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We propose a projection algorithm for solving an equilibrium problem (EP) where
the bifunction is pseudomonotone with respect to its solution set. The algorithm
is further combined with a cutting technique for minimizing the norm over the
solution set of an EP whose bifunction is pseudomonotone with respect to the
solution set.
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1. Introduction and motivation

Let C be a non-empty closed convex subset in the Euclidean space IRn and � ⊆ IRn be an
open convex set containing C , and f : � × � → IR be a bifunction such that f (x, x) = 0
for every x ∈ C . As usual, we call such a bifunction an equilibrium bifunction. Consider
the equilibrium problem, shortly (EP)

Find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C. (EP)

This problem is also often called the Ky Fan inequality due to his contribution to this field.
EP is an important subject that recently has been considered in many research papers. It

is well known [1,2] that various classes of optimization, variational inequality, fixed point,
Nash equilibria in non-cooperative game theory and minimax problems can be formulated
as an equilibrium problem of the form EP. There are several solution approaches that have
been developed for EPs among them the projection is one of fundamental methods. It has
been shown (see e.g. [3]) that the projection method, in general, is not convergent for the
monotone variational inequality, which is a special case of monotone EPs. In order to obtain
convergent projection algorithms, the extragradient (or double projection) algorithms have
been proposed. The first extragradient method has been proposed by Korpelevich in [4] for
convex optimization and saddle point problems. This method has been further extended
to pseudomonotone variational inequalities and equilibrium problems.[3,5–7] To enhance
convergence of double projection algorithms, recently hybrid projection-cutting algorithms
have been proposed for pseudomonotone inclusions and variational inequalities.[8,9]
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Another fundamental approach to optimization, variational inequality and EPs is the
Tikhonov regularization.[10] The Tikhonov regularization method was applied to
pseudomonotone variational inequalities and EPs (see e.g. [11–15] and the references
therein). Unlike the monotonicity case, in this case the regularized subproblems, in general,
do not inherit any monotonicity property from the original problem, and therefore the
existing solution methods that require monotonicity properties cannot be directly applied
to solve regularized subproblems as in the case of monotone problems. However, it has
been proved (see e.g. in [11]) that any Tikhonov trajectory tends to the same limit which
is the projection of the starting point onto the solution set of the original pseudomonotone
equilibrium problem. This result suggests that in order to obtain the limit point in the
Tikhonov regularization method for pseudomonotone EPs, one can minimize the Euclidean
norm over the solution set of the original pseudomonotone EP. The latter bilevel problem
is a special case of mathematical programs with equilibrium constraints that have been
considered intensively in recent years (see e.g. [16–20]).

The purpose of this paper is twofold. First, we extend the projection algorithm developed
by Solodov and Svaiter in [9] to EP where the bifunction f is pseudomonotone on C
with respect to its solution. Our extension is motivated by the fact reported in [9] that
this algorithm works well for pseudomonotone variational inequality problems when the
projection onto the feasible domain C is computationally expensive. Next, we combine this
algorithm with a cutting technique developed in [21] to minimizing the Euclidean norm
over the solution set of the EP. As mentioned before, the latter bilevel problem arises in the
Tikhonov regularization method for pseudomonotone EPs.

The paper is organized as follows. The next section contains preliminaries on the
Euclidean projection and EPs. The third section is devoted to presentation of the algorithm
and its convergence. In section four, we describe an algorithm for minimizing the Euclidean
norm over the solution set of an EP, where the bifunction is pseudomonotone with respect to
its solution set. The last section is devoted to present an application of the proposed algorithm
for Nash-cournot equilibrium models of electricity markets and its implementation.

2. Preliminaries

Throughout the paper, by PC we denote the projection operator on C with the norm ‖.‖,
that is

PC (x) ∈ C : ‖x − PC (x)‖ ≤ ‖y − x‖ ∀y ∈ C.

The following well-known results on the projection operator onto a closed convex set will
be used in the sequel.

Lemma 2.1 Suppose that C is a nonempty closed convex set in IRn. Then

(i) PC (x) is singleton and well defined for every x ;
(ii) π = PC (x) if and only if 〈x − π, y − π〉 ≤ 0, ∀y ∈ C;

(iii) ‖PC (x) − PC (y)‖2 ≤ ‖x − y‖2 − ‖PC (x) − x + y − PC (y)‖2, ∀x, y ∈ C.

We recall some well-known definitions on monotonicity (see e.g. [1–3,9,22]).

Definition 2.1 A bifunction g : C × C → IR is said to be
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(a) strongly monotone on C with modulus γ > 0, if

g(x, y) + g(y, x) ≤ −γ ‖x − y‖2 ∀x, y ∈ C;
(b) monotone on C if

g(x, y) + g(y, x) ≤ 0 ∀x, y ∈ C;
(c) pseudomonotone on C if

g(x, y) ≥ 0 =⇒ g(y, x) ≤ 0 ∀x, y ∈ C;
(d) pseudomonotone on C with respect to x∗ if

g(x∗, y) ≥ 0 =⇒ g(y, x∗) ≤ 0 ∀y ∈ C.

