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Abstract. Traveling salesman problem (7SP) is a well-known in computing field.
There are many researches to improve the genetic algorithm for solving 7SP. In this
paper, we propose two new crossover operators and new mechanism of combina-
tion crossover operators in genetic algorithm for solving 7SP. We experimented on
TSP instances from 7SP-Lib and compared the results of proposed algorithm with
genetic algorithm (GA), which used MSCX. Experimental results show that, our pro-
posed algorithm is better than the GA using MSCX on the min, mean cost values.

Keywords: Traveling Salesman Problem, Genetic Algorithm, Modified Sequential
Constructive Crossover.

1 Introduction

The traveling salesman problem is an important problem in computing fields and has
many applications in the daily life such as scheduling, vehicle routing, VLSI layout
design, etc. The problem was first formulated in 1930 and it has been one of the most
intensively studied problems in optimization techniques. Until now, researchers have
obtained numerous significant results for this problem.

TSP is defined as following: Let 1, 2, ..., n is the labels of the n cities and
C = [ci ;] be an n x n cost matrix where ¢; ; denotes the cost of traveling from city i
to city j. TSP is the problem of finding the n-city closed tour having the minimum
cost such that each city is visited exactly once. The total cost A of a tour is.
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n—1

A(n) = Zci,i+1+cn,1 (D
i=1
TSP is formulated as finding a permutation of # cities, which has the minimum cost.
This problem is known to be NP-hard [1, 2] but it can be applied in many real world
applications [13] so a good solution would be useful.

Many algorithms have been suggested for solving 7SP. GA is an approximate
algorithm based on natural evolution, which applied to many different types of the
combinatorial optimization. GA can be used to find approximate solutions for 7.SP.

There are a lot of improvements in GA that have been developed to increase the
performance in solving the 7SP such as: optimizing creating initial population [3],
improving mutation operator [17], creating new crossover operator [12, 20, 21, 22,
23, 24, 25], combining with local search [4, 6, 7, 8, 18].

In this paper, we introduce two new crossover operators: MSCX_Radius and
RX. We propose new mechanism of combination proposed crossover operators and
MSCX [25] in GA to solve TSP. This combination is expected to adapt the chang-
ing of population. We experimented on TSP instances from 7SP-Lib and compared
the results of proposed algorithm with GA which used MSCX. Experimental results
show that, our proposed algorithm is better than the GA using MSCX on the min,
mean cost values.

The rest of this paper is organized as follows. In section 2, we will present related
works. Section 3 and 4 contain the description of our new crossovers and the pro-
posed algorithm for solving TSP respectively. The details of our experiments and the
computational and comparative results are given in section 5. The paper concludes
with section 6 with some discussions on the future extension of this work.

2 Related Work

TSP is NP-hard problems. There are two approaches for solving TSP: exact and
approximate. Exact approaches are based on Dynamic Programming [14], Branch
and Bound [2], Integer Linear Programming [21], etc. Exact approaches used to give
the optimal solutions for 7SP. However, these algorithms have exponential running
time, therefore they only solved small instances. As M. Held and R. M. Karp [14]
pointed out Dynamic Programming takes O(n” - 2") running time, so that it only
solves TSP with a small number of the vertices.

In recent years, approximation approaches for solving TSP are interested by re-
searchers. These approaches can solve large instances and give approximate solu-
tions near to the optimal solution (sometime optimal). Approximation approaches
for solving TSP are 2-opt, 3-opt [1], simulated annealing [7, 16], tabu search [7, 16];
nature based optimization algorithms and population based optimization algorithms:
genetic algorithm [3, 6, 7, 8, 10, 11, 12, 13, 16, 17, 19, 22, 25], neural networks
[15]; swarm optimization algorithms: ant colony optimization [7, 23], bee colony
optimization [18].

GA is one of computational model inspired by evolution, which has been ap-
plied to a large number of real world problems. GA can be used to get approximate
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solutions for 7SP. High adaptability and the generalizing feature of GA help to exe-
cute the traveling salesman problem by a simple structure.

