods are supported by

a fast growing in computing power of computer hardware.

There are two important methods for paralleling evolutionary

algorithms which are often used by GP researchers. The

first is the traditional method for parallel computing. That

is, an existing algorithm is sent to a supercomputer so that

it runs faster [15], [5]. The second aspect comes from the

biological inspiration for evolutionary computation: in nature

everything happens in parallel. In other words, GP population

is divided into enormous sub-populations and each of these

sub-population may be evaluated in different process units

such as CPU cores or graphics processing units (GPUs) [3],

[8].

Due to the fast increase of computer power, these methods

have been achieved a noticeable success with the speedup

of up to hunderes to thousand times [4]. However, they also

have some downsides such as they requires the support from

special hardware and the algorithms often need to alter to

be concurrently executed on different processing units. Subse-

quently, not every GP practitioner implements these methods

in their applications. In the next section, we will propose a

new implementation of GP that avoids to change the structure

of the algorithm and can be implemented on normal personal

computers. This means that the proposed algorithm does not

require CPU clusters or GPUs to be accelerated.

IV. METHODS

This section presents the new implementation proposed in

this paper. The idea for this implemtation has been briefly

discussed in [10] where Keijzer proposed some schemes for

caching subtrees in GP. Nevertheless, there was not any con-

crete implementation proposed in [10]. Moreover, experiments

were also not conducted to investigate the effectiveness of

this method in Keijzer research [10]. In this section, we

will propose a concrete implementation for this method and

conducting a thorough experiment to examine its impact.

The motivation for this method is due to the fact that in

most implementation of GP so far, evaluation is done on a

case by case basis. In other words, each fitness case is often

independently interpreted by the GP parse tree. Thus, given

an individual consisting of M nodes, evaluated over N fitness

cases, the number of interpretation steps for this individual

is MxN. Since each interpretation employs a switch or jump-

table to find out which function to call, the fully interpreted

GP system will incur the overhead of the switch or lookup

and subsequent function call for each node. This can be one

of the reason that explains for the slowness of GP.

However, if the loop is reimplemented so that the evaluation

works on the full array of fitness cases for each node, it

is feasible to reduce the number of interpretation steps to

M. This implementation is called vectorized evaluation. By

reducing the number of interpretation steps by a factor N,

the runtime of a GP system can be significantly lowered. In

effect, when performing vectorized evaluation, the overhead

of the evaluation stage is independent of the number of fitness

cases of the problem.

In order to implement vectorized evaluation scheme, several

modifications are imposed on the fitness evaluation stage of

GP. First, the evaluation stage in Algorithm 1 is changed to

Algorithm 3. It can be seed that in this algorithm, there is only

one loop instead of two loops as in Algorithm 1. Furthermore,

the input to the Compute() function has only one parameter

(the genome of the current individual, st). This is due to that

the genome interpreter in this implementation is independent

of the number of fitness cases.

Algorithm 3: Evaluation stage of GP in new implemen-

tation

Input: population size

for each individual st within the population do
Compute(st)

Second, the structure of the Compute() function also needs

to be altered. It is sketched in Algorithm 4. It can be ob-

servered that in this implementation the function has an input:

the array of fitness cases (Fitness Cases[]). Moreover, the

result of this function is a vector rather than a value as in the

previous implementation. Inside the function, an array result[]

is allocated to contain the result of the evaluation process for

all fitness cases of the problem. This implementating helps to

reduce the number of genome interpretations for each individ-

ual to only 1 without depending on the number of fitness cases

of the problem. In the following section, the impact of this

method to the speed of GP will be experimentally examined.

V. EXPERIMENTAL SETTINGS

In order to measure the impact of the vectorized evaluation

method to the speed of GP, we tested this implementation on
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Algorithm 4: The structure of the Compute function in

the new implementation

Input: Fitness Cases[]

type[] Compute(st)

{
type result[]

If st is a leaf node then

{
result[]=Fitness Case[]

}
Else

{
p=Operator(st)

q=Compute(st.children)

result[]= p(q)

}
return result[]

}

TABLE II
RUN AND EVOLUTIONARY PARAMETER VALUES.

Parameter Value

Population size 500

Generations 50

Selection Tournament

Tournament size 3

Crossover probability 0.9

Mutation probability 0.1

Function set +, -,*,/,sin,cos,exp,log

Terminal set X1,X2,...,XN

Initial Max depth 6

Max depth 15

Max depth of mutation tree 5

Raw fitness mean absolute error

Trials per treatment 30 independent runs

ten multivariate regression problems. All these problems were

taken from UCI machine learning dataset 1. They are detailed

in Table I.

The GP parameters used for our experiments are shown

in Table II. The terminal set for each problem includes N

variables corresspoding to the number of attributes of that

problem. The raw fitness is the mean of absolute error on

all fitness cases. Therefore, smaller values are better. For each

problem and each parameter setting, 30 runs were performed.