We say that g is pseudomonotone on C with respect to a set S if it is pseudomonotone on
C with respect to every point x∗ ∈ S.

From the definitions, it follows that (a) ⇒ (b) ⇒ (c) ⇒ (d) ∀x∗ ∈ C .
In the sequel, we need the following blanket assumptions

(A1) f (., y) is continuous on � for every y ∈ C ;
(A2) f (x, .) is lower semicontinuous, subdifferentiable and convex on� for every x ∈ C ;
(A3) f is pseudomonotone on C with respect to the solution set S of (EP).

Lemma 2.2 Suppose Problem (EP) has a solution. Then under Assumptions (A1), (A2)

and (A3) the solution set S is closed, convex and

f (x∗, y) ≥ 0 ∀y ∈ C if and only if f (y, x∗) ≤ 0 ∀y ∈ C.

The proof of this lemma when f is pseudomonotone on C can be found, for instance, in
[2,22]. When f is pseudomonotone with respect to the solution set of (EP), it can be done
by the same way. So we omit it.

The following lemmas are well known from the auxiliary problem principle for EPs.

Lemma 2.3 [23] Suppose that G is a continuously differentiable and strongly convex
function on C with modulus δ > 0. Then under Assumptions (A1) and (A2), a point x∗ ∈ C
is a solution of (EP) if and only if it is a solution to the EP:

Find x∗ ∈ C : f (x∗, y) + G(y) − G(x∗) − 〈∇G(x∗), y − x∗〉 ≥ 0 ∀y ∈ C. (AEP)

The function

D(x, y) := G(y) − G(x) − 〈∇G(x), y − x〉
is called Bregman function. Such a function was used to define a generalized projection,
called D-projection, which was used to develop algorithms for particular problems, see
e.g. [24]. An important case is G(x) := 1

2‖x‖2. In this case, D-projection becomes the
Euclidean one.
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Lemma 2.4 [23] Under Assumptions (A1), (A2), a point x∗ ∈ C is a solution of Problem
(AEP) if and only if

x∗ = argmin{ f (x∗, y) + G(y) − G(x∗) − 〈∇G(x∗), y − x∗〉 : y ∈ C}. (CP)

Note that, since f (x, .) is convex and G is strongly convex, Problem (CP) is a strongly
convex program.

For each z ∈ C , by ∂2 f (z, z) we denote the subgradient of the convex function f (z, .)
at z, i.e.

∂2 f (z, z) := {w ∈ IRn : f (z, y) ≥ f (z, z) + 〈w, y − z〉 ∀y}
= {w ∈ IRn : f (z, y) ≥ 〈w, y − z〉 ∀y},

and we define the halfspace Hz as

Hz := {x ∈ IRn : 〈g, x − z〉 ≤ 0} (2.1)

where g ∈ ∂2 f (z, z). Note that when f (x, y) = 〈F(x), y − x〉, this halfspace becomes the
one introduced in [9]. The following lemma says that the hyperplane does not cut off any
solution of problem (EP).

Lemma 2.5 Under Assumptions (A2) and (A3), one has S ⊆ Hz for every z ∈ C.

Proof Suppose x∗ ∈ S. From g ∈ ∂2 f (z, z), by convexity of f (z, .), it follows that

〈g, x∗ − z〉 ≤ f (z, x∗) − f (z, z) ≤ f (z, x∗) ∀y ∈ C.

Since x∗ ∈ S we have f (x∗, z) ≥ 0. Then, by pseudomonotonicity of f with respect to x∗,
it follows that f (z, x∗) ≤ 0. Thus 〈g, x∗ − z〉) ≤ 0, which implies x∗ ∈ Hz . �
Lemma 2.6 Under Assumptions (A1) and (A2), if {zk} ⊂ C is a sequence such that {zk}
converges to z̄ and the sequence {gk ∈ ∂2 f (zk, zk)} converges to ḡ, then ḡ ∈ ∂2 f (z̄, z̄).

Proof Let gk ∈ ∂2 f (zk, zk). Then

f (zk, y) ≥ f (zk, zk) + 〈gk, y − zk〉 = 〈gk, y − zk〉 ∀y ∈ C.

Taking the limit as k → ∞ on both sides of the above inequality, by the upper semicontinuity
of f (., y) with respect to the first argument, we obtain

f (z̄, y) ≥ lim sup
k→∞

f (zk, y) ≥ lim
k→∞ 〈gk, y − zk〉 = 〈ḡ, y − z̄〉 ∀y ∈ C

which, together with f (z̄, z̄) = 0, implies that ḡ ∈ ∂2 f (z̄, z̄). �
We need the following lemma.

Lemma 2.7 [9] Suppose that x ∈ C and u = PC∩Hz (x). Then

u = PC∩Hz (x̄), where x̄ = PHz (x).

We give here a simple proof for this lemma, which is other than that in [9].

