
Generating Artificial Attack Data for Intrusion Detection
Using Machine Learning

Truong Son Pham
Faculty of IT

Le Quy Don University
Hanoi, Vietnam

sonpham.mta@gmail.com

Quang Uy Nguyen
Faculty of IT

Le Quy Don University
Hanoi, Vietnam

quanguyhn@gmail.com

Xuan Hoai Nguyen
IT Research Centre

Hanoi University
Hanoi, Vietnam

nxhoai@gmail.com

ABSTRACT
Intrusion detection based upon machine learning is currently
attracting considerable interests from the research commu-
nity. One of the appealing properties of machine learning
based intrusion detection systems is their ability to detect
new and unknown attacks. In order to apply machine learn-
ing to intrusion detection, a large number of both attack
and normal data samples need to be collected. While, it
is often easier to sample benign data based on the normal
behaviors of networks, intrusive data is much more scarce,
therefore more difficult to collect. In this paper, we propose
a novel solution to this problem by generating artificial at-
tack data for intrusion detection based on machine learning
techniques. Various machine learning techniques are used
to evaluate the effectiveness of the generated data and the
results show that the data set of synthetic attack data com-
bining with normal one can help machine learning methods
to achieve good performance on intrusion detection problem.

Keywords
Intrusion Detection, Artificial Attack, Machine Learning

1. INTRODUCTION
Network-based intrusion detection system (NIDS) has played

an important role in network security due to the widespread
use of computer network, the increase in valuable resources
and the rapid development of attackers [17]. Nevertheless,
traditional signature-based intrusion detection techniques
have failed to fully protect networks and systems from in-
creasingly sophisticated attacks and malwares. Consequently,
machine learning based intrusion detection systems have be-
come an indispensable component of security infrastructure
used to detect these threats before they inflict widespread
damages [26].
When building a machine learning based NIDS one needs

to consider many issues, such as data collection, data pre-
processing, intrusion recognition, reporting, and response [29].
Among them, data collection and intrusion recognition are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SoICT ’14 December 04 - 05 2014, Hanoi, Viet Nam
Copyright 2014 ACM 978-1-4503-2930-9/14/12 ...$15.00.
http://dx.doi.org/10.1145/2676585.2676618

perhaps at the heart. Since Denning first proposed an intru-
sion detection model in 1987 [10], the research efforts have
been focused on how to accurately construct detection mod-
els. While most previous research paid attention to enhance
the accuracy of learning methods that were evaluated on
some available data set such as KDD Cup 1999 [26], the re-
search on how to effectively collect the training data for a
real NIDS seems much less [26].

In 1999, KDD Cup 99 (referred as KDD’99 hereafter) data
set was released and used for The 1999 Knowledge Discov-
ery and Data Mining Tools Competition [18]. This data set
was constructed from DARPA data set of MIT Lincoln Lab-
oratory in an attempt to evaluate intrusion detection tech-
niques for their systems 1. Over the last decade, KDD’99 has
been extensively used by many researchers as the benchmark
to evaluate their learning algorithms. The main advantage
of KDD’99 data set is that it provides an easy access and
a common benchmark for NIDS evaluation. However, the
downside of this data set is that it has been out of date and
not suitable for building a NIDS in reality [5, 25].

In order to construct a detection model for a real IDS, it
is often required that the training data is up to date and as
close as possible to the data in the real environment. In other
words, such data sets (both intrusive and normal data) usu-
ally need to be acquired from the real interested networks.
While the benign data can be relatively easy to sample from
the normal behaviors of the networks, collecting intrusive
data is often more difficult and expensive. In this paper,
we propose a solution to this problem by introducing some
schemes to generate artificial attack data and evaluate the
effectiveness of this data by various machine learning tech-
niques. The experimental results show that most learning
methods can achieve good performance on the artificially
generated data.

The remainder of the paper is organised as follows. In the
next section, we give a short introduction to machine learn-
ing with the emphasis on the methods used in this paper.
After that, we briefly review some previous research on in-
trusion detection using machine learning techniques. In Sec-
tion 4 we present our methods to generate artificial/synthetic
attack data for training learning machines to solve the in-
trusion detection problem. It is followed by a section detail-
ing our experimental settings. The experimental results are
shown and discussed in Section 6. The last section concludes
the paper and highlights some potential future work.