M. Yagiura and T. Ibaraki [16] proposed GA for three permutation problems in-
cluding TSP; and GA solving TSP uses DP in its crossover operator. The experiments
are executed on 15 randomized Euclidean instances (5 instances for each n = 100,
200, 500). The proposed algorithm [16] could get better solutions than Multi-Local,
Genetic-Local and Or-opt when sufficient computational time was allowed. How-
ever, the experimental results have been pointed out that, their proposed algorithm
is ineffective to compare some heuristics specially designed to the given TSP, such
as Lin-Kernighan method [1, 16].

In [5], the authors used local search and GA for solving TSP. The experiments
are executed in kroA100, kroB100 and kroC100 instances. The experiments results
show that the combination of two genetic operators, IVM and POS, and 2-opt have
better cost for solving TSP problem. However, the algorithm took more time to con-
verge to the global optimum than using 3-opt.

In 1997, Bernd Freisleben, Peter Merz [7] proposed Genetic Local Search for the
TSP. This algorithm used idea of hill climber to develop local search in GA. The
experiment shows that the best solutions are better than the one in [24] on running
time and better on min cost range from 0.46% — 0.21%.

Crossover operator is one of the most important component in GA, which gen-
erates new individual(s) by combining genetic material from two parents but pre-
serving gene from the parents. The researchers have studied many different optimal
crossover operators like creating new crossover operators [22, 24], modifying exist
crossover operators [20, 21, 23, 25], and hybridizing crossover operators [10].

Sehrawat, M. et al. [20] modified Order Crossover (OX). They selected the first
crossover point which is the first node of the minimum edge from second chro-
mosome. The experiment was executed on five sample data. The modifying order
crossover (MOX) could get better solutions than OX on two sample data but number
of the best solutions is found by MOX more than OX.

The new genetic algorithm (called FRAG_GA) was developed by Shubhra, Sang-
hamitra and Sankar [21]. There were two new operators: nearest fragment (NF)
and modified order crossover (MOC). The NF is used for optimizing initial popu-
lation. In the MOC, the authors performed two changes: length of a substring for
performing order crossover is y = max{2,0.}, where n/9 < oo < n/7 (n is the total
number of cities) and the length of substring is predefined at any times perform-
ing crossover. The experiments are executed in Grtschels24, kroA100, d198, ts225,
pcb442 and rat783 instances. The authors compared FRAG_GA with SWAPGATSP
[12] and OXSIM (standard GA with order crossover and simple inversion mutation)
[13]. The experiment results showed that the best result, the average result and com-
putation time of FRAG_GA are better than one of SWAPGATSP, OXSIM.

In [22], the authors proposed an improving GA (IGA) with a new crossover opera-
tor (Swapped Inverted Crossover - SIC) and a new operation called Rearrangement.
SIC creates 12 children from 2 parents then select 10 for applying multi mutation.
Finally select 2 best individuals. Rearrangement Operation is applied to all individ-
uals in population. It finds the maximum cost of two adjacent cities then swap one
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city with three other cities. The experiments are executed 10 times for each instances
(KroA100, D198, Pcb442 and Rat783). The experiments show that, performance of
IGA 1is better than the three compared GAs.

Kusum and Hadush [23] modified the OX. In these proposing crossovers, the
positions of cut points or the length of the substrings in both parents are different.
The experimented on six Euclidean instances derived from TSP-lib (eil51, eil76,
kroA100, eil101, 1lin105 and rat195). Crossover rate is 0.9 and mutation rate is 0.01.
The experimental results show that results of one modifying crossover are better
than OX for six TSP instances.

In [24], the authors proposed new crossover operator, Sequential Constructive
crossover (SCX). The main idea of SCX is selecting the edges having less value
based on maintaining the sequence of cities in the parents. The experiments are
performed in 27 TSPLIB instances. Results of experiment show that SCX is better
than the ERX and GNX on quality of solutions and solution times.

In 2012, Sabry, Abdel-Moetty and Asmaa [25] proposed new crossover operator,
Modified Sequential Constructive crossover (MSCX), which is an improvement of
the SCX [24]. The MSCX create an offspring and description as follows:

Step 1: Start from 'First Node' of the parent 1 (i.e., current node p = parent1(1)).