Proof Let w = PC∩Hz (x̄). We show that w = u. Indeed, suppose contradiction that
w �= u, then by the property of the projection onto a closed convex set, we have ‖x̄ −w‖ <

‖x̄ − u‖. By Pythagoras’s theorem, ‖x − u‖2 = ‖x − x̄‖2 + ‖x̄ − u‖2 and ‖x − w‖2 =
‖x − x̄‖2 +‖x̄ −w‖2. Combining with ‖x −u‖ < ‖x −w‖ we obtain ‖x̄ −u‖ < ‖x̄ −w‖,
which contradicts to ‖x̄ − w‖ < ‖x̄ − u‖. �
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3. A projection algorithm for EPs

The following algorithm can be considered as an extension of Solodov-Svaiter’s algorithm
[9] to Problem (EP).

Algorithm 1. Pick x0 ∈ C and choose two parameters η ∈ (0, 1), ρ > 0. At each
iteration k = 0, 1, ... having xk do the following steps:

Step 1. Solve the strongly convex program

min
{

f (xk, y) + 1

ρ

[
G(y) − G(xk) − 〈∇G(xk), y − xk〉

]
: y ∈ C

}
CP(xk)

to obtain its unique solution yk .
If f (xk, yk)+ 1

ρ

[
G(yk)−G(xk)−〈∇G(xk), yk − xk〉

]
≥ 0, terminate: xk is a solution

of (EP). Otherwise, do Step 2.
Step 2. (Armijo linesearch rule) Find mk as the smallest positive integer number m

satisfying ⎧⎪⎪⎨
⎪⎪⎩

zk,m = (1 − ηm)xk + ηm yk :
〈gk,m, xk − yk〉 ≥ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
with gk,m ∈ ∂2 f (zk,m, zk,m).

(3.1)

Step 3. Set ηk := ηmk , zk := zk,mk , gk := gk,mk . Take

Ck := {x ∈ C : 〈gk, x − zk〉 ≤ 0}, xk+1 := PCk (xk), (3.2)

and go to Step 1 with k is replaced by k + 1.

Remark 3.1

(i) If the algorithm terminates at Step 1, i.e.

f (xk, yk) + 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
≥ 0,

then

f (xk, y) + 1

ρ

[
G(y) − G(xk) − 〈∇G(xk), y − xk〉

]
≥ 0 ∀y ∈ C.

Thus, by Lemma 2.3, xk is a solution to (EP).
(ii) gk �= 0 ∀k, indeed, at the begining of Step 2, xk �= yk . By the Armijo linesearch

rule and δ-strong convexity of G, we have

〈gk, xk − yk〉 ≥ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]

≥ δ

ρ
‖xk − yk‖2 > 0.
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(iii) To implement the linesearch rule, at each iteration k, for a positive integer number
m, one can check the inequality

〈gk,m, xk − yk〉 ≥ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]

with any gk,m ∈ ∂2 f (zk,m, zk,m). If this inequality is satisfied, we are done. Other-
wise, one increases m by one and check again the inequality with gk,m ∈ ∂2 f (zk,m,

zk,m) for the new m. As we will show in Lemma 3.1 below that, for each iteration
k, there exists an integer number m > 0 such that the inequality in the linesearch
rule is satisfied for every gk,m ∈ ∂2 f (zk,m, zk,m). So, to implement the linesearch
rule, one needs to know only one subgradient.

Now we are going to analyse the validity and convergence of the algorithm. Our proofs
are based on the proof scheme in [9] (see also [25]).

Lemma 3.1 Under Assumptions (A1), (A2), the linesearch rule (3.1) is well-defined in
the sense that, at each iteration k, there exists an integer number m > 0 satisfying the
inequality in (3.1) for every gk,m ∈ ∂2 f (zk,m, zk,m), and if, in addition Assumption (A3) is
satisfied, then for every solution x∗ of (EP), one has

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x̄ k‖2 −
(

ηkδ

ρ‖gk‖
)2

‖xk − yk‖4 ∀k, (3.3)

where x̄k = PHzk (xk).

Proof First, we prove that there exists a positive integer m0 such that

〈gk,m0 , xk − yk〉 ≥ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]

∀gk,m0 ∈ ∂2 f (zk,m0 , zk,m0).

Indeed, suppose by contradiction that, for every positive integer m and zk,m =
(1 − ηm)xk + ηm yk there exists gk,m ∈ ∂2 f (zk,m, zk,m) such that

〈gk,m, xk − yk〉 <
1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
.

Since zk,m → xk as m → ∞, by Theorem 24.5 in [26], the sequence {gk,m}∞m=1 is bounded.
Thus we may assume that gk,m → ḡ for some ḡ. Taking the limit as m → ∞, from
zk,m → xk and gk,m → ḡ, by Lemma 2.6, it follows that ḡ ∈ ∂2 f (xk, xk) and

〈ḡ, xk − yk〉 ≤ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
. (3.4)

Since ḡ ∈ ∂2 f (xk, xk), we have

f (xk, yk) ≥ f (xk, xk) + 〈ḡ, yk − xk〉 = 〈ḡ, yk − xk〉.
Combining with (3.4) yields

f (xk, yk) + 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
≥ 0,
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which contradicts to the fact that

f (xk, yk) + 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
< 0.