1This data set is available at:
http://www.ll.mit.edu/mission/communications/ist/index.html

286

2. BACKGROUNDS
Machine learning concerns the construction and study of

systems that can learn from data [4]. This can be seen as
one of the main branches of artificial intelligence. There
are two important issues in machine learning: representa-
tion and generalization. Representation considers the way
in which data instances are described and the format of the
learnt models. Generalization is the property that the sys-
tem will perform well on unseen data instances. This per-
haps is the most important objective of all machine learning
systems [21].
Machine learning algorithms can be categorized into three

major subclasses based on the type of input available dur-
ing training of the machine [4]. The first subclass is su-
pervised learning algorithms where all training samples (the
inputs) are labeled. The supervised learning algorithm at-
tempts to construct a function or a mapping from inputs
to outputs which can then be used to generate an output
for previously unseen inputs [16]. The second subclass is
unsupervised learning algorithms that operate on unlabeled
examples. In other words, the desired output of these sam-
ple is unknown. Here the objective is not to find a mapping
to inputs to ouput but to discover the salient structure in
the data through some techniques like cluster analysis [3].
Finally, the third subclass is semi-supervised learning algo-
rithms that aim to use both labeled and unlabeled examples
to gain better performance [16].
Among three subfields of machine learning methods, su-

pervised learning algorithms are widely recognized as the
most popular form. Various supervised learning algorithms
have been proposed with numerous applications in different
areas. In this paper, we will use some well-known super-
vised learning techniques to evaluate the effectiveness of the
method to generate the synthetic attack data. These algo-
rithms are briefly described below.
Support Vector Machines: Support Vector Machines (SVM)
is a relatively new learning method used for binary classi-
fication [8]. Since its introduction by Vapnik in 1998 [27],
SVM has successfully been applied to many real-world prob-
lems [8]. SVM first maps the input vector into a higher di-
mensional feature space using a kernal function. After that,
an algorithm is used to obtain the optimal separating hyper-
plane in the higher dimensional feature space. Moreover, a
decision boundary, i.e. the separating hyper-plane, is de-
termined by support vectors, the training samples that are
close to a decision boundary, rather than the whole training
samples and thus SVM is extremely robust to outliers. The
SVM also provides a user specified parameter called penalty
factor that are adjusted to make a trade off between the
number of misclassified samples and the width of the deci-
sion boundary.
Artificial Neural Networks: An Artificial Neural Network
(ANN) is an information processing paradigm aiming to
mimic the way that the biological nervous system processes
information [9]. An ANN consists of a collection of pro-
cessing units called neurons that are highly interconnected
according to a given topology. Similar to human beings,
ANNs have the ability of learning-by-example and gener-
alization from limited, noisy, and incomplete data. ANNs
have been successfully employed in a broad spectrum of real
world applications such as data classification and pattern
recognition. There are several different kinds of neural net-
works, of these, RBFNetwork (Radial Basis Function Net-

work) and Multilayer Perceptron [28] are perhaps the most
popular. These networks will be used in the experiments in
this paper.
Bayesian networks: A Bayesian network is a model that
encodes probabilistic relationships among the variables of
interest [15]. A Bayesian network (BN) consist of nodes and
arcs that present for random variables and connections be-
tween them, respectively. When constructing a network, two
main components namely estimator and searching algorithm
need to be identified. While estimator is used to evaluate the
performance of a given network, searching algorithm aims to
search through the space of possible networks to find a good
candidate network. In our experiments, we used SimpleEsti-
mator algorithm for the estimator, and K2 for the searching
algorithm. They were both implemented in Weka [28].
Naive Bayes Network : A naive Bayes network classifier is a
simple probabilistic classifier based on applying Bayes’ the-
orem with strong (naive) independence assumptions [30]. In
reality, there are some cases where the presence or absence
of a particular feature is unrelated to the presence or ab-
sence of any other feature, given the class variable. In order
to exploit this structural relationship or casual dependencies
between the random variables of a problem, naive Bayesian
networks can be used. Despite oversimplified assumptions,
naive Bayes network classifiers have worked quite well in
many complex real-world situations. In this paper, we also
use naive Bayes network to classify between intrusive and
normal data.
Decision trees: Decision tree learners are a well-established
family of learning algorithms for classification [23]. A deci-
sion tree classifies a sample through a sequence of decisions,
in which the current decision helps to make the subsequent
decision. In contrast to other back-box learning methods,
the sequence of decisions is represented in a white-box struc-
ture (tree structure). This allows its solutions can easily be
understood and analysed. The classification of a sample is
started from the root node to a suitable leaf node, where
each leaf node represents a classification category. There
have been a number of algorithms developed for construct-
ing decision trees for a problem. Among them, C4.5 and its
variants are the most popular algorithms [24]. In this paper,
we use an extension of C4.5 called J48 for constructing the
decision tree for intrusion detection problem.