Step 2: Sequentially search both of the parent chromosomes and consider

The first 'legitimate node' (the node that is not yet visited) appeared after 'node
p' in each parent. If no 'legitimate node' after node p is present in any of the parent,
search sequentially the nodes from parent 1 and parent 2 (the first 'legitimate node’'
that is not yet visited from parentl and parent2), and go to Step 3.

Step 3: Suppose the 'Node o' and the 'Node ' are found in Ist and 2nd parent
respectively, then for selecting the next node go to Step 4.

Step 4: If Cpo, < C B> then select 'Node o', otherwise, 'Node B' as the next node
and concatenate it to the partially constructed offspring chromosome. If the off-
spring is a complete chromosome, then stop, otherwise, rename the present node as
'Node p' and go to Step 2.

Although a lot of crossovers were developed for solving TSP, but each operator
has its property, so, in this paper, we propose two new crossover operators and mech-
anism of combination them with MSCX crossover [25]. This scheme is expected to
adapt the changing and convergence of population and improve the effectiveness in
terms of cost of tour. The proposed algorithm will be presented in the next section.

3 Proposed Crossover Operators

This section introduces two new crossover operators: MSCX_Radius, RX, which
are developed for improving the best solutions and increase the diversity of the
population.
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3.1 MSCX_Radius Crossover

MSCX_Radius modify the step two of MSCX [25]. In MSCX_Radius, if no 'legiti-
mate node' after current node, find sequentially r nodes, which are not visited from
the parents. Then select the node having the smallest distance to current node. r is
parameter of MSCX_Radius.

3.2 RX Crossover

This crossover operator is described as following:

Step 1: Randomly select pr% cities from the first parent to the offspring.

Step 2: Copy the remaining unused cities into the offspring in the order they
appear in the second parent.

Step 3: Create the second offspring in an analogous manner, with the parent roles
reverse.

Figure 1 show an example of RX crossover operator.

Batcak | 6 2 3 4 1 5

Parent 2 1 5 6 4 3 2

]
=
(=3}

After selecting |
random cities

Offspring |

b2

4 6 1 5 3

Fig. 1 Ilustration of the RX crossover operator, pr% = 20%

4 Proposed Mechanism of Combination Two New Crossovers
and MSCX

This section proposes new mechanism of combination two propose crossover oper-
ators MSCX_Radius and RX with MSCX. We then use apply this mechanism in an
improving genetic algorithm (CXGA) for solving TSP.

The workflow of CXGA is described in Fig.2.

The workflow of HRX module is shown in Fig.3.

In the first part, prx% of individuals will be chosen for RX crossover and the rest
for MSCX_Radius
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Sketch of the HRX module is presented as below:

Procedure: HRX (P, prx, pr, r)
Input: The population P

r: parameter of MSCX_Radius

prx: percent of individuals from first part use RX

pr: percent of number of cities is gotten random in RX
Output: The optimization population P’

Begin
Split P into two parts: Pl and P2;
i< 0; FP;+P2; SP; < P1; numInRX <+ (prx * |P1])/100;
ng < number of generations perform HRX module;
While i < ng do
For j := 1 to numInRX/2 do
Select random individuals from SP;;
Do RX (pr)crossover, mutation;
Add offsprings to SPiyp;
End for
For j :=1 to |Pl|] - numInRX do
Select random individuals from SP;;
Do MSCX_Radius (r) crossover, mutation;
Add offspring to SPiy;
End for
For j := 1 to |P2| do
Select random individuals from FP;;
Do MSCX crossover, mutation;
Add offspring to FPig;
End for
i1+1i + 1;
End while
Merge FPi, SPi into P’;
Return P’
End;

5 Computational Results

5.1 Problem Instances

The results are reported for the symmetric TSP by extracting benchmark in-
stances from the TSP-Lib [9]. The instances chosen for our experiments
are eilS1.tsp, Pr76.tsp, Rat99.tsp, KroA100, Lin105.tsp, Bier127.tsp, Ts225.tsp,
Gil262.tsp, A280.tsp, Lin318.tsp, Pr439.tsp and Rat575.tsp. The number of vertices:
51,76, 99, 100, 105, 127, 225, 262, 280, 318, 439, 575. Their weights are Euclidean
distance in 2-D.