Therefore, the linesearch is well defined.
Now we prove (3.3). For simplicity of notation, let dk := xk − yk , Hk := Hzk . Since

xk+1 = PC∩Hk (x̄ k) and x∗ ∈ S, by Lemma 2.5, x∗ ∈ C ∩ Hk , then

‖xk+1 − x̄ k‖2 ≤ 〈x∗ − x̄ k, xk+1 − x̄ k〉
which together with

‖xk+1 − x∗‖2 = ‖x̄ k − x∗‖2 + ‖xk+1 − x̄ k‖2 + 2〈xk+1 − x̄ k, x̄ k − x∗〉
implies

‖xk+1 − x∗‖2 ≤ ‖x̄ k − x∗‖2 − ‖xk+1 − x̄ k‖2. (3.5)

Replacing

x̄ k = PHk (xk) = xk − 〈gk, xk − zk〉
‖gk‖2

gk

into (3.5) we obtain

‖xk+1−x∗‖2 ≤ ‖xk −x∗‖2−‖xk+1−x̄ k‖2−2〈gk, xk −x∗〉 〈g
k, xk − zk〉
‖gk‖2

+〈gk, xk − zk〉2

‖g‖2
.

Substituting xk = zk + ηkdk into the last inequality, we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −‖xk+1 − x̄ k‖2 +
(ηk〈gk, dk〉

‖gk‖
)2 − 2ηk〈gk, dk〉

‖gk‖2
〈gk, xk − x∗〉

= ‖xk − x∗‖2 − ‖xk+1 − x̄ k‖2 −
(ηk〈gk, dk〉

‖gk‖
)2 − 2ηk〈gk, dk〉

‖gk‖2
〈gk, zk − x∗〉.

In addition, by the Armijo linesearch rule, using the δ-strong convexity of G we have

〈gk, xk − yk〉 ≥ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
≥ δ

ρ
‖xk − yk‖2.

Note that x∗ ∈ Hk we can write

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x̄ k‖2 −
( ηkδ

ρ‖gk‖
)2‖xk − yk‖4

as desired. �

Theorem 3.1 Suppose that Problem (EP) admits a solution and that f is jointly contin-
uous on �. Then under Assumptions (A2), (A3) the sequence {xk} generated by Algorithm
1 converges to a solution of (EP).

Proof Let x∗ be any solution of (EP). By Lemma 3.1,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x̄ k‖2 −
( ηkδ

ρ‖gk‖
)2‖xk − yk‖4,
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which implies that the sequence {‖xk − x∗‖} is nonincreasingly convergent. Thus, we can
deduce that the sequences {xk}, {yk} and {zk} are bounded. Taking the limit on both sides
of (3.3), we get

lim
k→∞ ηk‖xk − yk‖ = 0. (3.6)

We will consider two distinct cases:

Case 1 lim supk→∞ ηk > 0. Then there exists η̄ > 0 and a subsequence {ηki } ⊂ {ηk}
such that ηki > η̄ ∀i , and, by (3.6), one has

lim
i→∞ ‖xki − yki ‖ = 0. (3.7)

Since {xk} is bounded, we may assume that xki converges to some x̄ as i → ∞. From (3.7),
yki → x̄ as i → ∞, and therefore zki → x̄ . By definition of yki , we have

f (xki , y) + 1

ρ

[
G(y) − G(xki ) − 〈∇G(xki ), y − xki 〉

]

≥ f (xki , yki ) + 1

ρ

[
G(yki ) − G(xki ) − 〈∇G(xki ), yki − xki 〉

]
∀y ∈ C.

Letting i → ∞, by strong convexity of G and continuity of f , ∇G, we obtain in the limit
that

f (x̄, y) + 1

ρ

[
G(y) − G(x̄) − 〈∇G(x̄), y − x̄〉

]

≥ f (x̄, x̄) + 1

ρ

[
G(x̄) − G(x̄) − 〈∇G(x̄), x̄ − x̄〉

]

Hence

f (x̄, y) + 1

ρ

[
G(y) − G(x̄) − 〈∇G(x̄), y − x̄〉

]
≥ 0 ∀y ∈ C

which means that x̄ is a solution of (EP). Applying (3.3) with x∗ = x̄ , we see that the
sequence {‖xk − x̄‖} converges. Since ‖xki − x̄‖ → 0, we can conclude that the whole
sequence {xk} converges to x̄ ∈ S.

Case 2 limk→∞ ηk = 0 . According to the algorithm, we have

zk = (1 − ηk)xk + ηk yk .