3. RELATED WORK
Machine learning for intrusion detection has received in-

creasingly attention in the research community [29]. Diverse
learning techniques have been proposed to tackle the intru-
sion detection problem. These methods can be generally
divided into three categories, namely single, hybrid, and en-
semble methods [29]. The single method attempts to use
only one machine learning technique such as artificial neu-
ron networks or support vector machines to find the models
which are used to classify or recognize whether the incom-
ing Internet access is the normal access or an attack [6]. In
the single method, K-NN and SVM are the most commonly
used techniques for intrusion detection [19] with SVN often
produces good performance [6].

The hybrid method aims to combine some learning tech-
niques to enhance the performance of the systems. There are
several ways in which different algorithms can be hybridized.
The hybrid classifiers can be built based on cascading dif-
ferent classifiers, such as neuron-fuzzy techniques where the

287

outputs of the first classifiers are severed as the inputs for
the second classifiers [7], and so on. On the other hand, hy-
brid classifiers can be implemented by using some clustering-
based approaches to preprocess the input samples in order
to eliminate unrepresentative training examples from each
class. Then, the clustering results are used as training ex-
amples for classifier design [20]. Finally, hybrid classifiers
can also be constructed on the integration of two different
techniques in which the first aims at optimizing the learning
performance (i.e. parameter tuning) of the second model for
prediction [1].
The third method uses ensemble learning techniques to

improve the classification performance of a single classifier [13].
Ensemble learning aims to combine multiple weak learning
algorithms or weak learners to create the problem solution.
There are several strategies for combining weak learners,
among them, the ”majority vote” is arguably the most com-
monly used method in the literature. Other combination
methods, such as boosting and bagging, are also popular.
These methods are based on resampling data samples and
then taking a majority vote of the resulting weak learn-
ers [22].
Although, numerous machine learning algorithms have

been used for intrusion detection, most of these research con-
sidered some public data sets like KDD’99 or DARPA 1998
for their experiments [26]. These public data sets are rec-
ognized as standard data sets in intrusion detection though
they might not be suitable to find detection models for an
IDS in reality. There were also some studies using non-
public or their own data sets [25]. However, the number
of these researchers is much smaller compared to those us-
ing KDD’99 or DARPA 1998. The reason could be that
collecting the training data, especially intrusive data, is of-
ten difficult and expensive. This paper aims to address this
problem by proposing methods for creating artificial attack
data. These methods are detailed in the following section.

4. METHODS
This section presents our main methods to generate syn-

thetic intrusive data for machine learning approaches. There
are two situations where this artificial attack data may be
beneficial for learning systems. The first situation is when
no intrusive examples can be collected. In other words, only
benign samples are gathered from the normal behaviors of
the networks. In this case, the attack data will be generated
based on the previously collected normal data. In the sec-
ond situation, we can collect some intrusive examples but
the number of these samples are rather small. That is to
say collected intrusive data is not enough to build a good
detection model. In this case, the artificial intrusive samples
will be created with respect to the previous obtained attack
examples. Two methods for generating intrusive data in two
these situations are described below.
The idea behind the method for generating intrusive data

in the situation where none of the attack data has been col-
lected is that attack behaviors are often by far different from
normal behaviors. Therefore, if we create some samples that
are very much far from the samples in the normal data set,
then these samples can be seen as the abnormal (intrusive)
data. The method for generating this kind of data is pre-
sented in Algorithm 1.
The input of the algorithms is the normal data set, D,

with N samples, and the number of features is F. It is also

Algorithm 1: Generating Synthetic Attack Data from
Normal Data
Input is the normal dataset: D
Output is the intrusive data set: D’
Calculate mean (µ) and standard deviation (δ) of each
feature value in D
D’=empty
Count=0;
N’ is the number of required samples in D’
while Count<N’ do