374 P.D. Thanh, H.T.T. Binh, and B.T. Lam

5.2 System Setting

In the experiment, the system was run 10 times for each problem instance. All the
programs were run on a machine with Intel Pentium Duo E2180 2.0GHz, 1GB
RAM, and were installed by C# language.

5.3 Experimental Setup

This paper implemented two sets of experiments. In the first, we run GA using
MSCX_Radius (named GAI), GA using RX (named GA2) and compare with GA
using MSCX [25] (named GA3). In the second, we compare the performance of
CXGA with GA3.

When execute the HRX module, the population is split into two part. The first
one includes the best solutions which uses a combination of MSCX_Radius and RX
crossover; the second includes the rest solutions of population, which uses MSCX
Crossover.

The parameters for experiments are:

Population size: p; = 100

Number of evaluation: 1000000

Mutation rate: p,, = l/number_of_city (chromo length)
Crossover rate: p. = 0.9

5.4 Experimental Resultstitle

The experiments were implemented in order to compare GAI, GA2, CXGA with
GA3 in term of the min, mean, standard deviation values and running times.

For comparing effects of two new crossover operations: MSCX_Radius and RX.
We tested GA 1, GA2 with different values of r, pr parameters. The best results obtain
by GA1, GA2 are compared with the ones obtain by GA3.

Figure 4 summarizes the mean cost of GA/ when r =2, 3 and 5 respectively. With
r = 2, the results found by GA are the best.

The Fig. 5 illustrates the mean cost of GA2 when pr% = 10%, 30% and 50%
respectively. The diagrams show that, the mean cost of GA2 when pr% = 10% are
better than ones when pr% = 30%, 50%.

Experiment results on Fig. 4, Fig. 5 show that » = 2 and pr% = 10% are the best
parameters for GA/ and GA2 and they will be selected for comparison with GA3.

HRX module was implemented in differences parameters to find the best param-
eter. The size of the first part is 90%, pc =15%, r = 5, pr = 30%, pn = 5%, prx =
40%.

In order to select the best value of pc in HRX module, we analyzed the correlative
of the best solution obtaining from CXGA with different values of pc parameter (pc%
=5%, 10%, 15%, 20%, 30% and 50%).
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The Fig. 6 shows the dependence between the pc values, mean cost values found
on 10 running times of CXGA. According to the experiments in the Fig. 6, pc% =
15% is quite reasonable in our algorithm.

In MSCX_Radius crossover, the bigger the r parameter is, the more increasing the
running times is. In addition, according to the results in the Table 1, the results of
CXGA when r =5 are better than the ones when r =2, 3, 7 and 10 in most instances
on mean and min values (values in bold). So, we chose 5 in all experiments for r
value.

Table 2 summarizes the results found by GA3, CXGA and the best results of GA I,
GA?2 for 12 TSP instances of size from 51 to 575.

Mean, min cost value found by GAI are worse than GA3 on 8/12 and 7/12 in-
stances. Standard deviation values found by GAI worse than GA3 on 3 instances.
The running time of GAI are lower than GA3 on 3/12 instances. The running time
of GA2 are faster than GA3 on all instances. Min, mean and standard deviation val-
ues found by GA2 are greater than GA3 about three times on all instances.

The mean cost values found by CXGA algorithm are better than the ones found by
GA3 from 0.2% to 2.4%. The min cost found by CXGA are better than the one found
by GA3 from 0.1% to 2.8%. The running time of CXGA are faster than the ones
found by GA3 on 11/12 instances. The standard deviation values found by CXGA
are better than GA3 on 7/12 instances (values in bold).

6 Conclusion

In this paper, we propose two new crossover operators, called RX and
MSCX_Radius, and new mechanism of combination in GA to adapt the convergence
of the population for solving TSP. We experimented on 12 Euclidean instances de-
rived from 7SP-lib with the number of vertices from 51 to 575. Experiment results
show that, the proposed combination crossover operators in GA is effective for 7SP.

In the future, we are planning to apply propose mechanism of combination to
another optimization problem.
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