As before, we may assume that the subsequence {xki } ⊂ {xk} converges to some point x̄ .
By the same arguments as above we see that the sequence {yk} is bounded. Thus, by taking
a subsequence, if necessary, we may assume that the subsequence {yki } converges to some
point ȳ. From the definition of yki we can write

f (xki , yki ) + 1

ρ

[
G(yki ) − G(xki ) − 〈∇G(xki ), yki − xki 〉

]

≤ f (xki , y) + 1

ρ

[
G(y) − G(xki ) − 〈∇G(xki ), y − xki 〉

]
, ∀y ∈ C.
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Taking the limit as i → ∞, by lower semicontinuity of f (., .) and upper semicontinuity of
f (., y) we have

f (x̄, ȳ) + 1

ρ

[
G(ȳ) − G(x̄) − 〈∇G(x̄), ȳ − x̄〉

]

≤ f (x̄, y) + 1

ρ

[
G(y) − G(x̄) − 〈∇G(x̄), y − x̄〉

]
∀y ∈ C. (3.8)

In the other hand, by the Armijo linesearch rule (3.1), for mki − 1, there exists gki ,mki −1 ∈
∂2 f (zki ,mki −1, zki ,mki −1) such that

〈gki ,mki −1, xki − yki 〉 <
1

ρ

[
G(yki ) − G(xki ) − 〈∇G(xki ), yki − xki 〉

]

Since zki ,mki −1 → x̄ as i → ∞, by Theorem 24.5 in [26] we have that the sequence
{gki ,mki −1} is bounded. Combining this fact with lemma 2.6 that we may assume that
gki ,mki −1 → ḡ ∈ ∂2 f (x̄, x̄), and thus the above inequality becomes

〈ḡ, x̄ − ȳ〉 ≤ 1

ρ

[
G(ȳ) − G(x̄) − 〈∇G(x̄), ȳ − x̄〉

]
. (3.9)

From ḡ ∈ ∂2 f (x̄, x̄) follows f (x̄, y) ≥ f (x̄, x̄) + 〈ḡ, y − x̄〉 ∀y ∈ C. In particular,
〈ḡ, x̄ − ȳ〉 ≥ − f (x̄, ȳ). Combining with (3.9), we get

f (x̄, ȳ) + 1

ρ

[
G(ȳ) − G(x̄) − 〈∇G(x̄), ȳ − x̄〉

]
≥ 0. (3.10)

From (3.8) and (3.10), we have

0 ≤ f (x̄, y) + 1

ρ

[
G(y) − G(x̄) − 〈∇G(x̄), y − xki 〉

]
∀y ∈ C,

which implies that x̄ is a solution of (EP). Now we can apply (3.3) with x∗ = x̄ , by the same
arguments as above, we can conclude that the whole sequence {xk} converges to x̄ ∈ S. �

4. Application to minimizing the Euclidean norm with pseudomomotone equilibrium
constraints

In this section, we combine Algorithm 1 with a cutting technique in order to obtain an
algorithm for solving the following optimization problem

min{‖x − xg‖ : x ∈ S}, (BP)

where xg ∈ C is given (plays the role of a guess solution) and S is the solution set of
Problem (EP). It is well known that under Assumptions (A1), (A2) and (A3), the solution
set S of (EP) is a closed convex set. We emphasize that the main difficulty in Problem (BP)
is that its feasible domain S, although is convex, it is not given explicitly as in a standard
mathematical programming problem. In the sequel, we always suppose that Assumptions
(A1), (A2) and (A3) are satisfied.
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Algorithm 2. Take x1 := xg ∈ C and choose parameters ρ > 0, η, σ ∈ (0, 1).
At each iteration k = 1, 2, .. having xk do the following steps:
Step 1. Solve the strongly convex program

min
{

f (xk, y) + 1

ρ

[
G(y) − G(xk) − 〈∇G(xk), y − xk〉

]
: y ∈ C

}
CP(xk)

to obtain its unique solution yk .
If xk = yk , take uk := xk and go to Step 4.
Step 2. Find mk as the smallest positive integer number m such that⎧⎪⎪⎨

⎪⎪⎩
zk,m = (1 − ηm)xk + ηm yk :
〈gk,m, xk − yk〉 ≥ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
with gk,m ∈ ∂2 f (zk,m, zk,m).

(4.1)

Set ηk := ηmk , zk := zk,mk , gk = gk,m .
Step 3. Take uk := PCk (xk), where

Ck := {x ∈ C : 〈gk, x − zk〉 ≤ 0}. (4.2)

Step 4. Define the two polyhedral convex sets

Bk := {x : ‖uk − x‖ ≤ ‖xk − x‖}, (4.3)

Dk := {x : 〈x − xk, xg − xk〉 ≤ 0} (4.4)

and compute

xk+1 := PAk (xg) (4.5)

where Ak := Bk ∩ Dk ∩ C . Repeat iteration k with k is replaced by k + 1.
The following lemma shows that uk is closer to the solution set S than xk . More precisely,

Lemma 4.1 Suppose that uk = PCk (xk), then

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖uk − x̄ k‖2 −
(

ηkδ

ρ‖gk‖
)2

‖xk − yk‖4 ∀x∗ ∈ S, ∀k. (4.6)

Proof The proof of this lemma can be done similarly as the proof of Lemma 3.1. So we
give here only a sketch. For simplicity of notation, let Hk := Hzk and dk := xk − yk .