Randomly select a sample in D called this as S
Copy S to create a sample S’
for each feature t in S’ with µt and δt do

Randomly generate a real value r so that
r * [µt − 3δt, µt + 3δt]
Replace the value of feature t with r

Add S’ to D’
Count=Count+1

important to note that all feature values of D must be con-
verted into numerical format before the algorithm can be
executed. D’ is the intrusive data set generated with N’
samples of F features. The algorithm begins by calculat-
ing mean and standard deviation of each feature value in D.
After that, a number of samples (N’) in D’ are generated
by randomly selecting a sample in D, copying it to D’ and
altering every value of its features by a new value so as the
generated sample is different enough from the samples in D
(values of the features of the new samples is out of the range
[µ− 3δ, µ+ 3δ]). This is based the assumption that all fea-
tures of normal data follow the normal distribution. If so, a
value that is out of the range [µ − 3δ, µ + 3δ] will often be
seen as generating by an abnormal behavior [2].

The method for generating intrusive data in the second
situation is based on few attack samples that have been ob-
tained previously. The intuition is that the examples of at-
tack data in the future are often similar to those samples in
the past though they may not be identical. The algorithm
for creating intrusive data in this situation is presented in
Algorithm 2. Here the input data set is the intrusive data
instead of normal data as in Algorithm 1. Moreover, a new
sample is generated by copying and modifying a feature but
the margin of modification is kept small enough (the value
belongs to the range [min,max] where min and max are the
smallest and greatest values among all samples of the se-
lected feature in D’). This is to guarantee that the sample is
similar to the previously collected samples in the intrusive
data set.

More precisely, in Algorithm 2, a new synthesis sample
data is generated as follows. A feature (F) and a sample (S)
in D’ are randomly selected. Then, the highest frequency of
values in F (Vmax) and the frequency of the value of feature
F in S are (V) calculated. After that, Vmax-V new artifi-
cial sample are generated by copying S to D’ and altering
the value (t) of feature F at S so that this value belongs
to [min,max]. This algorithm is similar to and inspired
from the algorithm to generate artificial data for Anomaly
detection in [11]. The difference is the range of the gener-
ated random values. In this paper, these values must be in
the range of [min,max] rather than in the arbitrary range
in [11].

288

Algorithm 2: Generating Artificial Attack Data based
on the Previous Intrusive Data
Input is the previous intrusive data set: D’
Output is the artificial intrusive data set: E’
E’=empty
Count=0;
N’ is the number of required samples in E’
while Count<N’ do

Randomly select a feature F in D’
Set min=the smallest value of samples in F
Set max=the greatest value of samples in F
Calculate the frequency of each value in F
Set Vmax= the highest frequency of values in F
Randomly select a sample in D’ called this as S
Set V=the frequency of the value of S in F
Set t=value of feature F in S
for i=V to Vmax do

Copy S to create a sample S’
Randomly generate a real value r so that
r ⊆ [min,max]
Replace the value of t with r
Add S’ to E’
Count=Count+1
if Count>=N’ then

break;

5. EXPERIMENTAL SETTINGS
This section presents the settings for the experiments in

this paper. In order to investigate the effective impact of
the synthetic data sets, three sets of experiments were set
up. The first aims to examine the efficiency of the created
data set when none of the attack data was obtained. The
second experiment plans to examine if generating more in-
trusive data from a small amount of attack data can help to
improve the prediction ability of learning systems. The third
experiment will examine if by generating intrusive data for
one kind of attacks can help to detect other attacks better.
In the first set of experiments, 500 normal samples were

selected from the KDD’99 data set. After that 500 intrusive
data samples were generated using Algorithm 1. These two
data sets were combined to become the training data for all
learning algorithms. A testing data set of 1500 samples was
also chosen from KDD’99 in which 1000 samples were nor-
mal data and 500 samples were intrusive data of Distributed
Denial-of-service (DDOS) attack 2.
In the second experiment, 400 normal data samples and