We compared the method in this paper with the standard

implementation of GP (standardGP) and a method for caching

subtree semantics in GP [18]. In [18], semantics (the output) of

every subtree in an individual is stored by using the attributes.

These attributes are then used to speed up the evolutionary

process of GP: if an individual is crossed over, only nodes

1http://archive.ics.uci.edu/

from the crossover point to the root are reevaluated, other

nodes are not reevaluated since they are not changed. More

detailed description about this caching method can be found

in [18]. The comparative results of three methods are presented

in the following section.

VI. RESULTS AND DISCUSSION

Two metrics were used to measure the performance of the

above techniques. The first metric is the average running time

measured in seconds. For each run, we recored the amount

of time needed to complete that run (after finishing the last

generation). These values were then averaged over 30 runs and

the results of three methods are shown in Table III.

TABLE III
AVERAGE RUNNING TIME IN SECONDS OF THREE METHODS

Problems StandardGP CachingGP VectorizedGP

F1 480 23 6.1

F2 550 28 4.3

F3 109 10 2.5

F4 364 83 11

F5 552 31 5.7

F6 903 51 10

F7 384 24 5.5

F8 482 32 6.2

F9 623 40 4.2

F10 836 40 4.2

It can be seen from this table that both methods (caching

and vectorized evaluation) help to speed up the evolutionary

process of GP. However, the scale of improvement is different.

While caching method only reduce the average running time

of GP to about 20 times, the vectorized evaluation method

decrease these values to about 100 times. Particularly, on

problem F10, the vectorized evaluation even helps to speed

up GP to nearly 200 times. We also statistically tested the

significance of the results in Table III using a Wilcoxon signed

rank test with a confidence level of 95%. The statical test

shows that all the different between the caching method versus

standard GP and the vectorized evaluation method versus both

the caching method and standard GP are significant. These

results show that using the new implementation in this paper

may potentially help GP practitioners safe a significant amount

of time in running GP for their applications (from 100 to 200

times).

The second metric used to evaluate the effectiveness of

these methods are the memory space needed to execute GP.

Since, the memory space allocated for GP will vary during

the evolutionary process, we only recorded the highest values

(in Megabytes) of each run out of 30 runs. These values are

presented in Table IV. It can be observered from this table that

while the caching method needs much more memory space to
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TABLE I
SYMBOLIC REGRESSION PROBLEMS.

Shorthanded Name Number of Fitness Cases Number of Attributes

F1 airfoil self noise 600 6

F2 Housing 506 14

F3 slump test Compressive 103 8

F4 3D spatial network 450 4

F5 Concrete Compressive Strength 480 9

F6 Protein Tertiary Structure 470 10

F7 yacht hydrodynamics 380 7

F8 Istanbul stock exchange 536 8

F9 wine quality white 900 12

F10 wine quality red 900 12

TABLE IV
THE HIGHEST VALUE OF MEMORY SPACE OF THREE METHODS

Problems StandardGP CachingGP VectorizedGP

F1 21.5 855 21.7

F2 21.2 790 21.5

F3 21.4 268 21.7

F4 30.1 1059 28.2

F5 31.2 1027 29.3

F6 34.2 1056 28.5

F7 21.3 1048 32.5

F8 26.2 986 21.6

F9 21.5 1237 21.6

F10 21.5 1259 21.9

be executed and this may risk the out of memory error when

the problems become more complicated (more fitness cases

and more attributes), the vectorized evaluation method does

not incur the increase of the memory when running GP. In

fact, the memory space allocated for the vectorized evaluation

method is mostly equal to the standard GP. This is an important

property that allows the proposed method can be implemented

in normal personal computers.

VII. CONCLUSIONS

In this paper, we proposed a novel implementation to speed

up the evolutionary process of GP. The motivation for this

method is to interpret a GP genome based on an array of

fitness cases rather than single case as in the traditional

implementation. The proposed method was tested on a number

of regression problems drawn from UCI machine learning data

set. The experimental results showed that the new implemen-

tation helps to reduce the average running time of GP up to

nearly 200 times. Moreover, constract to the caching method,

this method does not increase the memory space when GP is

executed. Thus, the new method may possibly be widely used

by GP practioners on standard personal computers in solving

real-world applications.

In future, we are planning to extend the work in this paper in

a number of ways. First, we will test the new implementation

on more complex problems especially the problems in reality

like time series forecasting or network security [6], [2]. In

these problems, the training data set is often much bigger.

Consequently, this will take much longer for GP to find

solutions for these difficult tasks. Second, it will be very

interesting to measure the performance of this method on

classification problems where it has been proven that the

fitness evaluation process is even slower [1]. Last but not

least, the proposed method does exclude other parallel GP

algorithms on GPUs, therefore, in the future, we are aiming

to implement this method on GPUs to see if this helps to speed

up GP to a further extent.
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