Since uk = PC∩Hk (x̄ k) and x∗ ∈ C ∩ Hk , by Lemma 2.5 one has

‖uk − x̄ k‖2 ≤ 〈uk − x̄ k, uk − x∗〉
from which it follows that

‖uk − x∗‖2 ≤ ‖x̄ k − x∗‖2 − ‖uk − x̄ k‖2. (4.7)

Replacing

x̄ k = PHk (xk) = xk − 〈gk, xk − zk〉
‖gk‖2

gk
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into (4.7), we obtain

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖uk − x̄ k‖2 − 2〈gk, xk − x∗〉 〈g
k, xk − zk〉
‖gk‖2

+ 〈gk, xk − zk〉2

‖g‖2
.

Substituting xk = zk + ηkdk in to the last inequality we get

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖uk − x̄ k‖2 +
(ηk〈gk, dk〉

‖gk‖
)2 − 2ηk〈gk, dk〉

‖gk‖2
〈gk, xk − x∗〉

= ‖xk − x∗‖2 − ‖uk − x̄ k‖2 −
(ηk〈gk, dk〉

‖gk‖
)2 − 2ηk〈gk, dk〉

‖gk‖2
〈gk, zk − x∗〉.

In addition, by the Armijo linesearch rule and δ-strong convexity of G, we have

〈gk, xk − yk〉 ≥ 1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
≥ δ

ρ
‖xk − yk‖2.

Note that x∗ ∈ Hk we can write

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − ‖uk − x̄ k‖2 −
( ηkδ

ρ‖gk‖
)2‖xk − yk‖4. �

Theorem 4.1 Under the assumptions of Theorem 3.1, the sequences {xk} and {uk}
converge to the unique solution of Problem (BP).

Proof From Lemma 4.1, it follows that ‖uk − x∗‖ ≤ ‖xk − x∗‖ for every k and x∗ ∈ S.
Hence, by the definition of Bk , S ⊆ Bk for every k. Furthermore, by induction, we can see
that S ⊆ Dk for every k. Thus, S ⊆ Ak := Bk ∩ Dk ∩ C .

On the other hand, by definition of Dk , we have xk = PDk (xg) for every k. Since
xk+1 ∈ Dk , one has

‖xk − xg‖ ≤ ‖xk+1 − xg‖ ∀k.

Thus, lim ‖xk − xg‖ exists and therefore the sequence {xk} is bounded.
Now we show that the sequence {xk} is asymptotically regular, i.e. ‖xk+1 − xk‖ → 0

as k → ∞. Indeed, since xk ∈ Dk and xk+1 ∈ Dk , by convexity of Dk , xk+1+xk

2 ∈ Dk .
Then from xk = PDk (xg), by using the strong convexity of the function ‖xg − .‖2, we can
write

‖xg − xk‖2 ≤
∥∥∥∥xg − xk+1 + xk

2

∥∥∥∥
2

=
∥∥∥∥ xk − xg

2
+ xk+1 − xg

2

∥∥∥∥
2

= 1

2
‖xg − xk+1‖2 + 1

2
‖xg − xk‖2 − 1

4
‖xk+1 − xk‖2

which implies that

1

2
‖xk+1 − xk‖2 ≤ ‖xg − xk+1‖2 − ‖xg − xk‖2.

Note that lim ‖xk − xg‖ exists, we obtain ‖xk+1 − xk‖ → 0.
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On the other hand,

‖xk − uk‖ = ‖xk − xk+1 + xk+1 − uk‖
≤ ‖xk − xk+1‖ + ‖xk+1 − uk‖.

Since xk+1 ∈ Bk , by definition of Bk , ‖xk+1 − uk‖ ≤ ‖xk − xk+1‖. Thus, we have

‖xk − uk‖ ≤ ‖xk − xk+1‖ + ‖xk+1 − xk‖,
which together with ‖xk+1 − xk‖ → 0 implies ‖uk − xk‖ → 0 as k → ∞.

Next we show that any cluster point of the sequence {xk} is a solution to Problem
(EP). Indeed, let x̄ be any cluster point of {xk}. For simplicity of notation, without loss of
generality, we may assume that xk converges to x̄ . We consider two distinct cases:

Case 1 uk = xk at Step 1 for infinitely many k. In this case, clearly, x̄ solves (EP).

Case 2 uk = xk at Step 1 for only a finitely many k. Then, according to the algorithm,
we may assume that uk = PCk (xk) for every k. Applying Lemma 4.1 for some x∗ ∈ S, we
have

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 −
(

δηk

ρ

)2

‖xk − yk‖4 ∀k,

which implies
(

δηk

ρ

)2

‖xk − yk‖4 ≤ (‖xk − x∗‖ − ‖uk − x∗‖)(‖xk − x∗‖ + ‖uk − x∗‖).
By using the triangle inequality ‖xk − x∗‖ − ‖uk − x∗‖ ≤ ‖xk − uk‖, we get

(
δηk

ρ

)2

‖xk − yk‖4 ≤ (‖xk − uk‖)(‖xk − x∗‖ + ‖uk − x∗‖) ∀k.

Since {uk}, {xk} are bounded and ‖uk − xk‖ → 0 as k → ∞, taking the limit in both sides
of the last inequality we obtain limk ηk‖xk − yk‖ = 0.