200 DDOS attack samples were chosen. After that 200 intru-
sive samples were generated using Algorithm 2 based on 200
DDOS samples. Two training data set were created. The
first includes 600 samples (400 normal and 200 DDOS) and
the second has 800 samples (400 normal, 200 DDOS and 200
artificial generated). A testing data set includes 300 DDOS
samples and 600 normal samples that were selected from
KDD’99.
The third set of experiments aims to address the question

whether generating more intrusive data of one attack type
can help to detect other attacks better. First, 87 samples
of a DDOS attack type–smurf attacks and 400 normal data

2In this paper, we only used DDOS attack data since this is
the most popular attack in KDD’99.

samples were drawn from KDD’99. After that 87 artificial
data was created using Algorithms 2. Similar to the sec-
ond experiment, two training data set were created. The
first includes 487 samples (400 normal and 87 DDOS smurf)
and the second includes 574 samples (400 normal, 87 DDOS
smurf and 87 artificial samples). The testing includes 1200
samples in which 800 samples are normal data and 400 sam-
ples are DDOS data but they are different from the data
used for training (smurf). 400 DDOS samples in the testing
set comprise of the following attacks: land, back, neptune,
pod, teardrop.

The effectiveness of the generated data was examined based
on several well-known machine learning techniques. These
techniques were trained and tested on the above data sets.
The tested learning techniques include decision trees (using
J48 algorithm), support vector machines (using SMO al-
gorithm), artificial neural networks (Multilayer Perception
and RBF networks) and Bayes Networks (BayesNet and
NavieBayes). The results of applying the learning meth-
ods to the above data sets will be presented in the following
section.

6. RESULTS AND DISCUSSION
This section presents the experimental results of apply-

ing machine learning techniques to the generated artificial
data sets. To apply learning methods to these data sets,
we use their implementations in Weka. The parameters of
these algorithms are tuned using the method in [28] and
the best parameters was selected to report the results. The
performance of each algorithm is measured by the percent
of correct classification on the testing data set. They are
shown in the following tables.

Table 1 presents the results when applying different ma-
chine learning methods to the problem of intrusion detec-
tion in case none of attack data has been collected. In
this table (and the following tables), the first row presents
various tested learning techniques including decision trees
(J48), support vector machine (SVM), two artificial neu-
ral networks (Multilayer Perceptron: Perc and Radial basis
function network: RBF), and two Bayesian networks (Bayes
Network: Bayes and NavieBayes: Navie). The second row
”None” shows the results of learning system when no attack
data was used and the last row ”Arti” presents the results
when artificial intrusive data was generated.

Table 1: The percent of correct classification of
learning methods when none of attack data was col-
lected.

Methods J48 SVM Perc RBF Bayest Navie

None 66.7 66.7 66.7 66.7 66.7 66.7

Arti 97.1 93.6 96.3 68.2 96.9 97.4

It can be seen from this table that generating synthetic
attack data helps all machine learning methods to improve
their performance. The table shows that all learning sys-
tems perform ineffectively when none of the attack data was
obtained. In fact all techniques classify the samples into the
one class (the normal class) if there was not any intrusive
data was provided to the training process. Therefore the
percent of correct prediction of them is identical at 66.7%.

Conversely, the performance of all learning methods are

289

improved by adding the artificial intrusive data to the train-
ing data set. Especially, some methods such as decision
trees (J48) and naive Bayes can achieve very good results
(the percent of correct prediction is up to nearly 98%). This
results show that the method to generate artificial attack
data in Algorithm 1 may be suitable for machine learning
methods to gain good performance on intrusion detection
problem when no intrusive data has been collected.
Table 2 shows the results of machine learning techniques

when there are some but few collected attack data. In this
table the second row ”Few” presents the results when the
training set contains few collected intrusive data and the
third row ”Arfi” shows the results when artificial attack data
generated by Algorithm 2 was added to the training data.