We distinguish two distinct cases:

Case 1 lim supk ηk > 0. In this case, there exist subsequences {xki } ⊆ {xk}, {yki } ⊆ {yk}
such that limi ‖xki − yki ‖ = 0. Thus, four sequences {xki }, {yki }, {uki }, {zki } converge to
the same point x̄ . By the same arguments as above, we can see that x̄ solves (EP) and that
these sequences converge to x̄ .

Case 2 limk ηk = 0. Since {xk} is bounded and yk is the unique solution of problem

min

{
f (xk, y) + 1

ρ

[
G(y) − G(xk) − 〈∇G(xk), y − xk〉

]
: y ∈ C

}
. CP(xk)

whose objective function is lower semicontinuous, by the Berge Maximum Theorem ([27]
Theorem 19), the sequence {yk} is bounded too. Moreover, the solution of Problem CP(x),
as a function of x , is continuous ([27] Theorem 19). Then, without loss of generality, we
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may assume that yk converges to some ȳ . Using again the fact that yk solves CP(xk), we
obtain in the limit that

f (x̄, ȳ) + 1

ρ

[
G(ȳ) − G(x̄) − 〈∇G(x̄), ȳ − x̄〉

]

≤ f (x̄, y) + 1

ρ

[
G(y) − G(x̄) − 〈∇G(x̄), y − x̄〉

]
, ∀y ∈ C. (4.8)

On the other hand, by the Armijo linesearch rule, for mk − 1, there exists gk,mk−1 ∈
∂2 f (zk,mk−1, zk,mk−1), such that

〈gk,mk−1, xk − yk〉 <
1

ρ

[
G(yk) − G(xk) − 〈∇G(xk), yk − xk〉

]
.

Taking the limit as k → ∞, we see that zk,mk−1 converges to x̄ , gk,mk−1 converges to some
ḡ ∈ ∂2 f (x̄, x̄), and the last inequality becomes

〈ḡ, x̄ − ȳ〉 ≤ 1

ρ

[
G(ȳ) − G(x̄) − 〈∇G(x̄), ȳ − x̄〉

]
. (4.9)

Since ḡ ∈ ∂2 f (x̄, x̄) we get

f (x̄, y) ≥ f (x̄, x̄) + 〈ḡ, y − x̄〉 ∀y ∈ C.

In particular, 〈ḡ, x̄ − ȳ〉 ≥ − f (x̄, ȳ). Combining with (4.9) we obtain

f (x̄, ȳ) + 1

ρ

[
G(ȳ) − G(x̄) − 〈∇G(x̄), ȳ − x̄〉

]
≥ 0. (4.10)

From (4.8) and (4.10) follows

0 ≤ f (x̄, y) + 1

ρ

[
G(y) − G(x̄) − 〈∇G(x̄), y − x̄〉

]
∀y ∈ C,

which implies that x̄ is a solution of EP. Then, from ‖uk − xk‖ → 0, we can conclude that
every limit point of {uk} is also a solution to EP.

Finally, we show that {xk} converges to s := PS(xg). To this end, let x∗ be any cluster
point of {xk}. Then, there exists a subsequence {xk j } such that xk j → x∗ as j → ∞. By
the definition of s and x∗ ∈ S, one has

‖s − xg‖ ≤ ‖x∗ − xg‖ = lim
j

‖xk j − xg‖ ≤ lim sup
k

‖xk − xg‖ ≤ ‖s − xg‖

where the last inequality follows from the fact that xk+1 = PAk (xg) and s ∈ S ⊆ Ak for
every k. Hence lim ‖xk − xg‖ = ‖s − xg‖ = ‖x∗ − xg‖. Since x∗ ∈ S, s = PS(xg) and
the projection of xg onto S is unique, we have x∗ = s, and therefore xk → s as k → ∞.
Then, from ‖xk − uk‖ → 0, it follows that uk → s as k → ∞. �

An important special case of EPs is the variational inequality of the form

Find x∗ ∈ C : 〈F(x∗), x − x∗〉 ≥ 0 ∀x ∈ C, (VI)

where C ⊆ IRn is closed, convex and F : C → IRn . Suppose that F is continuous and
pseudomonotone on C with respect to every solution of Problem (VI). We recall that F is
pseudomonotone on C with respect to x∗ ∈ C , if
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〈F(x∗), x∗ − y〉 ≤ 0 ⇒ 〈F(y), y − x∗〉 ≥ 0 ∀y ∈ C,

Let
f (x, y) := 〈F(x), y − x〉. (4.11)

It has been shown (see e.g. [22] page 65 and [20]) that a point x∗ is a solution of Problem
(VI) if and only if it is a solution of the EP(C, f ) with f defined by (4.11). Since F is
continuous, f is continuous too. In addition, it is easy to see that if F is pseudomonotone
on C with respect to x∗ ∈ C , then f is pseudomonotone with respect to x∗ on C . So
Algorithm 2 can be applied to this case.

5. Numerical examples

In this section, we apply Algorithm 1 to solve an equilibrium model arising from Nash-
Cournot oligopolistic EPs of electricity markets. This model has been investigated in some
research papers (see e.g. [28,29]). To test the algorithm, we take the example in [29]. In
this example, there are nc companies, each company i may possess Ii generating units.
Let x denote the the vector whose entry xi stands for the the power generating by unit i .
Following [28,29] we suppose that the price p is a decreasing affine function of the σ with
σ = ∑ng

i=1 xi where ng is the number of all generating units, that is

p(x) = 378.4 − 2
ng∑

i=1

xi = p(σ ).

Then the profit made by company i is given by

fi (x) = p(σ )
∑
j∈Ii

x j −
∑
i∈Ii

c j (x j ).

where c j (x j ) is the cost for generating x j . As in [29] we suppose that the cost c j (x j ) is
given by

c j (x j ) := max{c0
j (x j ), c1

j (x j )}
with

c0
j (x j ) := α0

j

2
x2

j + β0
j x j + γ 0

j , c1
j (x j ) := α1

j x j + β1
j

β1
j + 1

γ
−1/β1

j
j (x j )

(β1
j +1)/β1

j ,

Table 1. The lower and upper bounds for the power generation of the generating units and companies.

Com. Gen. xg
min xg

max xc
min xc

max

1 1 0 80 0 80
2 2 0 80 0 130
2 3 0 50 0 130
3 4 0 55 0 125
3 5 0 30 0 125
3 6 0 40 0 125
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Table 2. The parameters of the generating unit cost functions.

Gen. α0
j β0

j γ 0
j α1

j β1
j γ 1

j

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000
2 0.0350 1.75 0.00 1.7500 1.0000 28.5714
3 0.1250 1.00 0.00 1.0000 1.0000 8.0000
4 0.0116 3.25 0.00 3.2500 1.0000 86.2069
5 0.0500 3.00 0.00 3.0000 1.0000 20.0000
6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

Table 3. Results computed with some starting points and regularization parameters.

Iter(k) τ xk
1 xk

2 xk
3 xk

4 xk
5 xk

6 Cpu(s)

0 0.1 0 0 0 0 0 0
160 46.6543 32.1476 15.0017 21.7795 12.4989 12.4982 24.9914
0 0.5 0 0 0 0 0 0
273 46.6588 32.1428 15.0101 21.5109 12.6344 12.6331 35.9894
0 0.9 0 0 0 0 0 0
338 46.6595 32.1195 15.0333 21.1765 12.8010 12.7992 50.5911
0 0.1 30 20 10 15 10 10
113 46.6518 32.1343 15.0112 21.6789 12.5487 12.5491 17.0353
0 0.5 30 20 10 15 10 10
191 46.6599 32.1230 15.0300 21.5192 12.6299 12.6299 24.9602
0 0.9 30 20 10 15 10 10
225 46.6599 32.0659 15.0862 21.2464 12.7656 12.7657 31.8398

where αk
j , β

k
j , γ

k
j (k = 0, 1) are given parameters.

Let xmin
j and xmax

j be the lower and upper bounds for the power generating by the unit
j . Then the strategy set of the model takes the form

C :=
{

x = (x1, ..., xng
)T : xmin

j ≤ x j ≤ xmax
j ∀ j

}
.

Let us introduce the vector qi := (qi
1, ..., qi

nq ) with

qi
j := 1, if j ∈ Ii , and qi

j = 0, otherwise,

and then define

A := 2
nc∑

i=1

(1 − qi
j )(q

i )T , B := 2
nc∑

i=1

qi (qi )T , (5.1)

a := −387.4
nc∑

i=1

qi , c(x) :=
ng∑
j=1

c j (x j ). (5.2)
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Then the oligopolistic equilibrium model under consideration can be formulated by the
following EP (see [29] Lemma 7):

x∗ ∈ C : f (x, y);=
((

A + 3

2
B

)
x + 1

2
By + a

)T

(y − x) + c(y) − c(x) ≥ 0 ∀y ∈ C.

We test Algorithm 1 for this problem with corresponds to the first model in [28] where
three companies (nc = 3) are considered, and the parameters are given in Tables 1 and 2

We implement Algorithm 1 in Matlab R2008a running on a Laptop with Intel(R)
Core(TM) i3CPU M330 2.13GHz with 2GB Ram with regularization function G(x) =
‖x‖2 and parameter τ = 1

ρ
. To terminate the Algorithm, we use the stopping criteria

‖xk+1−xk‖
max{‖xk‖,1} ≤ ε with a tolerance ε = 10−4. The computational results are reported in Table
3 with some starting points and regularization parameters.

Table 3 shows that the number of iterations and computational time depend crucially
on the regularization parameters and starting points.

6. Conclusion

We have extended a projection algorithm developed in [9] to EPs where the bifunctions are
pseudomonotone with respect to the solution sets. We then have combined the proposed
algorithm with a cutting technique to develop a hybrid projection-cutting algorithm for min-
imizing the norm over the solution set of an EP whose bifunction is pseudomonotone with
respect to its solution set. The latter bilevel problem arises from the Tikhonov regularization
method for pseudomonotone EPs. We have tested a proposed algorithm on a Nash-Cournot
oligopolistic equilibrium model of electricity markets. Some computed numerical results
are reported.
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