Table 2: The percent of correct classification of
learning methods when few of attack data was col-
lected.

Methods J48 SVM Perc RBF Bayest Navie

Few 90.3 98.2 98.6 93.6 96.6 98.4

Arti 99.0 99.2 99.7 99.2 97.8 99.7

It can be seen from this table that by adding some few
collected attack data to the training set, the performance of
all learning techniques are improved. These algorithms can
achieve up to 98% of correct classification on this problem.
The result is mostly equal to the result obtained when using
artificial attack data in Table 1. However, what is more im-
portant is the performance of all machine learning methods
are also enhanced when incorporating the training data with
some synthetic intrusive data. Particularly, some methods
such as Multilayer Perceptron network and Naive Bayes can
classify almost 100% correctly (the percent of correct pre-
diction of both methods are 99.7%). This results show that
generating artificial intrusive data using Algorithm 2 is ben-
eficial for the efficiency of the learning techniques.
The last table, Table 3, shows the results of applying the

learning techniques to intrusion detection when the objec-
tive is to detect new attacks. In this table, the second row
”Old”presents the results of machine learning when they are
trained on the training set of smurf attack and predicted on
other attacks (land, back, neptune, pod, teardrop) and the
third row ”Arfi” shows the results when the training set is
added some artificial data generated by Algorithm 2.

Table 3: The percent of correct classification of
learning methods when tested on new attack types.

Methods J48 SVM Perc RBF Bayest Navie

Old 67.1 67.1 69.3 67.5 89.4 65.9

Arti 67.6 67.3 67.1 98.6 97.5 97.5

It can be observed from this table that all learning meth-
ods are suffered from difficulty in predicting new attacks.
Their performances are often not as good as when predict
the same types of attacks as in Table 2. Most of the al-
gorithms achieve below 70% correct prediction with the ex-
ception on Bayesian network where the correct prediction is
89%. On the other hand, generating synthetic attack data
and adding it to the training set often helps machine learn-

ing methods detect new attacks better. Particularly, some
methods such as RBF network, Bayesian network and navie
bayes can achieve very good performance in identifying new
type of intrusions: the percent of correct prediction is up to
nearly 99%. Overall, the results in this section show that
generating artificial attack data gives positive impact on
learning systems in both situations when no intrusive data
or few intrusive data is collected.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the problem that practition-

ers often face when building an intrusion detection system in
reality. The problem is the shortage of the training data for
machine learning methods. For learning techniques perform
effectively on this problem, it is often required that a large
amount of data was collected from the real environments.
While collecting normal data is often straightforward and in-
expensive, obtaining attack data is usually harder and more
expensive. This paper proposed some methods for gener-
ating attack data to relieve this problem. Particularly, two
algorithms were proposed to create intrusive data in two
situations when none and few of intrusive data has been
collected. The generated data was tested using a number of
well-known learning techniques and the experimental results
showed that the proposed methods are worthy in helping the
tested learning methods perform better on this problem.

There are several potential research that are arisen from
this paper. First and very important one is to evaluate the
effectiveness of the proposed methods on more data sets
particularly the data set was collected from the real envi-
ronment as in [5]. Second, some variant of the algorithms
introduced in this paper can be proposed to better reflect the
attack behaviors. One of the variant could be that the new
samples are generated by modifying more than one features.
Third, we would like to study some probabilistic models such
as Markov chain [14] to see if we can find a new and com-
prehensive model for generating synthetic attack data from
the previously collected data. Last but not least, the effi-
ciency of these methods will be better evaluated if they are
compared to some similar methods in machine learning such
as re-balancing data techniques and one-class learning [12].
In the future, we are planning to do this.

8. ACKNOWLEDGMENTS
The work in this paper was funded by The Vietnam Na-

tional Foundation for Science and Technology Development
(NAFOSTED), under grant number 102.01-2014.09. The
Network Security Lab of Le Quy Don University provided
research facilities for this study.

9. REFERENCES
[1] M. S. Abadeh, J. Habibi, Z. Barzegar, and M. Sergi. A

parallel genetic local search algorithm for intrusion
detection in computer networks. Eng. Appl. of AI,
20(8):1058–1069, 2007.

[2] C. C. Aggarwal. Outlier Analysis. Springer, 2013.

[3] H. B. Barlow. Unsupervised learning. Neural
Computation, 1:295–311, 1989.

[4] F. Bergadano. Machine learning and the foundations
of inductive inference. Minds and Machines,
3(1):31–51, 1993.

290

[5] V. L. Cao, V. T. Hoang, and Q. U. Nguyen. A scheme
for building a dataset for intrusion detection systems.
In the 2013 Third World Congress on Information and
Communication Technologies, pages 120–132, Hanoi-
Vietnam, 2013. IEEE.

[6] W.-H. Chen, S.-H. Hsu, and H.-P. Shen. Application
of SVM and ANN for intrusion detection. Computers
& OR, 32:2617–2634, 2005.

[7] Y. Chen, A. Abraham, and B. Y. 0001. Hybrid flexible
neural-tree-based intrusion detection systems. Int. J.
Intell. Syst, 22(4):337–352, 2007.

[8] N. Cristianini and J. Shawe-Taylor. An introduction to
Support Vector Machines. Cambridge University
Press, Mar. 2000.

[9] S. Das. Elements of artificial neural networks. IEEE
Transactions on Neural Networks, 9(1):234–235, Jan.
1998.

[10] D. E. Denning. An intrusion-detection model. IEEE
Transactions on Software Engineering, 13(2):222–232,
Feb. 1987.

[11] W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan.
Using artificial anomalies to detect unknown and
known network intrusions. In Proceedings of ICDM01,
pages 123–248, 2001.

[12] S. Garcia and F. Herrera. Evolutionary undersampling
for classification with imbalanced datasets: Proposals
and taxonomy. Evolutionary Computation,
17(3):275–306, 2009.

[13] G. Giacinto, R. Perdisci, M. D. Rio, and F. Roli.
Intrusion detection in computer networks by a
modular ensemble of one-class classifiers. Information
Fusion, 9(1):69–82, 2008.

[14] R. Givan, S. Leach, and T. Dean. Bounded-parameter
Markov decision processes. Artificial Intelligence,
122(1–2):71–109, 2000.

[15] D. Heckerman. Tutorial on learning in bayesian
networks. Technical Report MSR-TR-95-06, Microsoft,
1995.

[16] N. Intrator. On the combination of supervised and
unsupervised learning. Physica A, pages 655–661,
1993.

[17] W. Lee, S. Stolfo, and K. Mok. A data mining
framework for building intrusion detection models. In
Proceedings of the 1999 IEEE Symposium on Security
and Privacy (SSP ’99), pages 120–132, Washington -
Brussels - Tokyo, 1999. IEEE.

[18] W. Lee and S. J. Stolfo. A framework for constructing
features and models for intrusion detection systems.
ACM Trans. Inf. Syst. Secur, 3(4):227–261, 2000.

[19] Y. Li and L. Guo. An active learning based
TCM-KNN algorithm for supervised network intrusion
detection. Computers & Security, 26(7-8):459–467,
2007.

[20] Y. Liu, K. Chen, X. Liao, and W. Zhang. A genetic
clustering method for intrusion detection. Pattern
Recognition, 37(5):927–942, 2004.

[21] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[22] S. Mukkamala, A. H. Sung, and A. Abraham.
Intrusion detection using an ensemble of intelligent
paradigms. J. Network and Computer Applications,
28(2):167–182, 2005.

[23] Quinlan. Learning decision tree classifiers. CSURV:
Computing Surveys, 28, 1996.

[24] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[25] K. Shafi and H. A. Abbass. Evaluation of an adaptive
genetic-based signature extraction system for network
intrusion detection. Pattern Anal. Appl,
16(4):549–566, 2013.

[26] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin.
Intrusion detection by machine learning: A review.
Expert Systems with Applications, 36(10):11994–12000,
2009.

[27] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[28] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, 2005.

[29] S. X. Wu and W. Banzhaf. The use of computational
intelligence in intrusion detection systems: A review.
Appl. Soft Comput, 10(1):1–35, 2010.

[30] H. Zhang. The optimality of naive bayes. 17th
International FLAIRS conference, Miami Beach, May,
pages 17–19, 2004.

291

